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Abstract. View synchronous group communication is a mature technology that
greatly eases the development of reliable distributed applications by enforcing
precise message delivery semantics, especially in face of faults. It is therefore
found at the core of multiple widely deployed and used middleware products. Al-
though the implementation of a group communication system is a complex task,
application developers may benefit from the fact that multiple group communica-
tion toolkits are currently available and supported.

Unfortunately, each communication toolkit has a different interface, that differs
from every other interface in subtile syntactic and semantic aspects. This hinders
the design, implementation and maintenance of applications using group com-
munication and forces developers to commit beforehand to a single toolkit, thus
imposing a significant hurdle to portability.

In this paper we propose jGCS, a generic group communication service for Java,
that specifies an interface as well as minimum semantics that allow application
portability. This interface accommodates existing group communication services,
enabling implementation independence. Furthermore, it provides support for the
latest state-of-art mechanisms that have been proposed to improve the perfor-
mance of group-based applications. To support our claims, we present and exper-
imentally evaluate implementations of jGCS for several major group communi-
cation systems, namely, Appia, Spread/FlushSpread and JGroups, and describe
the port of a large middleware product to jGCS.

1 Introduction

View synchronous group communication is a coordination paradigm that eases the de-
velopment of multi-participant applications, ranging from replicated servers, coopera-
tive caches, multi-user cooperative application, just to name a few. The set of proto-
cols that implement group communication services are typically bundled in a package
called a group communication toolkit. After the pioneer work initiated two decades ago
with the Isis [1], many other toolkits have been developed. Appia[2], Spread [3], and
JGroups [4] are, among others, some of the group communication toolkits in use today.
Therefore, group communication is, today, a mature technology that, when correctly
used, greatly eases the development of reliable distributed applications. At the same
time, group communication is still a hot research topic, as performance improvements
and wider applicability are sought [5-9].

* This work was partially supported by the IST project GORDA (FP6-1ST2-004758).



For self-containment, we provide a very brief introduction to group communication.
A group communication toolkit integrates two complementary services: membership
and multicast communication. Informally, the role of the membership service is to pro-
vide, to each participant in a distributed computation, information about who is active
(or reachable) and who is failed (or unreachable). Such information is called a view of
the group of participants. The multicast service allows a member to send a message to
the group of participants with different reliability and ordering properties. Membership
and multicast need to be integrated because reliability guarantees are usually defined in
the context of the current group view. For instance, if the membership service indicates
that participants A, B and C are active, the reliable multicast service will deliver all
multicast messages to these three participants unless one of them fails meanwhile (in
which case, a new view is installed).

From the description above it is clear that group communication is much more than
just “yet another reliable multicast protocol” given that, the added value, is the pre-
cise semantics that are enforced among the communication and membership services,
namely in the presence of faults[10]. By ensuring that the same messages are deliv-
ered to multiple destinations, ordered among themselves and with group membership
change notifications, each message may be handled by the application in a predictable
and globally consistent context.

Naturally, by enforcing strong semantics, group communication is more expensive
that other weaker forms of multicast, such as best-effort multicast. Therefore, it should
not be used when the application has weak consistency requirements. On the other hand,
group communication excels when the application is required to maintain global in-
variants on distributed state. Complex distributed state maintenance problems are then
greatly simplified [11]. Group communication is therefore found at the core of mul-
tiple widely deployed and used middleware products, namely, the iBus//MessageBus
scalable publish/subscribe toolkit, the JBoss and Zope application servers, the Sequoia
(formerly Objectweb C-JDBC) database cluster, and the CORBA FT high-availability
service. Group communication is also at the cornerstone of innovative research proto-
types such as Postgres-R [12] and Eternal [13].

Unfortunately, each communication toolkit has a different interface, that differs
from every other interface in subtle syntactic and semantic aspects. This hinders the de-
sign, implementation and maintenance of applications using group communication and
forces developers to commit beforehand to a single toolkit, thus imposing a significant
hurdle to portability. Such commitment is undesirable because group communication
toolkits are often optimized for specific execution environments. The ability to replace
one toolkit by another has the advantage of allowing the application to use the most
appropriate toolkit for each deployment scenario. If the application code is tightly cou-
pled with a particular toolkit, changing the implementation of group communication
requires a costly refactoring. This also prevents emerging loosely coupled service ori-
ented architectures from taking full benefit of view synchronous group communication.

