
Fault-Tolerant Replication of High Throughput Services

José Orlando Pereira

Dep. de Informática
Universidade do Minho

4710-057 Braga Portugal
jop@di.uminho.pt

Abstract

In multicast communication systems, a single per-
turbed recipient can drastically affect the performance
of a complete group of processes. This problem can be
alleviated by allowing some messages to be omitted.
We propose a multicast service that exploits semantic
knowledge to select which messages can be omitted
without compromising the application’s correctness.

Besides summarizing initial research results [8], this
text addresses the implementation of high through-
put fault-tolerant services by combining virtually syn-
chronous and totally ordered reliable multicast with
semantic reliability.

1 Introduction

It has recently been pointed out that performance
of reliable multicast protocols in demanding applica-
tions requiring sustained high throughput to a large
number of participants can be frustrating [1].

Some protocols are inherently unable to achieve
high throughput due to limitations of the retransmis-
sion mechanisms. This has been addressed by the de-
sign of more scalable protocols that implement effi-
cient mechanisms to disseminate messages and collect
stability information [5].

Furthermore, it has been shown that despite the
efficiency of the protocol any single slow receiver can,
due to flow control, degrade the performance of the
whole system [1]. This second problem is more difficult
to tackle since no protocol can force a node to execute
faster than its own resources allow.

This problem is closely related to reliability itself:
When messages are produced faster than some tar-
get is able to consume them, the surplus needs to
be temporarily buffered for eventual delivery. How-
ever, buffering is viable only for short bursts of traf-

fic. If message multicast rate is consistently high, un-
bounded buffer space would be required and message
delivery by the slowest process would increasingly lag
behind. Eventually, message sources must be slowed
down or, alternatively, the slow recipient needs to be
excluded from the multicast group. In short, either
performance or fault tolerance is degraded.

This can be circumvented only by relaxing the re-
liability of multicast by not delivering all messages to
processes that are significantly slower than the major-
ity of group members. As summarized in Section 2,
our research has focused in relaxing reliability such
that performance advantages are obtained without im-
pacting application correctness.

Currently, we are researching how our results can
be combined with stronger protocols, such as total or-
der and virtual synchrony, and used in applications
which are highly dependent on multicast performance,
such as in replication for fault-tolerance using both the
replicated state machine and the primary-backup ap-
proaches [4]. Sections 3 and 4 summarize the intuition
behind our current research in this area.

2 Message obsolescence

Relaxing the reliability of fault-tolerant multicast
protocols makes it possible to accommodate per-
turbed members in a multicast group without impair-
ing global performance [2].

Unfortunately, even when the semantics of the ap-
plication tolerates message loss, most of the simplicity
that was gained at the application level by using a reli-
able multicast protocol is also lost. For instance, even
if some mechanism is implemented to notify receivers
when a message is lost, the application might be un-
able to take any corrective action since it has no knowl-
edge of that message’s content, and thus, whether it
is important or not.



In contrast, our proposal aims at a protocol en-
suring that no important messages are ever lost. As
such we aim at semantic reliability, ensuring that all
current information is delivered to all receivers, either
implicitly or explicitly, without necessarily delivering
all messages.

The basic idea behind our approach is is that in a
distributed application some messages either overwrite
or implicitly convey the content of other messages sent
in the past, therefore making them irrelevant. If obso-
lete messages have not been yet delivered, they can be
safely purged without compromising the application’s
correctness. If a slow receiver exists but enough mes-
sages can be purged, the protocol will not need to slow
down the sender, thus ensuring that the performance
of fast processes remains unaffected.

Notice that, to be effective, the obsolescence prop-
erty cannot be exploited solely at the application layer,
since liveness or timing constraints force the applica-
tion to immediately forward outgoing messages to the
communication channel. Being so, messages become
out of reach and cannot be discarded by the applica-
tion even if immediately made obsolete.

As such sufficient semantical information must be
conveyed from the application to the protocol to de-
termine which messages can be purged. The required
semantical information is formalized as a relation on
messages. For each pair of related messages m v m′,
we say that m is obsoleted by m′. This relation is
defined by each application and we assume that it is
a partial order and is coherent with causal order of
events, as such m v m for all m. The intuitive mean-
ing of this relation is that if m v m′ and if m′ is deliv-
ered, the correctness of the application is not affected
by omitting the delivery of m.

If no message is ever made obsolete, semantical re-
liability defaults to full reliability [6]. On the other
hand, if every message is made obsolete by subsequent
messages from the same sender, semantically reliable
multicast results in the extension to multicast of the
1-stubborn channel [7]. In between, semantically re-
liable multicast simplifies the development of appli-
cation while allowing enough messages to be purged
when necessary to sustain high throughput. For in-
stance, applications embodying operations with over-
write semantics, in particular, applications managing
read-write items are the most obvious example of ap-
plications that exhibit message obsolescence, as any
update of a given item is made obsolete by subsequent
write operations.

Considering the obsolescence profile of the traffic
generated by an on-line stock trading system, our ini-

tial work has shown that as much as a 40% processing
delay can be tolerated without perturbing the message
sender [8].

