GORDA: An Open Architecture for Database Replication

A. Correia Jr. J. Pereira L. Rodrigues
U. Minho U. Minho U. Lisboa
Abstract

Although database replication has been a standard fea-
ture in database management systems for a long time, third
party solutions have been enjoying an increasing popular-
ity. These solutions often rely on the use of group commu-
nication primitives to offer various forms of synchronous
replication with reduced overhead. Unfortunately, the lack
of native support for third party replication forces imple-
mentors to either modify the database server, restricting
portability, or to develop a middleware wrapper, which
causes a performance overhead.

This paper addresses this problem with a novel middle-
ware architecture and programming interface for replica-
tion, such that different replication strategies can be effi-
ciently implemented on top of any compliant database in a
cost-effective manner. The contribution is two-fold. First
we identify key functionality for representative replication
protocols. Then we propose a middleware interface to ex-
pose its functionality and evaluate its implementation in
both Apache Derby and PostgreSQL.

1. Introduction

Database replication has been a standard feature in
database management systems (DBMS) for a long time,
even in entry level products. Specifically, asynchronous or
lazy propagation of updates provides a simple yet efficient
way of increasing performance and data availability [9].

On the other hand, support for synchronous replication
has been confined to high-end offerings. This has moti-
vated the emergence of third-party solutions, such as the Se-
quoia replication and clustering middleware (formerly Ob-
jectWeb C-JDBC) [6]. This type of solutions has been en-
joying an increasing popularity, since it provides much of
the advantages of synchronous replication and clustering
without requiring the migration of legacy databases to dif-
ferent database management systems.

Furthermore, recent research in database replication
based on group communication has proposed novel al-
gorithms that are able achieve strong replica consistence

N. Carvalho
U. Lisboa

R. Oliveira
U. Minho

S. Guedes
U. Lisboa

without the overhead of traditional synchronous replica-
tion[11, 18, 14, 26, 19].

The lack of native support for third party replication re-
quires those solutions to either modify the database server
or to develop a server wrapper in middleware. However, the
modification of the database server is very hard to maintain
and port, and, in many cases, simply impossible due to un-
availability of source code. A middleware wrapper, which
implements replication and redirects requests to the actual
underlying DBMS, represents a large development effort
and introduces a non-negligible performance overhead.

This paper addresses the balance between portability and
performance by proposing a novel middleware architecture
and a programming interface for replication, such that dif-
ferent replication strategies can be implemented on top of
any compliant database in a cost-effective manner. Instead
of relying on client interfaces, we propose a reflective inter-
face to transaction processing that supports a wide range of
replication protocols.

The contribution of the paper is therefore two-fold.
Firstly, we identify the key functionalities required by the
most representative replication protocols in use today. Then
we propose a middleware interface to expose its functional-
ity. Finally we discuss the implementation of this interface
in both Apache Derby 10.2 [2] and PostgreSQL 8.1 [21].

The work reported here is being developed in the context
of an EU funded research project, GORDA (Open Replica-
tion of DAtabases),! that intends to foster database repli-
cation as a means to address the challenges of trust, inte-
gration, performance, and cost in current database systems
underlying the information society. The GORDA project
has a mix of academic and industrial partners, including U.
do Minho, U. della Svizzera Italiana, U. de Lisboa, INRIA
Rhoéne-Alpes, EMIC Networks Oy, and MySQL AB.

The rest of this paper is structured as follows. Section 2
discusses existing replication protocols and implementation
strategies. Section 3 identifies a list of interface require-
ments and their impact on the implementation strategy. Sec-
tion 4 introduces the GORDA architecture and interfaces.
The application to several replication protocols is presented
in Section 5. Section 6 discusses the implementation in two

"http://gorda.di.uminho.pt/

different systems. Section 7 concludes the paper.

2. Background

In this section, we survey some of the the most relevant
replication strategies and then we address different archi-
tectures to implement them in concrete systems. This brief
analysis is useful to motivate the replication interface pro-
posed in the paper.

2.1. Target Approaches

Primary-Backup In the primary-backup approach to
replication, also called passive replication[16], update
transactions are executed at a single master site under the
control of local concurrency control mechanisms. Updates
are then captured and propagated to other sites. Asyn-
chronous primary-backup is the standard replication in most
DBMS and third-party offers. An example is the Slony-I
package for PostgreSQL [22].

Implementations of the primary-backup approach dif-
fer whether propagation occurs synchronously within the
boundaries of the transaction or, most likely, is deferred and
done asynchronously. The later provides optimum perfor-
mance when synchronous update is not required, as multi-
ple updates can be batched and sent in the background. It
also tolerates extended periods of disconnected operation.

The main advantage of this approach is that it can easily
cope with non-deterministic servers. A major drawback is
that all updates are centralized at the primary and little scal-
ability is gained, even if read-only transactions may exe-
cute at the backups. It can only be extended to multi-master
by partitioning data or defining reconciliation rules for con-
flicting updates.

State-machine The state-machine approach, also called
active replication [16], is a decentralized replication tech-
nique. Consistency is achieved by starting all replicas with
the same initial state and, subsequently, receiving and pro-
cessing the same exact sequence of client requests. Exam-
ples of this approach are provided by the Sequoia [6] and
PGCluster [20] middleware packages.

