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Abstract

Shared-nothing clusters are a well known and cost-effecipproach
to database server scalability, in particular, with higimiensive read-only
workloads typical of many 3-tier web-based applicationee Tommon re-
liance on a centralized component and a simplistic projpayatrategy em-
ployed by mainstream solutions however conduct to poorabddl/ with
traditional on-line transaction processing (OLTP), whigne update ratio is
high. Such approaches also pose an additional obstaclghocakiailability
while introducing a single point of failure.

More recently, database replication protocols based oapgcommuni-
cation have been shown to overcome such limitations, expgtide applica-
bility of shared-nothing clusters to more demanding tratisaal workloads.
These take simultaneous advantage of total order mulécaktransactional
semantics to improve on mainstream solutions. Howevere thas already
been widely deployed in a general purpose database managsyseem.

In this paper, we argue that a major hurdle for their accemas that
these proposals have disappointing performance withfipsubsets of real-
world workloads. Such limitations are deep-rooted and wagykround them
requires in-depth understanding of protocols and changespplications.
We address this issue with a novel protocol that combinesipfeitransac-
tion execution mechanisms and replication techniques lzend show how it
avoids the identified pitfalls. Experimental results aréaoted with a work-
load based on the industry standard TPC-C benchmark.

1 Introduction

Database replication based on group communication [8, 14, 13, 19, Sugglies

the foundation for affordable and scalable clusters that escheweds$tarage in-
frastructure. By enabling the use of commodity machines and a variety dfadata
solutions, it helps reduce costs associated with building fault-toleraritectires

and easies the scale-out factor [15, 3]. The result also improvediabilisy when
compared to most mainstream solutions, as these often reduce to lazy update o
rely on centralized components.



Generically, the approach is eager and builds on the classical replicated s
machine [16]: The exact same sequence of update operations is appliectme
initial state, thus producing a consistent replicated output and final staggorob-
lem is then to ensure deterministic processing without overly restricting c@amtu
execution, which would dramatically reduce throughput.

This is achieved by executing the bulk of the transaction at a single replica
and then propagating raw updates, in a passive replication, which hasidie
tional advantage of avoiding re-execution. A single total order braadoaeach
transaction suffices for coordination, thus being able to achieve closetr koal-
ability even with write-intensive loads[7]. In contrast, eager replicaticsetdan
distributed locking and atomic commit protocols, require much finer grained coo
dination and fall prey of deadlocks [6].

Protocols differ mainly in whether transactions are executed optimistically [13,
8] or conservatively [14]. In the former, a transaction is executed lbgcaiv-
ing replica without a priori coordination with other replicas. Just befam@mit-
ting, replicas coordinate and check for conflicts between concuri@mactions.
Transactions that would locally commit may abort due to conflicts with remote
concurrent transactions. In the conservative approach, all refdiish agree on
the execution order for (potentially) conflicting transactions assuringwheh a
transaction executes there is no concurrent conflicting transaction &edcgted
remotely and therefore its success depends entirely on the local datatzase.
Clearly, two transactions conflict if both access the same conflict class€bélg)
and one of them update it.

Despite the promising benchmark results, the practicality of such protocols is
limited as all have disappointing performance with specific subsets of dengandin
real-world workloads. Namely, the optimistic approach may become impractical
as long-running transactions may experiment unacceptable abortThiesnakes
it very hard to commit such transactions in a heavily loaded server, even wh
resubmission is possible, thus compromising liveness. This issue doesgsaot a
with conservative protocols. However, achieving good performangeratpiire a
careful application-specific definition of conflict classes, if possibklatvithout
changes to application semantics [7]. This is particularly troublesome aslia¢abe
mistake can lead to inconsistency.

Furtheremore, simple statements that update large number of items result in
heavy network traffic in both approaches, while saving little in avoiding«esation.
The same is true for DDL statements (e.g. create index, alter table), in which ex
tracting and applying updates may require intimate knowledge of databaseister
and also yield large updates. In these situations active replication is desirab

The challenge is therefore to combine the ease of use of the optimistic ap-
proach, with the fairness of the conservative approach and the sfoaigard im-
plementation of the active replication. This paper thus shows how it is possible
overcome this challenge and is organized as follows. Section 2 survegsrteat
protocols focusing on dynamic aspects, namely, on queuing that happdiis
ferent parts of the system and on the amount of concurrency thatecachieved.
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Figure 1: Notation.

Section 3 proposes the novel AKARA database replication protocotitmasgroup
communication. As happens with conservative protocols, AKARA is fairtakels
advantage of a judicious definition of conflict classes to maximize conayren
However, to attain the performance level of optimistic protocols, AKARA eikplo
the tentative execution of potentially conflicting transactions as allowed bynthe u
derlying system, i.e. by any database management system. Furthermore, as in
active replication protocols, AKARA allows any deterministic statement to be ac-
tively replicated. Section 4 evaluates AKARA using the workload from T®PC-
and show that it provides, even with a generic application independerdt(icly
syntactic) definition of conflict classes, peak performance compardtblewurely
optimistic protocol while at the same time enforcing fairness. Section 5 discusse
open issues and Section 6 concludes the paper.

2 Background

In this section we make a brief overview of major approaches to datal@lgmre
tion using group communication. We do this survey however with a novel twist.
We focus on dynamic aspects, namely, (i) on queuing that happens irediffe
parts of the system and (ii) on the amount of concurrency that can evadh
Then, we contrast the original assumptions underlying such protocolsowith
experience with actual implementations and using the TPC-C workload [7$. Th
is extremely relevant, as previous protocols have been proposed lagisgmp-
timistic assumptions on system dynamics that we are not able to confirm in our
realistic setting. The conclusion sets the motivation for proposing the AKARA
protocol in Section 3.