In this paper we tackle the problem of defining a generic interface that may be
used to wrap multiple toolkits. The interface, called Group Communication Service
for Java, or simply jCGS, has been designed for the Java programming language and
leverages on several design patterns that have recently become common ground of Java-



based middleware. The interface specifies not only the API but also the (minimum)
semantics that allow application portability. JGCS owns a number of novel features that
makes it quite distinct from previous attempts to define standard group communication
interfaces, namely:

— JGCS aggregates the service in several complementary interfaces, namely a con-
figuration interface, a message passing interface, and a set of membership inter-
faces. The configuration interface specifies several opaque configuration objects
that encapsulate specifications of message delivery guarantees. These are to be
constructed in an implementation dependent manner to match application require-
ments and then supplied using some dependency injection technique. The message
passing interface exposes a straightforward interface to sending and receiving byte
sequences, although concerned with high throughput, low latency and sustainable
concurrency models in large scale applications. Finally, a set of membership in-
terfaces expose different membership management concepts as different interfaces,
that the application might support or need.

jJGCS provides support for recent research results that improve the performance
of group communication systems, namely, semantic annotations [9, 8,7] and early
delivery[14,15,6, 16].

open source implementations of jGCS for several major group communication sys-
tems have been already developed, namely, Appia[2], Spread [3] (including the
FlushSpread variant), and JGroups [4]. Besides making jGCS outright useful in
practice, these validate that the interface is indeed generic.

the interface introduces negligible overhead, even when the jGCS is implemented
as wrapper layer and is not supported natively by the underlying toolkit.

the interface has been already integrated in existing middleware products. In par-
ticular, we also describe here the port to jGCS of the Sequoia database clustering
middleware (formerly Objectweb C-JDBC), as an illustration of the expressiveness
and performance of jGCS.

As we have already noted, there were previous attempts to define generic group
communication interfaces. As it will become clear after we present our work, those at-
tempts have approached the problem from quite different, and often orthogonal angles.
We will postpone comparison with related work until Section 6.

The rest of this paper is structured as follows. In Section 2 we briefly describe the
goals that we propose to achieve with the presented service and the pitfalls that need
to be avoided in the design of such a service. Section 3 introduces the jGCS interface.
Section 4 describes existing jGCS bindings and Section 5 offer a performance evalua-
tion of the jGCS. Section 6 compares jGCS with related work and Section 7 concludes
the paper.

2 jGCS Design Goals and Pitfalls

The design of the jGCS is shaped by a number of goals that determine also a number of
tradeoffs. In this section we enumerate and describe each of these goals. Furthermore,
the design of the jGCS is also shaped by the need to avoid a number of pitfalls: features



that would at first sight seem desirable but which in fact are not and would force un-
bearable compromises. In this section we discuss not only the goals that we aimed with
the design of the jGCS but also the pitfalls we have avoided in the process.

2.1 Goals to Achieve

Goal 1: No changes to payload required. The first goal is that when the jGCS is imple-
mented on top of an existing toolkit, no assumptions or changes are made on message
payload. This means that implementing jGCS does not require specific data formats,
additional message headers or additional messages exchanged. Naturally, toolkits that
adopt jGCS as their native interface are free to implement jGCS-specific optimizations.
As a result, applications using a specific protocol through jGCS are interoperable with
legacy versions using native interfaces. Furthermore, no Java specific constructs or data
formats are forced on the application, most notably, no Java serialization is required.
This makes it possible to easily translate the proposed API to languages in the same
family such as C++ or C#.

Goal 2: Support service locator and dependency injection patterns. Complex appli-
cations of group communication can make use of multiple groups and even multiple
service guarantees selected independently for each message. On the other hand, differ-
ent sets of guarantees might be available on each implementation of jGCS. It is therefore
required that all details regarding protocol configuration and service selection are en-
capsulated in objects that can be supplied to the application by a third party (i.e. the
configurator) using a service locator® [17] or the dependency injection patterns*. As an
example, this allows substitution by a stronger service, when the exact service required
by the application is not available in the target environment.

Goal 3: Support multiple group-based programming paradigms. jGCS is flexible enough
to support different flavors of multicast communication based on process groups. Most
notably, jGCS supports both open groups (where any process can send messages to the
group) and closed groups (where just group members can send messages to the group).
Open groups are useful in client/server applications while closed groups are useful for
coordination and synchronization among servers.

Additionally, besides the more common multicast group paradigm, in which mes-
sages are targeted to all group members, jJGCS supports peer groups, in which messages
are target to specific members of the group. As an example, a multicast group is useful
for data replication while a peer group is useful in a load balancing application. Note
that both flavors require precise knowledge of current membership to function properly.