The main advantage of this approach is its simplicity and
failure transparency, since if a replica fails the requests are
still processed by the others. It also trivially handles Data
Definition Language (DDL) statements without any special
requirements.

On the other hand, the state machine operates correctly
only under the assumption that requests are processed in
a deterministic way, i.e., when provided with the same se-
quence of requests, replicas produce the same sequence of

output and have the same final state. To start with, this re-
quires that the original SQL command is rewritten to re-
move non-deterministic expressions and functions such as
now().

A second source of non-determinism is scheduling of
concurrently executing conflicting transactions, namely, the
order by which locks are acquired is hard to predict. To
overcome this problem, it is common to have an external
global scheduler that manages which SQL commands can
be concurrently processed without undermining the deter-
minism requirement. This introduces additional complex-
ity and may overly restrict concurrency in update-intensive
workloads.

Certification Based Certification based approaches oper-
ate by letting transactions execute optimistically in a single
replica and, at commit time, run a coordinated certification
procedure to enforce global consistency. Typically, global
coordination is achieved with the help of an atomic broad-
cast service, that establishes a global total order among con-
current transactions [11, 18, 14, 26].

Multiple variants of the certification based approach
have been proposed. Here we briefly describe an approach
providing snapshot-isolation [14, 26]. At the time a trans-
action is initiated, a replica is chosen to execute the transac-
tion (usually, the closest replica to the client which is called
the delegate replica). When a transaction intends to com-
mit, its identification, database version read, and the write
set are broadcast to all replicas in total order. Right after
being delivered by the atomic broadcast protocol, all repli-
cas verify if the received transaction has the same version
as the database. If so, it should commit. Otherwise, one
needs to check if previously committed transactions do not
conflict with it. There is no conflict if previously committed
transactions have not updated the same items. If a conflict
is detected, the transaction is aborted. Otherwise, it is com-
mitted. Since this procedure is deterministic and all repli-
cas, including the delegate replica, receive transactions by
the same order, all replicas reach the same decision about
the outcome of the transaction. The delegate replica can
now inform the client application about the final outcome
of the transaction.

This can be extended to serializability by considering
also the read-set and then detecting read-write conflicts dur-
ing certification[11, 18]. Although this might have some
impact in performance [10], it is desirable for DBMS in
which the native serializability criteria is similar. Note also
that certification based approaches do not require the entire
database operation to be deterministic: Only the certifica-
tion phase has to be processed in a deterministic manner.
Furthermore, they allow different update transactions to be
executed concurrently in different replicas. If the number of
conflicts is relatively small, certification based approaches

can provide both fault-tolerance and scalability.
2.2. Implementations

Multiple architectures have been used to interface repli-
cation with DBMS. We discuss the main categories in the
following paragraphs:

Replication implemented as a normal client. In this ap-
proach, the replication protocol connects to each DBMS
using client interfaces, e.g. JDBC. This makes it portable
and can be very efficient, namely, when code resides within
the server using a server side client interface. This imple-
mentation strategy is however confined to the asynchronous
primary-backup approach, as client interfaces don’t provide
the functionality required for synchronous replication. An
example of an application of this approach is Slony-I[22],
which provides asynchronous primary-backup replication
of PostgreSQL. Typically, these solutions resource to in-
stalling triggers in the underlying DBMS in order to update
meta-information and gather write-sets. The management
of the DBMS lifecycle can be addressed by wrapping the
database server initialization, without intercepting client re-
quests.

Replication implemented as a server wrapper. These
implementations rely on a wrapper to the database server
that intercepts all client requests by sitting between clients
and the server. An example of an application of this ap-
proach is Sequoia [6]. The middleware layer presents itself
to clients as a virtual database. Compared to the primary
backup protocols, implemented as regular DBMS clients,
this solution offers improved functionality, as is able to in-
tercept, parse, delay, modify, and finally route statements to
target database servers. Nonetheless, it imposes additional
overhead, as it duplicates some of the effort of the database
server. The development of such infrastructure represents
also a large undertaking, and prevents clients to connect di-
rectly to database servers using native privileged interfaces.
It also has to rely on triggers, installed in the underlying
DBMS to capture relevant control information such as write
sets.

Replication implemented as a server patch. This so-
lution requires changes to the underlying database server.
This approach has been used to implement certification-
based replication such as the Postgres-R prototypes[11,
26]. Given that it is implemented the the DBMS kernel, the
replication protocol as an easy access to control information
such as read and write sets, lifecycle events, etc. It has how-
ever the disadvantage of requiring access to the database
server source code. It also imposes a significant obstacle to

portability, not only to multiple database servers but also as
the implementation evolves.

Replication using proprietary interfaces. Database
servers that natively support asynchronous primary-backup
replication, usually do this using a well defined and pub-
lished, although proprietary, interface. This allows some
customization and integration with third party products,
but is of little use when implementing recent innovations
based on group communication. An exception is the Ora-
cle Streams interface [25], which is based on existing stan-
dards, although still confined to asynchronous propagation
of updates.

