
WS-Gossip: Middleware for Scalable Service Coordination

Filipe Campos
Qimonda Portugal S.A.

(Trainee/Internship, 2008)
fcampos@di.uminho.pt

José Pereira
Universidade do Minho
jop@di.uminho.pt

ABSTRACT
The evolution and growing adoption of service-oriented com-
puting increases the demand for applications involving the
coordination of very large numbers of services. The goal of
WS–Gossip is to leverage gossiping in service-oriented com-
puting as a high level structuring paradigm, thus inherently
achieving scalability and resilience when coordinating large
numbers of services.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Architectures]: Patterns

General Terms
Design, Performance, Reliability

Keywords
Web Services, Gossip

1. MOTIVATION
The evolution, as well as the growing adoption, of service-

oriented computing represents an increase in the demand for
applications involving very large numbers of services which
can be coordinated through some sort of information ex-
change.

A stock market scenario, where information flows among
several nodes of the system, becomes increasingly interesting
from a service-oriented point of view, as several markets
and trading systems become increasingly interconnected and
interoperable, having already motivated multiple research
efforts [7, 5, 4].

These systems have very stringent resilience and scalabil-
ity requirements, that are hard to achieve even with exist-
ing monolithic implementations [8]. However, these require-
ments can be achieved by using gossip-based protocols, like
in the case of stable high throughput [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware ’08 Companion, December 1-5, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-369-3/08/12 ...$5.00.

Current state-of-the-art is that stable high throughput can
be achieved by using gossip-based, or epidemic, protocols [2].
Such protocols are also highly resilient to network and pro-
cess faults, while scaling to large number of participants and
high message throughput. Gossip protocols are, for instance,
a key technology within Amazon.com Web Services imple-
mentation infrastructure [9].

The goal of WS–Gossip is to leverage gossiping in service-
oriented computing as a high level structuring paradigm,
thus inherently achieving scalability and resilience when co-
ordinating large numbers of services. In detail, we aim at us-
ing gossip regardless of the system being architected accord-
ing to existing event dissemination and notification stan-
dards, and with minimal to none application code changes.

2. GOSSIP-BASED PROTOCOLS
In a gossip or epidemic protocol, all the processes that

make part of a system are potential disseminators of mes-
sages. Briefly, every process chooses randomly a subset of
the remaining processes to which the message is then for-
warded. Each of these processes behaves exactly in the same
way when it receives a message. There is no reactive mech-
anism to deal with failures. This also mimics how epidemics
spread in populations, hence the name epidemic protocols.
Key parameters are:

Fanout (f) Number of targets that are locally selected by
each process for gossiping.

Rounds (r) Maximum number of times a message is for-
warded before being ignored.

The reliability of these algorithms is based on a pro-active
mechanism where redundancy and randomization are used
to avoid potential process and network link failures. It has
also been shown that parameters f and r can be config-
ured [6] such that any desired average number of receivers
successfully get the message. Better yet, parameters can be
set such that the message is atomically delivered to receivers
with high probability.

3. A GOSSIP SERVICE
An example of the WS–Gossip framework is the WS–

PushGossip[3], for push-based information dissemination.
It works just like push gossip, where a node that becomes
aware of some new information conveys it to a subset of se-
lected nodes. It is built on the standard WS–Coordination[1]
in order to provide gossip-based communication seamlessly

Coordinator Initiator

App0b

Consumer

App3

Disseminator

App1

Disseminator

App2

subscribe subscribe subscribeop

Gossip Gossip

Activation

Registration

op
op

register register

create

op
op

Subscription
subscription

Gossip

Figure 1: Dissemination using the gossip service.

to any regular service that wishes to disseminate any invo-
cation or result. Figure 1 presents an overview of its archi-
tecture. There are four different roles:

Initiator Initiates the dissemination of some data item.
This role requires that the application code (App0b) is
changed to use the gossip service and that a compliant
middleware stack is used.

Disseminator A node that receives a message, sends it to
the peers in the list obtained from the Membership
service. Although the application code is oblivious to
the gossip service, a compliant middleware stack is re-
quired.

Consumer A node that receives a message, consumes it.
This node is completely unchanged and unaffected by
the introduction of gossip.

Coordinator Besides the Activation and Registration ser-
vices from WS–Coordination, these nodes manage
the subscription list.

The main impact of adopting WS–PushGossip is chang-
ing the code of the Initiator application to delegate sub-
scription management and to issue a single notification, af-
ter having activated a gossip interaction with the Activa-
tion service. For a Consumer there is no impact, whereas
for a Disseminator it will require configuring an additional
handler, the gossip layer, in the middleware stack, which
intercepts the outgoing message and re-routes it to selected
destinations, i.e. App2 in Figure 1.

Upon arrival to App2, the message is again intercepted
by the gossip layer in the middleware stack. If this is an
unknown gossip interaction, it registers itself with the Reg-
istration service, thus obtaining gossip targets to which it
will forward the message. In the case of Figure 1, App1 and
App3.

Assuming a single instance of the Coordinator for simplic-
ity, it knows the entire list of subscribers, as well as those
that are participating in gossiping. It is thus capable of pro-
viding adequate parameter configurations and peers for each
gossip round.

Notice that a distributed Coordinator is supported by
WS–Coordination and thus also by WS–Gossip, as the
list of subscribers can be maintained in a distributed fashion
as proposed by WS–Membership [10].

4. CONCLUSION
It is well known in the distributed systems community

that stable high throughput information dissemination in
large scale heterogeneous systems is a hard problem. Cur-
rent state-of-the-art points towards gossip-based protocols
as the best option regarding scalability and resilience.

In order to avoid these issues, our contribution relies on
leveraging gossip-based protocols as a high-level structuring
paradigm in a way that they can be regarded as a coordi-
nation problem. We propose WS–Gossip, a gossip-based
service coordination framework, encompassing different gos-
sip styles and suitable for multiple application scenarios fully
integrated in the Web Service ecosystem.

5. REFERENCES
[1] WS-Coordination 1.1 Specification.

http://docs.oasis-open.org/ws-tx/

wstx-wscoor-1.1-spec-errata-os.pdf, 12 July
2007.

[2] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Trans. Comput. Syst., 17(2):41–88, 1999.

[3] F. Campos and J. Pereira. Gossip-based service
coordination for scalability and resilience. MW4SOC
2008, December 1 2008.

[4] A. Erradi, P. Maheshwari, and V. Tosic. WS-Policy
based Monitoring of Composite Web Services. Web
Services, 2007. ECOWS ’07. Fifth European
Conference on, pages 99–108, Nov. 2007.

[5] A. Erradi, V. Tosic, and P. Maheshwari. MASC -
.NET-Based Middleware for Adaptive Composite Web
Services. Web Services, 2007. ICWS 2007. IEEE
International Conference on, pages 727–734, July
2007.

[6] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulie. Epidemic information dissemination in
distributed systems. Computer, 37(5):60–67, May
2004.

[7] G. S. Niblett, P. Events and service-oriented
architecture: The OASIS Web Services Notification
specifications. IBM Systems Journal, 44(4):869–886,
25 October 2005.

[8] R. Piantoni and C. Stancescu. Implementing the Swiss
Exchange trading system. Fault-Tolerant Computing,
1997. FTCS-27. Digest of Papers., Twenty-Seventh
Annual International Symposium on, pages 309–313,
Jun 1997.

[9] W. Vogels. All Things Distributed.
http://www.allthingsdistributed.com/.

[10] W. Vogels and C. Re. WS-Membership - Failure
Management in a Web-Services World. 2003.