Goal 4: Export a flexible subsetable interface. Supporting existing toolkits requires an
extensive interface. This includes facilities for sending and receiving messages accord-
ing to each group communication paradigm, as well as to receive membership notifica-
tions with various degrees of detail.

3 http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html
* http://www.martinfowler.com/articles/injection.html



In some scenarios, there may be an overlap among the services provided by jGCS
and other services already in-use in the target system, such as best-effort reliable mul-
ticast protocols and cluster management infrastructure. Therefore, it may be useful to
deploy just parts of the jGCS to avoid redundancy. Due to this reason, jGCS has been
designed to be subsetable, in the sense that parts can be independently reused, without
carrying along with partially implemented interfaces and runtime exceptions.

As we will see, the subsetable property is also useful to accomodate multiple view
synchrony variants (however, see Pitfall 2 in below).

Goal 5: Non-blocking input/output and container-managed concurrency. The jGCS
supports an event-driven interface. The application registers a number of callback lis-
tener interfaces to be notified of messages arriving and changes to group composi-
tion. The rationale for this is twofold. First, avoiding the requirement to have threads
blocked on input/output improves scalability and allows application containers to man-
age threading under a single integrated policy. Second, ordering guarantees directly
translate into synchronization requirements, thus allowing jGCS implementations to
cooperate with application containers to optimize the number of concurrent threads.

Goal 6: Accomodate latest research results. Finally, it is a goal of the jGCS to allow
recent research results, such as support semantic annotations [9, 8, 7] and early deliv-
ery [14, 15,6, 16], to be easily accomodated. In fact, the goal is to foster programming
idioms that naturaly take advantage of such results as they become available. Section 3
will address this topic in detail.

2.2 Pitfalls to Avoid

Pitfall 1: Specify a common set of service guarantees. By assuming that protocol con-
figuration and selection of service guarantees are hard-coded within the application,
portability to multiple protocol implementations can only be achieved by standardizing
on a limited set of guarantees that must exist everywhere. Such agreed set is either very
small, and thus of limited use, or large and not portable to multiple implementations.
JGCS avoids this pitfall by assuming a configuration step as described in Goal 2, that
matches available service guarantees to application requirements.

Pitfall 2: Exclusively reuse existing standard interfaces. The semantics of view syn-
chronous group communication are so different from other message passing middle-
ware, such as JMS, that any attempt to map these semantics into other paradigms intro-
duces substantial obstacles to all goals enumerated in the previous section. Furthermore,
given the semantic mismatch, is also likely that no significant portability advantages re-
sult from the exercise. A better option is to provide a syntatically incompatible interface
that embodies similar structure and the same patterns such that programmers can easily
make the transition.

Pitfall 3: Provide interfaces for protocol composition. A lot of research effort has been
invested in composing group communication protocols from fine-grained components
by using uniform interfaces [18, 19, 2] or even standard ad-hoc interfaces [20]. The main



problem is that the mapping of an existing implementation to a component interface is
not straighforward and thus the approach is not general. Furthermore, interfaces that
allow efficient assembly of fine-grained protocol components are likely to impose a
specific runtime that is not acceptable as a general purpose application programming
interface.

3 A generic Group Communication Service

This Section describes jGCS, a generic group communication service for Java. We pro-
vide a specification of the API and of the minimum semantics that support application
portability. The service is organized in four complementary interfaces, namely: the con-
figuration interface, the common interface, the data interface, and the control interface.
Each of these interfaces is decribed below.

3.1 Configuration Interface

The configuration interface decouples the application code from specific implementa-
tions by requiring that a third party, the configurator, matches available services with
application requirements. Besides the obvious portability advantages, this also fulfills
Goal 2. This interface shown in Figure 1 is composed by opaque objects as follows:

ProtocolFactory The protocol factory serves as the interface entry point and triggers
the initialization of runtime instances of a protocol implementation. At the semantic
level, it encapsulates an implicit service guarantee specification which is enforced
for all sessions.

GroupConfiguration A group configuration encapsulates the address of a group that
can be used to open a session that subsequently allows messages to be sent or re-
ceived, or the membership to be observed. As the ProtocolFactory, at the semantic
level it also encapsulates an implicit service guarantee specification which is en-
forced for all messages exchanged. This object may be used as a key in hashtables.