3. Requirements for a Replication Interface

We now identify a list of requirements that must be satis-
fied by an interface to support the implementation of repli-
cation protocols. These requirements have been extracted
from our experience implementing not only the protocols
above but also some other alternatives [23, 24, 17] that we
have omitted due to lack of space.

(#1) Lifecycle Events: Mechanisms to observe and con-
trol the life cycle of a DBMS site, namely, when a site is
started, recovers from logs, and put on-line to clients. This
is required for proper recovery in coordination with remote
sites, as a local log might have to be complemented by a
remote log or even a state-transfer.

(#2) Object and Transaction Meta-Information: Mech-
anisms to record and retrieve protocol specific meta-
information associated both with database objects (i.e. ta-
bles, tuples) and with transactions. For instance, global
object identifiers or timestamps are needed by multiple
protocols. For recovery purposes, updated to such meta-
information in the context of user transactions that create or
modify the corresponding objects.

(#3) Statement Inspection: Interception of statements
submitted by clients either in a textual format or structured
as parsed tree. This is required in state-machine replication
to disseminate statements to replicas,as well as in most cir-
cumstances to handle DDL statements when update prop-
agation relies on triggers to collect the write-set. Observa-
tion of statements is also useful to determine coarse-grained
conflict classes to optimize state-machine replication.

(#4) Statement Modification: Modification or cancella-
tion of statements, either in a textual format or structured
as parsed tree. This is required to remove non-deterministic
operations in state-machine replication. It is also required

in clustering and partial replication to sub-set queries on
each database partition or to cope with incompatible SQL
dialects in heterogeneous environments.

(#5) Write-set Extraction: Capturing updates done to a
database in a format that can be transfered and applied
remotely. Certification-based approaches require that this
is done within transactional boundaries, while for asyn-
chronous primary-backup it is enough to periodically poll
logs to recover modifications. A major issue is whether
DDL statements are supported, which is not possible with a
trigger based implementation.

(#6) Read-set Extraction: Capturing identifiers of ob-
jects read, in a format that can be transfered and used re-
motely for certification. This is required for certification-
based approaches when one wants to achieve one-copy
equivalence of the native concurrency control mechanisms
in databases that use locking.

(#7) Efficient Write-set Injection: Although write-sets
can always be applied using a regular client interface, it is
hard to satisfy both correctness requirements to apply up-
dates in a pre-defined order with performance. This often
requires that updates are combined and scheduled before-
hand to be applied in parallel [3].

(#8) Transactional Events: Observe transactional events
such as transaction begin, rollback or commit. This is re-
quired in order to maintain version numbers as used by
certification-based approaches. It can also ease the imple-
mentation of efficient parallel update application by allow-
ing a predictable commit order to be established.

(#9) Commit Validation: Interception and validation of
a request to commit an on-going transaction. The replica-
tion protocol needs to make sure that the transaction is able
to commit successfully unless it explicitly rolls it back or
a local fault occurs. Although this is similar to two-phase
commit mechanisms associated with PREPARE statement,
it is simpler and more efficient as it does not require dura-
bility. It is required for certification based approaches.

(#10) Predictable Deadlock Handling: Deterministic
deadlock resolution mechanism, that can be controlled by
middleware. This is required by certification based mech-
anism to ensure that already certified transactions are not
aborted by locally executing transactions to solve dead-
locks.

(#11) Result-Set Injection: Replace result-sets returned
to clients. This is required by clustering and partial replica-
tion mechanisms to reconcile results from multiple database
fragments. It is also required by certification-based ap-
proaches that ship statements to remote replicas for im-
proved efficiency.

(#12) Runtime Model: An uniform runtime model for
portable replication middleware components. Mainly, this
is concerned with concurrency model which is different in
each DBMS kernel. This is relevant as replication compo-
nents can be installed in the database server itself and thus
benefit from tight coupling with transaction execution ker-
nel.

(#13) Configuration Storage: Replication protocols usu-
ally need also to keep meta-information that is updated only
outside user transactions. This is not an issue unless the
choice is the target database server itself and is to be used
during recovery. This requires an extra step in the server life
cycle that exposes such information while user databases
are still off-line being recovered.

4. Reflective Interface

One key idea advocated in this paper is that the function-
ality required for supporting multiple replication protocols
in an efficient manner should be provided through a com-
mon interface, regardless of the specific implementation ap-
proach. For instance, several replication protocols require
the interception of the transaction commit: they should be
able to perform such task using the same interface, regard-
less of being implemented as a client wrapper or by patch-
ing the database server.

To materialize this idea we propose the use of a com-
mon interface able to reflect abstract transaction processing
concepts as objects in the target data model and program-
ming language. In the GORDA project, this interface is
simple called the reflector. This sort of approach[12, 13]
has previously been shown to be a sound foundation for
configurable and extendable software in a wide range of
application areas, ranging from programming languages to
distributed systems. The same idea is already being used
in DBMS for different purposes, namely, for representing
meta-information as relational tables and intercepting up-
date operations with triggers. The idea that reflection can
be used to enable self-tuning DBMS has also been advo-
cated in [15].