3 Semantic virtual synchrony

In order to apply the performance benefits of se-
mantic reliability to replicated fault-tolerant services,
additional guarantees such as total order and virtual
synchrony are required. The safety properties of a vir-
tually synchronous membership protocol can be clas-
sified as properties on the views or as relating views
with common messages [9].

The agreement on the views is not affected by the
relaxed reliability model: All it takes is that all pro-
cesses agree on the elements of each view. In fact, this
can be achieved using a consensus protocol on top of
1-stubborn channels [7], which is a particular case of
semantic reliability.

Where the definition of virtual synchrony implicitly
assumes a strict reliability model, and thus collides
with semantic reliability, is in requiring agreement on
messages delivered in each view. Specifically:1

Virtual Synchrony: If processes p and p′ install the
same view V in the same previous view V ′, then
any message delivered by p in V ′ is also delivered
by p′ in V ′.

In order to be compatible with semantic reliability,
virtual synchrony cannot be defined as requiring that
upon view change all processes have delivered the ex-
act same set of messages, as messages delivered by one
process might have become obsolete and been purged,
and thus not available.

What can be ensured is that all processes have de-
livered the same information, either explicitly or im-
plicitly without necessarily delivering all messages:

Semantic Virtual Synchrony: If processes p and
p′ install the same view V in the same previous
view V ′, then for any message m delivered by p in
V ′, there is m′ such that m v m′ that is delivered
by p′ in V ′.

This definition maintains the meaning of a view
change as a synchronization point in the message
stream, where the state of all processes in the installed
view is consistent. Notice that when the obsolescence

1The system model and notation assumed is the same as
described in [9].



relation is empty, it defaults to standard virtual syn-
chrony, emphasizing the nature of the property as a
generalization of virtual synchrony.

In addition to agreement on the group composition,
this property is sufficient for primary-backup replica-
tion, as it ensures that even though different replicas
have received different messages, they all receive the
latest updates and only miss those that have been ren-
dered obsolete, for instance, by being overwritten.

4 Total order

A simple total ordering algorithm, sufficient for the
implementation of the active replication approach, can
be constructed on top of semantical virtual synchrony.
This algorithm presented here is not concerned with
efficiency: Its aim is to give an intuition of possibility
and of what is the resulting service.

In fact, our proposal is similar to the algorithm
in [3] in requiring the execution of an agreement pro-
tocol for each batch of messages. Specifically, we use
a view change operation as the agreement protocol.

The algorithm works as follows: Processes freely
multicast messages using virtually synchronous se-
mantically reliable multicast. Upon reception by the
ordering algorithm on top of virtual synchrony, mes-
sages are buffered.

Periodically, a view change is forced and a new view
is installed. Upon reception of the new view, the total
ordering algorithm purges all obsolete messages from
its buffer. The remaining messages are then guaran-
teed to be the same, thus, can be ordered locally us-
ing any deterministic criterium and delivered. We are
currently developing an improved totally ordering al-
gorithm for semantically reliable multicast that should
allow better performance.

5 Conclusions and future work

Our previous work has illustrated the advantages of
using the notion of message obsolescence in the design
of protocols for high throughput applications. As such
we proposed semantic reliability as a viable approach
to ensure a higher stable multicast throughput in the
presence of perturbed group members. Namely, by
applying a semantically reliable multicast to the obso-
lescence profile of an on-line stock trading system, as
much as 40% processing delay can be tolerated with-
out perturbing fast members of the group.

In contrast to solutions that admit message loss and
offload responsibility of corrective action to applica-

tions, our proposal also has the advantage of provid-
ing a solid foundation for building stronger protocols
such as total order and virtual synchrony, extending
the performance advantages of semantic reliability to
replicated fault-tolerant services.

Our current research is focused on formally speci-
fying, applying and improving the the performance of
protocols based upon semantic reliability as outlined
in this paper.

References

[1] K. Birman. A review of experiences with reliable multi-
cast. Software Practice and Experience, 29(9):741–774,
July 1999.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Transactions on Computer Systems, 17(2):41–88, 1999.

[3] T. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[4] R. Guerraoui and A. Schiper. Fault-tolerance by repli-
cation in distributed systems. Lecture Notes in Com-
puter Science, 1088, 1996.

[5] K. Guo. Scalable Message Stability Detection Proto-
cols. PhD thesis, Cornell University, Computer Sci-
ence, May 1998.

[6] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In Sape Mullender, editor, Dis-
tributed Systems, chapter 5, pages 97–145. Addison
Wesley, 1993.

[7] R. Oliveira. Solving consensus: From fair-lossy chan-
nels to crash-recovery of processes. PhD thesis, École
Polytechnique Fédérale de Lausanne, February 2000.

[8] J. Pereira, L. Rodrigues, and R. Oliveira. Semanti-
cally reliable multicast protocols. Submitted to the
Nineteenth IEEE Symposium on Reliable Distributed
Systems, October 2000.

[9] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev.
Group communication specifications: A comprehensive
study. Technical Report MIT-LCS-TR-790, MIT, Lab-
oratory for Computer Science, 1999.