Service A service encapsulates a specification of the guarantees to be enforced on a
particular message. Upon encountering a service specification that is unknown or
incompatible with group or protocol configuration, the implementation must throw
an exception. A partial order is defined on guarantees provided by services by ex-
tending the Comparable interface (i.e., some services may be stronger than, and
subsume, other services). Therefore, the application can use the service interface to
discover if a service guarantee is subsumed by some other.

Annotation An annotation is an optional field that encapsulates semantic knowledge
about a message that can be used by the protocol to optimize performance. The con-
tents of the annotation are therefore implementation specific and protocols should
silently ignore unknown annotations without erroneous or unpredictable behavior.

Configuration objects should be easily stored and retrived in configuration files and
directory services. It is therefore advisable that implementations provide configuration
objects with one or more of the following properties: are serializable, can be constructed
from properties files, and export parameters according to JavaBean conventions. For the
same reason, these objects should not be used to keep session state at runtime.



Provided by the configurator IT

<< interface == << interface == << interface »» << interfage ==
GroupConfiguration ProtocolFactory Service Annotation
+ createProtocol () Protocol +compare (service :Service Jint

Fig. 1. Configuration interfaces.

<< interface >>
Protocol

+openDataSession {(group :GroupConfiguration ):DataSession
+openControlSession (group :GroupConfiguration }):ControlSession

<< interface >>
ExceptionListener

+ onException (exception :JGCSException):void

JGCSException

Fig. 2. Common interfaces.

3.2 Common Interface

A protocol session is represented by a Protocol instance, obtained from the configura-
tion stored in a ProtocolFactory. Using a Protocol instance it is possible to obtain, for
a specific GroupConfiguration, a data and a control session. All further operation are
invoked through one of these two interfaces, as depicted in Figure 2.

Both data and control sessions identify group members using java.net.SocketAddress
objects. This directly allows a large number of protocols to be supported without any
form of address conversion. Protocols that use different address formats, can easily be
wrapped. Examples of the use of both native and wrapped member identifiers are de-
scribed in Section 4.

Finally, exceptions thrown by the jGCS extends the JGCSException class, which
itself extends the java.io.IOException interface. Usually, a nested implementation de-
pendent exception can be obtained by using the standard getCause method. Exceptions
thrown asynchronously within the protocol implementation are delivered to the appli-
cation using the ExceptionListener interface. This can be registered using either session
object.



== nterface s <= interface ==
DataSession Message
+ getGroup {):GroupConfiguration + getPayload (buffer ‘byte[] ):void
+ setMessagelistener (listener :Messagelistener yvoid + getPayload {) byte[]
+ setServicelistenar (listener ‘Servicelistener )void + getSenderAddress () .SocksiAddress
+ setExceptionListener (exception ExceptionListener ):void + setSenderAddress (sender :SochetAddress )void

+ close {) void

+ createMesaage () Meszage

+ rulticast (m:Message s:Service otk :Object .ann Annotation] ):void
+zend(m:Message 2:Service deat : SockafAddress obw:Object ,ann :Annatation]] )void

<< interface »»
Messagelistener

+ onMessage {m:Message j:Object

A

<< interface ==
ServiceListener

+onServiceEnsured  (context :Object \service ‘Service Ywvoid

Fig. 3. Message passing interfaces.

3.3 Data Interface

The data interface provides the methods for messages to be sent and received. When-
ever the application multicasts a message there is always a specific quality of service,
i.e. a specific set of guarantees, associated with the request. The guarantees can be im-
plicitly derived from the group or protocol configuration or explictly set using a Service
parameter. The data interface shown in Figure 3 is as follows:

DataSession The data session provides methods for sending messages in both multi-
cast and peer groups. It also allows registering listeners for the various events.
Message This interface wraps payload and sender address. According to Goal 1, the
only payload supported is a byte array. As instances can only be created by the
DataSession, it can be implemented as a thin layer on implementation specific ob-
jects to avoid having to perform additional buffer copy operations.

MessageListener Handles delivery of message payload. This is the main entry point
for incoming data. When no separate ServiceListener is being used, implicitly does
service notification.

ServiceListener Handles delivery of service notification events. As described below,
applications that do not need to be optimized for concurrency can ignore this inter-
face.

The data interface exposes one of the key features of view synchronous group com-
munication: messages are delayed by the protocol implementation to be delivered to
the application only after global guarantees have been ensured, namely, regarding order
and stability. For instance, when providing uniform agreed (or safe) guarantees [10], the
implementation must collect a number of acknowledgements from differente members
before issuing the message delivery.