In contrast with most previous uses of reflection in
DBMS, our target data model is not the relational model.
Instead, transaction processing concepts are reflected as ob-
jects in the Java programming language. This is justified

DBMS

Database

Client Connection

Transaction

g
Request 3
R R i - — o
& A
)
- T s | @
o S S| |28
k-] m Q) 0| <
v - X o = >
o Eq) o 9 =
= 3 o = - 3| |<
®, N c » 3
>] = P (] [
@ = o <]) Q
o S o S o
=S Q Q 3>
L4]

Figure 1. Reflector architecture.

as the proposed interface is not aimed at client application
developers, but instead at those developing middleware for
distributed systems. The same rationale underlies Oracle
Streams [25] usage of the a messaging interface.

Integration with existing distributed systems middleware
is achieved by reusing whenever possible interfaces and
patterns from J2EE, specifically, event handling from Jav-
aBeans and relational data manipulation from JDBC. Note
however that, although being rendered in Java, the proposed
interfaces are not Java specific in any way. One could easily
translate them to languages in the same family such as C#
or C++ and other middleware platforms that share the same
design patterns [1].

A major feature of this interface is to separate what is be-
ing done, which is exposed as a global multi-stage pipeline,
from on behalf of whom it is being done. This is captured
by nested contexts which are associated with all events ex-
posed. The rest of the section highlights this distinction and
then discusses runtime and configuration issues.

4.1. Processing Stages

A major issue in implementing the requirements listed in
Section 3 is that replication protocols interact with transac-
tion processing at different levels of abstraction and there-
fore, need to interact with different sub-systems within the
database server. Most of the reflector is therefore dedicated
to exposing transaction processing as a pipeline correspond-
ing to logical layers in a database management system.

As it will become clear later in this paper, different repli-
cation strategies make use of different portions of the re-
flector interface. To have an operational system one needs
to ensure that the database exports the parts required by
the replication protocol that one wants to deploy. There-
fore, it is not required that every stage of the reflector in-
terface is available at every implementation: depending on

the replication protocol and on the properties of the underly-
ing DBMS, the implementation of some stages may become
optional.

Figure 1 shows an overview of the considered processing
stages. In general, the replication protocol can be notified
when data advances from one stage to the next. At that
time, it can inspect and modify such data structure, and even
delay or suppress it.

In detail, the Parsing stage parses raw statements re-
ceived thus producing a parse tree. It allows inspecting and
modifying statements in a textual format. It allows also
delaying or even completely suppressing statements. The
parse tree is transformed by the Optimization stage accord-
ing to various optimization criteria, heuristics and statistics
to an execution plan. This provides to replication proto-
cols mostly the same functionality as the previous stage, al-
though on a different data structure, which eases some oper-
ations. The Execution stage executes the plan and produces
read set, write set, lock-grabbed set and lock-blocked set.
The Logical Storage stage deals with mapping from logical
objects to physical storage. In detail, it allows intercepting
and injecting write-sets. Finally, the Physical Storage stage
deals mostly with synchronization of commit requests.

Notice that the proposed model is based on classic trans-
action processing phases [8] augmented to produce not only
write and read sets but also lock-grabbed and lock-blocked
sets, thus exposing which locks were acquired and which
locks are blocking the execution respectively. This informa-
tion might be used by a consistency criterion that requires
knowledge about locks, such as range locks, to ensure one-
copy serializability [4].

Such stages are therefore not mutually exclusive. It is
likely that different parts of the same transaction or even of
the same statement are in different stages of the pipeline.
As an example, some dirty blocks might be being flushed
to disk at the physical level while at the same time, at the
higher level, a new statement is being parsed.

All interfaces to data structures are designed such that
can be implemented as thin facades [7] to the internal state
of the DBMS. Thus, such interfaces allow manipulation of
the internal state of the DBMS without forward and back-
ward format conversions. Conversion to a DBMS indepen-
dent representation, if necessary, should be achieved by an
additional layer. For instance, to enable the propagation of
the updates among different database vendors and architec-
tures, a rendering of the write-set interface should store in-
formation using a portable representation.

Additional interfaces are provided for Recovery, which
allows the replication protocol to alter local recovery by
suppressing some transactions from the log or adding other
received from remote replicas. Access to a Server-side Con-
nection to the database is also provided, as client function-
ality is often desirable.

4.2. Processing Contexts

The processing pipeline provides a global view of the
database management system. However, it is often useful
that events from a single or from multiple levels are grouped
together and handled within a common context. In detail,
events fired by processing stages refer to the directly en-
closing context. Each context has then a reference to the
next enclosing context and can enumerate all enclosed con-
texts. This allows, for instance, to determine all connections
to a database or which is the current active transaction in a
specific connection. Notice that some contexts are not valid
at the lowest abstraction levels. Namely, it is not feasible
to determine on behalf of which transaction a specific disk
block is being flushed by the physical stage.

The DBMS and Database context interfaces expose
metadata and allow notification of lifecycle events. Con-
nection contexts reflect existing client connections to
databases. They can be used to retrieve connection spe-
cific information, such as user authentication or character
set encoding used. The Transaction context is used to no-
tify events related to a transaction such as its startup, com-
mit or rollback. Synchronous event handlers available here
are the key to the synchronous replication protocols pre-
sented in this document. Finally, to ease the manipulation
of the requests within a connection to a database and the
corresponding transactions one may use the Request con-
text interface.