However, recent work on group communication [5, 6] has shown that it is useful
to deliver the payload to the application as soon as it is received and then later notify
the application that the requested service has been ensured. This allows increased con-
currency and masking of latency, by allowing the application to start processing the
message earlier, at least, by deserializing the message in parallel with the execution of
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Fig. 4. Data session usage.

the remaining of the protocol. Examples of this strategy can be found in systems based
on optimistic atomic multicast protocols [21].

JGCS supports this optimization as described in Figure 4. The application regis-
ters a ServiceListener with the DataSession. The protocol is allowed to deliver payload
without ensuring services. Upon handling the message, the application chooses how to
proceed:

— Returns a context reference (any POJO) which the protocol associates with the
message. Typically, the context contains a pre-processed message. When service is
ensured, the protocol calls back into the application providing references to both
the context object and the service object that has been achieved. The application
then resumes processing the message.

— Returns a null reference. This informs the protocol that no further notifications or
service guarantees are required for this message and no further callbacks happen.

Notice that even if the protocol implementation does not natively support this inter-
face, the binding can trivially support it by performing both callbacks only after the final
delivery. Currently, the only toolkit that natively supports this interface is Appia [22].

On the sender side, the jGCS also provides mechanisms to prevent the aplication
from being blocked when invoking the interface. For instance, a specific protocol im-
plementation may not accept requests until some service is ensured. Also, an imple-
mentation may perform end-to-end flow control, thus throttling the sender in a similar
fashion. The non-blocking interface works as follows. Upon sending a message, an ap-
plication might also specify a context. This means that multicast does not block and the
application gets notified using the service listener callback.



An additional advantage of jGCS is that it does not impose artificial limits to the
application concurrency, namely in the processing of incoming messages. In fact, jJGCS
allows for concurrent message delivery notifications whenever the requested service
does not impose ordering on messages. Therefore, only total ordering constraints pre-
vent concurrent deliveries. Also, this applies both to payload deliveries, when no service
listener has been registered, as well as to service callbacks. Notice that in the later, pay-
load deliveries can always be performed concurrently, up to an optimal concurrency
degree, that can be coordinated with application containers.

Finally, the jGCS provides support for the use of semantic knowledge to improve
system performance. This is achieved by letting application annotate messages with
control information that can be used by the group communication toolkit to selectively
relax reliability, order and view synchrony guarantees [8,9, 7]. For that purpose, the
application should obtain one or more annotation objects in an implementation specific
fashion. These are then handed to the protocol as parameters in the multicast operation.
Although these objects are implementation specific, this interface does not pose a threat
to portability as, by definition, a semantic annotation can be safely ignored.

3.4 Control Interface

The control interface provides a flexible subsetable interface for a wide range of mem-
bership management protocols. The most simple interface is suitable only for best-effort
multicast protocols and is shown on Figure 5:

ControlSession Provides methods for entering and leaving a group, as well as for reg-
istering a listener for control events.

ControlListener Allows a simple notification of members entering and leaving the
group. Precise semantics of these events, namely regarding concurrency with mes-
sage deliveries, depends on the implementation.

This interface can be used separatly for failure detection or cluster management in-
frastructure, which are not directly related to group communication. Notice also that
implementations can choose to distinguish members that have left the group volutar-
ily and in a controlled fashion from members that have failed and thus been forcibly
excluded. The former allows recovery from a known state and thus is more efficient.

Support for view synchronous group communication differs wether the underly-
ing implementation provides sending view delivery [10], and thus blocks applications
briefly before installing new views. This reflects in the following interfaces (Figure 5):

Membership Describes a view of the group. This can be used to obtain a ranked list of
all members, whose sort order depends on the implementation but which should be
the same everywhere. It can also be used to obtain information on the event leading
to the view change, namely, which processes have just been included and excluded
and why.

MembershipID Provides an opaque unique identifier of the view, suitable for being
exchanged and stored persistently. This can be obtained from the currently installed
Membership object.
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<= interface »» oo inerface »»
MembemshipSession embemshipListener
+gethembership () Membership +onhembershipChange ()void

+getMembershiplD () MembershiplD
+ sethembershipListener (listener MembershipListener void
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BlockSession BlockListener
+ block Ok {)void +onBlock () void

+isBlocked {i-hoolean
+ setBlockListener (listener BiockListener Jvoid

<< interface = <= interface =
Membership MembershiplD

+getMembershiplD () MembershiplD
+getlocalRank {} int

+getCoordinatorRank () int

+getMemberRank (peer :Socketdddrass }int
+getMemberAddress (rank int):SocketAdaress
+getJoinedMembers () List
+getleavedMemnbers ():Lisr
+getFailedMembers (}:List

Fig. 5. Interface extensions for view synchrony.

MembershipSession Provides methods to obtain the current membership and register
the callback for view change events.

MembershipListener Handles notifications of view change.

BlockSession Used only by implementations enforcing sending view delivery, provid-
ing methods for signaling that the application has blocked and that view change can
proceed.

BlockListener Handles requests by the protocol for the application to block.

Support for view synchronous group communication requires that membership no-
tifications are coordinated with message and service notifications performed by the cor-
responding data session. In detail, the implementation must ensure that the view change
notification is mutually exclusive with any other view dependent event, namely, mes-
sage delivery and service ensured callbacks. This means that no other notification is
issued concurrently with the view change. Although protocol implementations might
allow this restriction to be lifted, this should be possible only by explicitly selecting a
configuration option. On the other hand, block notifications can be issued without any
concurrency restrictions. This means that it is up to the application to synchronize with
any other active threads.



4 jGCS Bindings

jGCS was implemented in several group communication toolkits and primitives: Ap-
pia[2], JGroups [4] and Spread [3]. To validate the generality of the service, the JGCS
was also implemented using IP Multicast and NeEM [9]. All these bindings are open
source and available on SourceForge.net’. These toolkits and the implementations are
described in the following paragraphs.

Appia binding

Appia[2] is a layered communication support framework that was implemented in the
University of Lisbon. It is implemented in Java and aims at high flexibility to build
communication channels that fit exactly in the user needs. The QoS offered by a chan-
nel can be statically configured by an XML file or dynamically assembled by the appli-
cation at run time. The application can create several channels with different QoSs and
send messages to different channels, depending on the QoS required by each message.
In contrast with traditional layered protocols, components of Appia channels can be
shared and thus offer multiple related Qualities of Service (QoS). This makes it easy,
for instance, that several channels can be bound to the same group membership.

Although Appia is protocol independent, in the sense that it can be used to compose
any protocol as long as it respects the predefined interface, it includes an extensive layer
library targeted at view synchronous group communication. Namely, it has protocols
that implement virtual synchrony, causal order, and several implementations of total
order algorithms.

The implementation of jGCS is build directly on Appia’s protocol composition
interfaces as an additional layer. jGCS configuration objects thus define the micro-
protocols that will be used in the communication channels. Each Service identifies an
Appia channel and messages are sent through the channel that fits the requested ser-
vice. As Appia supports early delivery in totally ordered multicast, this is exposed in
the jGCS binding using the ServiceListener interface. Appia implements all extensions
of the ControlSession, depending on the channel configuration.

JGroups binding

JGroups [4] is a group communication toolkit modelled on Ensemble [18] and imple-
mented in Java. It provides a stack architecture that allows users to put together custom
stacks for different view synchronous multicast guarantees as well as supporting peer
groups. It provides an extensive library of ordering and reliability protocols, as well as
support for encryption and multiple transport options. It is currently used by several
large middleware platforms such as JBoss and JOnAS.

The JGroups implementation of jGCS also uses the configuration interface to define
the micro-protocols that will be used in the communication channel. JGroups can pro-
vide only one service by the applications, since configurations only support one JGroups
channel per group communication instance. JGroups implements all extensions of the
ControlSession.

5 jGCS and its bindings are available in http://jgcs.sf.net



Spread binding

Spread/FlushSpread [3] is a toolkit implemented by researchers of the Johns Hopkins
University. It is based on an overlay network that provides a messaging service resilient
to faults across local and wide-area networks. It provides services ranged from reliable
message passing to fully ordered messages with delivery guarantees. The Spread system
is based on a daemon-client model where generally long-running daemons establish the
basic message dissemination network and provide basic membership and ordering ser-
vices, while user applications linked with a small client library can reside anywhere on
the network and will connect to the closest daemon to gain access to the group commu-
nication services. Although there are interfaces for Spread in multiple languages, these
do not support the FlushSpread extension, which provides additional guarantees with a
different interface.

The Spread and FlushSpread implementations of jGCS use the configuration inter-
face to define the location of the daemon and the group name. The implementation to
use (FlushSpread or just Spread) is also defined at configuration time. In Spread, the
quality of service is explicitly requested for each message, being thus encapsulated in
Service configuration objects.