Furthermore, replication can attach an arbitrary object
to each context. This allows context information to be ex-
tended as required by the each specific replication protocol.
As an example, when handling an event fired by the first
stage of the pipeline, signaling the arrival of a statement in
textual format, the replication protocol gets a reference to
the enclosing transaction context. It can then attach addi-
tional information to that context. Later, when handling an
event signaling the readiness of parts of the write-set, the
replication protocol follows the reference to the same trans-
action context to retrieve the information previously placed
there.

4.3. Runtime and Configuration

The implementation of a replication protocol using the
reflector interface requires registering listeners to multiple
events fired by reflector components. It is then important to
discuss how these listeners can be configured and what are
the concurrency semantics they imposed on protocol imple-
mentations.

Event listeners can be registered either as synchronous or
asynchronous handlers. When registered as asynchronous,
notification is queued but processing continues, thus impos-
ing only a minimal overhead on normal transaction process-

Local
DBMS
1

Local Group Remote Remote
Replicator ommunicatiop Replicators DBMSs
I I — I
Step 1
Reques! Step 2.1
handleTxBegin()

Step 2.2
registerTx()

Step 2.3

allowTxBegin()

Step 3.1
handleObjectSet()

Step 3.2
lgatherObjectSet()
Step 3.3
allowObjectSet()

Step 4.2
sendNotification

Step 5.1

handleTxCommit()

Step 5.2
allowTxCommit()

Stepb.1 Step 5.2
createTx() I:E:l
Step 5.3
injectObjectSet(
Step 5.4 B:l

commitTx()

Final Step)
Success

N N O =

| 1
| |

— 1
I |
1 1
| 1
I 1
| I
I 1
| 1
| 1
I 1
1 1
I 1
I 1
| |
| 1
1 |
I 1
I 1
| |
| 1
I |
I 1
1 I
I 1
| 1
I 1
I 1
1 |
1 1
| 1
I 1
| 1

—_p— |
v ~

Figure 2. Primary-backup replication.

ing at the expense of not allowing data structures to be mod-
ified. When registered as a synchronous handler, process-
ing halts and waits for confirmation or cancellation from
the replication protocol. If this is done immediately, before
the event handler finishes, overhead should still be very low.
Synchronous event handlers can also defer confirmation and
even alter state before restarting or canceling processing.

Event notification is performed on multiple threads. The
reflector implementation thus manages active threads within
the replication protocol according to the policy it seems ade-
quate, usually, in close cooperation with the transaction pro-
cessing kernel. However, synchronous event listeners with
ordering constraints are not executed concurrently. Namely,
transaction events are synchronized by the reflector such
that they can be handled in a predictable order.

Finally, configuration interfaces are assumed to be out
of the scope of the reflector specification. It is therefore
assumed that reflector and replication components are man-
aged by a container that provides adequate dependency res-
olution, namely, by resorting to a naming service. This sim-
plifies reflector interfaces and allows a tight coupling with
DBMS administration interfaces.

5. Case Studies

This section describes use cases of the reflector inter-
face for renderings of state-machine, primary-backup and
certification-based replication protocols.

5.1. Primary-Backup

The Primary-Backup protocol has a primary replica
where all transactions that update the database are executed.
Updates are either disseminated in transaction’s boundaries
(i.e., synchronous replication) or periodically propagated

to other replicas in background (i.e., asynchronous repli-
cation).

Reflector Components Used Synchronous primary-
backup replication requires the component that reflects the
Transaction context to capture the moment where the trans-
action starts to execute, commits, or rollbacks at the pri-
mary. It will also need the object set provided by the Exe-
cution stage to extract the write set of a transaction from the
primary and insert it at the backup replicas.

Replicator Execution The execution of a primary-
backup replicator is depicted in Figure 2. We start by de-
scribing the synchronous variant. It consists of the follow-
ing steps:

Step 1: Clients send their requests to the primary replica.

Step 2: When a transaction begins, the replicator at the pri-
mary is notified, registers information about this event,
and allows the primary replica to proceed.

Step 3: Right after processing a SQL command the
database notifies the replicator through the Execution
stage component sending an ObjectSet. Roughly, the
ObjectSet provides an interface to iterate on a state-
ment’s result set (e.g.,write set). Specifically, in this
case, it is used to retrieve statement’s updates which
are immediately stored in a in-memory structure with
all other updates from the same transaction context.

Step 4: When a transaction is ready to commit, the trans-
action context component notifies the replicator of the
primary. The replicator atomically broadcasts the gath-
ered updates to all backup replicas (this broadcast
should be uniform [5]).

Step 5: The write set is received at all replicas. On the pri-
mary, the replicator allows the transaction to commit.
On the backups, the replicator injects the changes in
the DBMS.

Final Step: After the transaction execution, the primary
replica replies to the client.

An asynchronous variant of the algorithm can be
achieved by postponing Step 4 (and, consequently, Step 5)
for a tunable amount of time.