Other bindings

To prove the generality of jGCS, we provide also two implementations, based on the
well known IP Multicast and on the Network-friendly Epidemic Protocol (NeEM) [9].
The NeEM protocol is an epidemic multicast protocol (also called probabilistic or
gossip-based) in wide-area networks that uses multiple TCP/IP connections in a non-
blocking fashion. The resulting overlay network is automatically managed by the proto-
col. The implementations of jGCS that use IP Multicast and NeEM allow peers to join
and leave the multicast group, and send and receive messages to/from other peers. One
application that uses only these functionalities can easily be ported to other implemen-
tations.

5 Performance Evaluation

We have done a number of experiments to assess the overhead imposed by the use of
JGCS to wrap different group communication toolkits. Namely, we want to assess the
impact of the extra level of indirection between the application and the toolkit intro-
duced by jGCS.

For this purpose we have made two different sets of tests. In the first set we have
made standalone throughput measurements for two different toolkits, both with and
without the jGCS. In the second set of tests we have integrated jGCS in a production
environment, namely in the Sequoia database clustering middleware.

5.1 jGCS for Appia and JGroups

To measure the impact of the jGCS on the maximum throughput of existing group com-
munication toolkits we have selected Appia and JGroups. To run the experiments, we
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Fig. 6. Throughput of the toolkits with and without the jGCS.

have implemented three different versions of a test application that transmits a number
of messages of a configurable payload size to the group. One version uses the Appia
native interface, other uses the JGroups native interface, and the last version uses jGCS.
This allowed us to run four different configurations: (i) the test application with Appia;
(ii) the test application with JGroups, (iii) the test application with jGCS, configured to
use Appia and (iv) the test application with jGCS, configured to use JGroups.

Measurements were obtained with the following environment. The JGroups and the
Appia protocol stack were created using similar configurations. All tests used a virtual
synchrony protocol stack and a token based total order protocol. All tests were made
with a group of three members, each member sending 10 000 totally ordered messages
to the group. Each member of the group runs in a Pentium IV/2.8GHz server with 1Gb
of memory. The three machines are connected through 100Mbps ethernet switch. Each
test was made with different message sizes.

The Figure 6 shows the throughput of the two group communication toolkits, using
directly the interface provided by the toolkit and using jGCS. As we can see in 6(a), the
Appia implementation of jGCS does not cause a significant overhead and this overhead
is increasingly less noticeable as the message size grows. In the case of JGroups, in 6(b),
the overhead caused by the jGCS is also very small but it grows as the message size
increases. This is explained as follows: For improved performance, JGroups delivers
messages in a buffer that can be reused later by the protocol, forcing the application
to locally copy data during delivery. The native JGroups test application does not do
this copying, and thus has better performance. On the other hand, the current jGCS
binding does this copying in order to provide the same service as other bindings and
thus incurs in additional overhead. In the future, this decision should probably be left to
the configurator, thus making it possible to achieve the same performance as with the
native interface.

5.2 jGCS in Sequoia

The second set of tests measure the overhead of having jGCS in a real application. To
do these tests we used Sequoia, a middleware database replication system that exports a



Implementation Mean Std. Dev. Samples
Native 39.96 41.10 3846
With jGCS 40.26 5297 3832

Table 1. Latency of client requests of TPC-W (ms).

JDBC interface to applications and routes client requests to a set of databases. Sequoia
is composed by a JDBC driver, that is used by applications that want to access the
databases and a controller that receives the client requests and forward them to a set of
databases. For availability and fault tolerance, the Sequoia controller can (and should)
be replicated. Each controller manages a set of databases. In a system with more than
one controller, the application can use any controller to make the requests. The con-
trollers exchange their requests using view synchronous total order, in order to execute
the same set of requests in the same order in all databases.

The implementation of primitives that make use of group communication is dis-
tributed as a separate package, Hedera (formerly ObjectWeb Tribe). In detail, it provides
access to an application specific subset of group communication and additional func-
tionality for explicitly acknowledged messages, multiplexing and dispatching. Hedera
has been previously implemented twice, using JGroups and Appia. We thus ported Hed-
era to JGCS which allowed us to use Sequoia with any jGCS implementation that sup-
ports the required service guarantees.

Performance figures were obtained in a system configured as follows. The clients
are a Java implementation of the TPC-W 7™M that use the Jakarta Tomcat to make re-
quests to a database. The requests are made to a sequoia controller that replicates the
requests. Sequoia is configured to use three controllers, each one controls one MySQL
database. The emulated browsers of the benchmark used and Tomcat run in one ma-
chine. The other three machines have one instance of the Sequoia controller and one
instance of the MySQL database each. All four machines are connected by a 100Mbps
ethernet switch and have the same memory and processing power of the machines used
in the previous tests. In these tests, the benchmark was configured to have allways 20
clients (emulated browsers) making requests to the database, in the Ordering Mix (50%
of write operations).