5.2. State-machine

The state-machine protocol requires that all replicas re-
ceive and process the same sequence of client requests pro-
ducing a deterministic outcome. To accomplish this, we

Local Local Group Remote Remotd
DBMS Replicator ommunicatiop Replicators QBMS:
I

Request

Step 2.1
handleTxBegin()

Step 2.2
sendNotification

Step 3.1

deliverNotificationf

sendNotification
Step 5.1

Step 3.2
startTx()

Step 5.2
inj)

Step 3.1
[deliverNotificatiory

E— -

Step 3.2
allowTxBegin()

tep 4.1
handleParsedStatementBegin()

Step 5.1
Step 5.2 r

Step 6.1
handleTxCommit() /
/ handieTxRollback()

Step 6.2
sendNotification

Step 7.1

Step 7.2
allowTxCommit() /
/ allowTxRollback()

Step 7.2
commitTx()/
/ rollbackTx()

Step 7.1

Last Step
Success /
/ Failed

B] et
MR E—

:
|
|
I
1
1
|
|
I
1
1
|
|
I
1
1
|
1
I
1
I
|
|
I
I
I
|
1
I
|
|
I
}
|

EE

- — —

Figure 3. State-machine replication using.

need to intercept client requests before it is processed en-
forcing deterministic executions. Specifically, begin, com-
mit and rollback commands, implicitly or explicitly sent,
and every SQL command should be intercepted. One pos-
sible solution is depicted in Figure 3.

Reflector Components Used State-machine replication
requires the use of the Transaction context component and
Parsing Stage component. On one hand, the transaction
component is used to capture the moment where the trans-
action starts to execute, commits, or rollbacks at one replica.
On the other hand, the Parsing Stage component is used to
capture and start the execution of transaction statements.

Replicator Execution The execution of a state-machine
replicator is depicted in Figure 3. It consists of the follow-
ing steps:

Step 1: Clients send their requests to one of the replicas.
This replica is called the delegate replica.

Step 2: Using the Transaction component the replicator at
the delegate replica is notified of the beginning of
the transaction. The replicator uses a totally ordered
atomic broadcast to propagate this notification to all
other replicas.

Step 3: All replicators receive the notification in the same
order. The transaction is started in remote replicas and
resumed in the delegate replica.

Step 4: The transaction is executed at the delegate replica.
Every time a new command starts the replicator is noti-
fied through the Parsing Stage component of the reflec-
tor interface. Then the replicator verifies if its parsed
statement does not have any expression or function
(e.g., now()) that might lead to non-deterministic exe-
cutions. If so, it changes the parsed statement in order

Local Local Group Remote Remote
DBMS Replicator ommunicatiop Replicators DBMSs
I 1 — I 1
1

M sept | : ! ‘
| | Request Step 2.1 : ! !
| | handleTxBegin() [T] Step 22 i | |
| I | [registerTx() 1] i
I I Step 2.3 I | | H
1 ! alowTxBoging | | i i !
I | I
I I —— 1] |
| I Step 3.1 I | | |
I I handleObjectSet() [TT] Step 3.2 | I |
I | | [gatherObjectset() | 1 1 I
! ! Step 3.3 ! | | i
‘[i allowObjectSet() | | } ! !
! [— I | |
| I Step 4.1 1 | H |
! : handleTxCommit() : Step 4.2 | }

I 1

] ! ! Step 5.1 } Step 5.1 ! !

! | ! | | 1

| | H { | [certy X !

| I 1 |Certity T | | |

| I i z 1 e | | Step 5.2 :

| | allowTxCommit() | | ! ! createTr)

I I LL] | I

! : : ! ! Step 5.3

i | | i | finiectobjectset D]

{ Final Step| : : } : Stop 5.4 ‘

| [ySuccess I I | 1| commitTx()

| I | I I ﬂ

I 1 | | T T

| == 1 | | i
s ‘v + ~ v v

Figure 4. Certification-based replication.

to remove the non-determinism. The resulting (poten-
tially altered) parsed statement is broadcast to all repli-
cators.

Step 5: The parsed statement is received at all replicators.
Replicators must implement a deterministic scheduler:
each replicator must ensure that no two concurrent
conflicting parsed statements are handled to the un-
derlying DBMS. If such conflict exists, the parsed-
statement is kept on hold. Otherwise it is handled to
the DBMS at all replicas through the parsing stage
component. It is worth noting two points related to this
strategy. First, with this approach deadlocks may hap-
pen and the replicator should resolve them. Second, if
a statement would be used, as it provides access to a
command as a string, the replicator would also need to
parse such string to extract information on tables.

Further steps: Steps 4 and 5 above are repeated.

Step 6: Using the Transaction context component the repli-
cator at the delegate replica is notified when the trans-
action is about to commit or rollback. This notification
is atomically broadcast to all replicators.

Step 7: Upon receiving a commit or rollback notification,
remote replicas execute the proper command and the
delegate replica allows it to proceed.

Final step: Once the processing is completed, the delegate
replica replies to the client.

5.3. Certification Based

Certification based approaches operate by letting a trans-
action to execute optimistically in a single replica and, at
commit time, execute a coordinated certification procedure
to enforce global consistency.