Table 1 shows that latency results of test system using the Appia toolkit, either
through the native interface or through jGCS, are in practice the same. In fact, the dif-
ference is not statistically relevant, even with a very low confidence level, as confidence
intervals overlap significantly. This shows that the use of jGCS is negligible in the over-
all performance of a complex system.

6 Related Work

Although there have been multiple attempts to ease the development of applications
based on group communication by standardising their interfaces and their semantics,

®http://www.ece.wisc.edu/~pharm/tpcw.shtml



most of these efforts have quite different goals and, therefore, can be seen as comple-
mentary (instead of competing) efforts. We discuss four non mutually exclusive ap-
proaches.

The first approach attempts to hide the complexity of group communication by
wrapping it in higher level abstractions. The rationale for this line of work is that there
is a category of users that would like to benefit from the advantages provided by group
communication (namely, easy maintenance of consistent global states) but that do not
want to invest in understanding the semantics of view synchronous communication. A
particularly popular approach is to wrap view synchronous communication in RPC-like
interface, such as RMI[23]. While the above may be true, using such interfaces of-
ten introduce a significant performance overhead that is unacceptable for programmers
attempting to build high-performance applications such as replicated database middle-
ware. In our view, the widespread use of the Java programming language and the broad
adoption of several design patterns used in jGCS allow to conciliate the programmer
familiarity with the satisfaction of performance constraints.

A second line of work attempts to fit the view synchronous interface into widely
adopted interfaces such as, for instance, SNMP messages [20] or JMS [24, 25]. The ra-
tionale for this line of work is that a view synchronous services can be easily adopted if
exported using an interface that is familiar to most programmers. We see this category
as a complementary line of work, given that the simplicity is achieved at the cost of
loosing some of the benefits of both paradigms. Namely, many JMS applications rely
of persistence or transactional services that are not provided directly by group com-
munication toolkits. On the other hand, the notion of explicit membership, a keystone
of view synchronous communication, conflicts with the goal of decoupling publishers
from subscribers. Therefore, group communication can be a valuable tool to increase
the reliability of messaging services but, certainly, one service cannot simply replace
the other.

A third alternative aims at standard semantics for view synchronous communica-
tion [26]. The rationale for this type of work is that it would be easier to see a wider
adoption of view synchronous communication toolkits if all provide the same guar-
antees. Although this is a valid goal, practice has shown that it is hard to make the
community converge on such an common semantics, given that each toolkit exploits a
different angle to provide better performance for some distinct target application areas.
Instead of trying to define unique semantics, jGCS only defines minimum common se-
mantics and provides the necessary hooks to support specific features using a flexible
interface.

A final approach is to make the service provided by the group communication
toolkit highly reconfigurable, usually through the composition of micro-protocols[18,
2]. The rationale for this type of work is that applications are better served if the toolkit
can be tailored exactly to their specific needs. Toolkit reconfiguration is an important
topic. Our own work with the Appia toolkit has addressed this facet extensively. How-
ever, existing protocol composition mechanisms are typically tied to concrete language
or run-time constructs from which the application should be shielded. The configura-
tion interface of the jGCS decouples the way the application expresses its requirements
from the mechanisms used to configure the underlying toolkit.



The work with jGCS is unique in the sense that it provides a low-level interface to
view-synchronous communication, that allows the implementation of high-performance
higher level abstractions while, at the same time, promotes a level of decoupling be-
tween the application and the underlying toolkit, that allows the application to be portable.
Higher level primitives, such as state transfer, multiplexing and dispatching, or explicit
aknowldgement, commonly found in group communication wrappers as Maestro [27]
or Hedera should be built on jGCS services.

7 Conclusions

This paper describes a generic interface for group communication to be used as a service
to the applications — the Group Communication Service, or simply jGCS. The paper
presents the goals to achieve and features to avoid and presents the interfaces and how
should it work in order to achieve the desired goals.

Results show that the jGCS interfaces can be implemented using most of the state of
the art group communication toolkits. It is also shown that the overhead caused by the
JGCS service is negligible and do not affect real applications, improving modularity and
configurability. This service was implemented in Java and is hosted at SourceForge.net
(http://jgcs.sf.net).
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