{ Management }

{ Database Server

Aplication Driver lient AP Replicator|+—}
v - v A Reflectol
[Aplicationh\‘—{ Driver h‘—’

- ¥
N N

Figure 5. Generic GORDA architecture.

f—
)

J9oue|eg peo

Database Server

»Client AP|
Replicator |«
Reflector] P

uonesiunwwo) dnoig

[

Reflector Components Used Given its similarity to the
Primary-Backup approach, the Certification based replica-
tion requires the use of the same components, explicitly the
Transaction context and Parsing Stage components.

Replicator Execution The execution of a certification-
based replicator is depicted in Figure 4. It consists of the
following steps:

Step 1-4: Same as in the Primary-Backup solution pre-
sented before.

Step 5: Upon receiving the write-set, each replica certifies
the transaction and decides its outcome: commit or
abort. If it is an abort, the delegate replica through the
transaction context component cancels the commit and
remote replicas discard it. If it is a commit, the dele-
gate replica allows it to continue and remote replicas
inject updates in the DBMS.

Final Step: The delegate replica returns the response to the
client.

6. Implementation

The general architecture of a replicated DBMS using the
GORDA interface is presented in Figure 5. At each site,
replication protocol components are tightly coupled to a lo-
cal replica using the reflector interface, that subsumes a nor-
mal client interface, thus observing and controlling it. The
communication between replication components depends
on the specific protocol, which is likely to be a group com-
munication toolkit [5].

Notice that different implementations may map architec-
tural components to different process boundaries. In this
section we discuss design decisions in two prototype imple-
mentations of the GORDA interfaces in Apache Derby and

PostgreSQL, namely, how the reflector is bound to the trans-
action processing kernel, and which sub-set of the interface
was implemented.

6.1. Apache Derby 10.2

Apache Derby 10.2 [2] is a fully featured database man-
agement system with a small footprint developed by the
Apache Foundation and distributed under an open source
license. It is also distributed as IBM Cloudscape and in the
upcoming Sun JDK 1.6 as JavaDB. It can either be embed-
ded in applications or run as a standalone server. It uses
locking to provide serializability.

The prototype implementation of the GORDA interface
in Apache Derby 10.2 is done by patching the server and
aims at fully implementing all proposed processing stages
and contexts. The reflector and replication protocol compo-
nents are therefore embedded within the Apache Derby ker-
nel. This approach is eased by the fact that Apache Derby is
completely implemented in Java, using a compatible thread-
ing model.

The current prototype implements almost entirely the re-
flector interface with the exception of the Execution and
Physical Storage stages, thus not allowing inspection and
modification of execution plans or logger object sets. It also
does not yet support extracting fine-grained read-sets, pro-
viding them only with table level granularity, and the Client
Connection context. This is however sufficient to run the
protocols described in Section 5.

6.2. PostgreSQL 8.1

PostgreSQL 8.1[21] is a fully featured database man-
agement system distributed under an open source license.
Although written in C, it has been ported to multiple op-
erating systems, and is included in most Linux distributions
as well as in recent versions of Solaris. Commercial support
and numerous third party add-ons are available from multi-
ple vendors. Since version 7.0, it provides a multi-version
concurrency control mechanism supporting snapshot isola-
tion.

The prototype implementation of the GORDA interface
in PostgreSQL 8.1 uses a hybrid approach. Instead of di-
rectly patching the reflector interface on the server, key
functionality is added to existing client interfaces and as
loadable modules. The reflector is then build on these. The
two layer approach avoids introducing a large number of
additional dependencies in the PostgreSQL code, most no-
tably on the Java virtual machine. As an example, require-
ment #8 is satisfied by implementing triggers on transaction
begin and end. A loadable module is then provided to route
such events to the reflector interface.

The major issue in implementing the PostgreSQL 8.1 re-
flector is the mismatch between its concurrency model and
the multi-threaded reflector runtime. PostgreSQL 8.1, as
all previous versions, uses multiple single-threaded operat-
ing system processes for concurrency. This forces replica-
tion protocols to run also in a separate process, using an
inter-process communication mechanism, as these depend
on shared Java objects.

A similar dilemma was faced by developers of server
side binding for Java. The PL/Java proposal uses a local
Java virtual machine in each PostgreSQL process, thus pre-
cluding shared Java objects. The alternative PL/J proposal,
uses a single standalone Java virtual machine and inter-
process communication. A modification of PostgreSQL to
run a single multithreaded backend has been discussed and
is currently on the developers to-do list.

The PostgreSQL prototype therefore excludes the Opti-
mization, Execution and Physical Storage stages in order to
minimize overhead. This is however sufficient to run the
protocols described in Section 5. Although not required for
one-copy equivalence, as the native consistency criterion is
snapshot isolation, the PostgreSQL prototype includes an
experimental implementation of read-set extraction.

6.3. Others

The GORDA interface is also being implemented in
MySQL and as DBMS independent server wrapper. Both
pose interesting challenges. The MySQL implementation
has to deal with multiple storage engines, thus complicat-
ing the implementation of the later stages of the pipeline.

The server wrapper builds on Sequoia (formerly C-
JDBC) and attaches the reflector to the virtual DBMS at
the middleware level. This implementation strategy restricts
the scope of reflector interfaces that can be efficiently pro-
vided. Still, this it preserves the logical decoupling be-
tween the replication algorithms and the DBMS interface
and re-use the same algorithms with both compliant and
non-compliant DBMS’s. The use of the reflector interface
with non-compliant DBMS is interesting to foster adoption
by widening the applicability of compliant replication pro-
tocols.

7. Conclusions

Recent developments in database replication and cluster-
ing have been placing new demands on DBMS interfaces.
This is particularly true for replication approaches that rely
on group communication to offer synchronous replication
with a minimum overhead. Current attempts to satisfy these
demands, such as patching the database kernel or build-
ing complex wrappers, require a large development effort
in supporting code, cause avoidable performance overhead,

and reduce the portability of replication middleware. Ulti-
mately, that lack of appropriate interfaces to support third-
party replication protocols is a serious obstacle to research
and innovation in replicated databases.

In this paper we have addressed this problem by propos-
ing an interface to attach replication protocols and database
management systems. The interface has been designed to
support a variety of DBMS systems, replication protocols
and implementation strategies. It builds on the concept of
reflection of transaction processing to the Java language at
multiple levels of abstraction. When compared to other
approaches to build configurable software, such as a com-
ponent framework, reflective interfaces can more easily be
mapped to existing implementations. This approach is also
a good fit with reflective mechanisms already common in
DBSM.

The approach is illustrated with the discussion of how
multiple representative replication protocols have been im-
plemented using the interface. It is also illustrated with the
implementation discussion of the proposed interfaces in ac-
tual database management systems, namely, Apache Derby
and PostgreSQL.

References

[1] D. Alur, J. Crupi, and D. Malk. Core J2EE Patterns: Best
Practices and Design Strategies. Prentice Hall and Sun Mi-
crosystems Press, 2001.

Apache DB Project. Apache Derby version 10.2.
http://db.apache.org/derby/, 2006.

N. Arora. Oracle Streams for near real time asynchronous
replication. In Proc. VLDB Ws. Design, Implementation,
and Deployment of Database Replication, 2005.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

G. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: A comprehensive study. ACM Com-
puting Surveys, 33 - 4:427 — 469, 2001.
Continuent. Sequoia
http://sequoia.continuent.org, 2006.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Desing
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

H. Garcia-Mollina, J. Ullman, and J. Widom. Database Sys-
tems: The Complete Book. Prentice Hall, 2002.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data, 1996.

A. C. Jr., A. Sousa, L. Soares, J. Pereira, R. Oliveira, and
F. Moura. Group-based replication of on-line transaction
processing servers. In Proc. IEEE/IFIP Latin-American De-
pendability Conf. (LADC’05), 2005.

B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replication.
In VLDB Conference, 2000.

[2

[

(3]

[4]

(5

—

[6 version 29.

—_

(7]

(8]
(9]

(10]

(11]

10

[12]

[13]

[14]

(15]

[16]
(17]

(18]

(19]
(20]
(21]
(22]

(23]

(24]
[25]

[26]

G. Kiczales. Towards a new model of abstraction in the en-
gineering of software. In Proc. Intl. Ws. New Models for
Software Architecture, 1992.

G. Kiczales. Beyond the black box: Open implementation.
IEEE Software, 13:10-11, 1996.

Y. Lin, B. Kemme, M. Patio-Martnez, and R. Jimenez-Peris.
Middleware based data replication providing snapshot isola-
tion. In Proc. ACM SIGMOD Intl. Conf. on Management of
Data, 2005.

P. Martin, W. Powley, and D. Benoit. Using reflection to
introduce self-tuning technology into dbmss. In Proc. Intl.
Database Engineering and Applications Symp. (IDEAS’04),
2004.

S. Mullender. Distributed Systems. ACM Press, 1989.

M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and
G. Alonso. Scalable replication in database clusters. In Proc.
Intl. Conf. on Distributed Computing (DISC), 2000.

E. Pedone, R. Guerraoui, and A. Schiper. The database state
machine approach. In Journal of Distributed and Parallel
Databases and Technology, 2003.

C. Plattner, G. Alonso, and M. Ozsu. Extending DBMSs
with satellite databases. VLDB Journal, To appear.
PostgreSQL. PGCluster version
http://pgcluster.projects.postgresql.org/, 2006.
PostgreSQL Global Development Group. Postgresgl version
8.1. http://www.postgresql.org/, 2006.

PostgreSQL Global Development Group. Slony-I version
1.1.5. http://slony.info, 2006.

L. Rodrigues, H. Miranda., R. Almeida., J. Martins., and
P. Vicente. The GlobData fault-tolerant replicated dis-
tributed object database. In EURASIA-ICT, 2002.

A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial repli-
cation in the database state machine. In IEEE NCA, 2001.
M. Tumma. Oracle Streams High Speed Replication and
Data Sharing. Rampant, 2004.

S. Wu and B. Kemme. Postgres-R(SI): Combining replica
control with concurrency control based on snapshot iso-
lation. In Proc. IEEE Intl. Conf. on Data Engineering
(ICDE’05), 2005.

1.3.