Figure 1 introduces the notation used to depict protocol state-machinan Gi
the emphasis on dynamic aspects, we use different symbols for statespiiesent
gueuing and states in which at most a single non-conflicting transactionecain b
any given time. We show also which queues are likely to grow without boureshw



the system is congested. When alternative paths exist, due to optimistic erecutio
we show which is considered to be the more likely to be executed. We make
a distinction between local and replicated queues and identify relevantsictio
execute, apply, certify and wait.

Since all protocols involve an atomic broadcast step, we use a consiatant n
ing for queues in different protocols. QO is before the abcast, Q1 isdestabcast
and delivery, and Q2 is after delivery. Protocols with an optimistic assumpsien
messages in Q1 which has messages with tentative order, i.e. messagesr¢hat w
optimistically delivered. In contrast, messages in Q2 have a final order.

2.1 Non-Disjoint conflict classes and Optimistic multicagiNODO)

In NODO, data is a priori partitioned in conflict classes, not necessasjginit.
Each transaction has an associated set of conflict classes (the dai@nsat ac-
cesses) which are assumed to be known in advance. This approatcbhseg know
the entire transaction before its execution precluding the processing Hdtite
transactions.

When a transaction is submitted (QO0), its id and conflict classes are atomically
multicast to all replicas obtaining a total order position (Q2). Each replicahas
gueue associated with each conflict class and, once delivered, adtiangs clas-
sified according to its conflict classes and enqueued in all corresgpgdeues.

As soon as a transaction reaches the head of all of its conflict clasegjites
executed. Transactions are executed by the replica to which they anéttsab

Clearly, the conflict classes have a direct impact on performance eWes the
number of transactions with overlapping conflict classes, the better thizaver
among transactions. Conflict classes are usually defined at the tabl&uewsin
have a finer grain at the expense of a non-trivial validation processi@gtee that
a transaction does not access conflict classes that were not pitedpesified.

When the commit request is received, the outcome of the transaction is reliably
multicast to all replicas along with the replica’s changes (write-set) andhaisep
sent to the client. Each replica applies the remote transaction’s updates with the
parallelism allowed by the initially established total order of the transaction.

The protocol ensures 1-copy serializability [2] as long as transactiendas-
sified taking into account read/write conflicts. To achieve 1-copy smapsbla-
tion [9] transactions must be classified take into account just write/writeictsnfl

A transaction is scheduled optimistically if there is no conflicting transaction
already ordered (Q2). This tentative execution may be done at the sxpém@n
abort if a concurrent transaction is later on ordered before it.

Figure 2(a) shows the states that a transaction goes through upon bbing s
mitted by a client. According to the designers’ assumptions, the time spent in the
gueue waiting for total order (Q1) is significant enough compared to timentake
to actually execute such that it is worthwhile to optimistically execute transactions
(transition 2 instead of transition 1). This makes it possible that when a tt@msa
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Figure 2: States, transitions, and queues in NODO.



is ordered, it is immediately committed (transition 4). Assuming that optimistic
ordering is correct, a rollback (transition 3) is unlikely.

We have however reasons to believe that this assumption is invalid. The first
hints for these are actually in the original description of the proposal Rift, the
end-to-end transaction execution latency measured is larger than 50 wisichf
most surely only less than 10% can be attributed to the latency of group commu-
nication. In fact, the protocol used for experiments, is very well knoamits
extremely good performance [1]. If this is true, then queuing will happeueue
Q2 and not in queue Q1. Thus if Q2 is never empty, then no transaction ue que
Q1 is eligible for optimistic execution. This is confirmed by the abort rate being al-
ways extremely low, even with a large share of conflicting update transagtiéfy
a hint that transition 2 is never taken.

The appropriate scenario for the NODO protocol is thus depicted in Fijbje
The optimistic path is seldom used and the protocol boils down to a coansedra
distributed locking approach, which has a very large impact in scalabilityicélo
that if there arek (disjoint) conflict classes, there can be at mbgtansactions
executing in the whole system. Again, this seems to be confirmed by the origi-
nal presentation of the protocol (Figure 6 of [14]): With an update imterlsad
andk = 16 distinct conflict classes, the scale factor for 15 nodes is just five-fold
(5x). Although this is attributed to saturating system resources, one canowt kn
for sure as it is not measured. One should expect thatgfsmaller, this result is
even worse.

Our experiments using the TPC-C workload confirm these hints. Figure 7
show the NODO protocol saturating when there are still plenty of systevniress
available. Although our implementation does not have the optimistic functionality,
gueue Q2 is always large and thus the optimistic path would not be usedyanywa

2.2 Active replication

Active replication is a technique to build fault-tolerant systems in which transac
tions are deterministically processed at all replicas and as such requtesatin
transaction’s statement be processed by the same order at them. This eight b
ensured by means of a centralized or a distributed scheduler.

Sequoia 4.x [4], which was built after the C-JDBC [3], for instancesuseen-
tralized scheduler at the expense of introducing a single point of faillsaally,
any distributed scheduler would circumvent this resilience problem buldweu
quire a distributed deadlock detection mechanism. To avoid the distributed dead
locks, one might annotate transactions with conflict-classes and redsteisiuded
locks through an atomic multicast before starting executing a transactioonin c
trast with NODO, however, a reliable message to propagate changes naiuid
needed as transactions would be actively executed. In both appsp#udeonsis-
tency criteria would be similar to those provided by NODO.

The case against the active replication is shown in the NODO paper: mnbea
able contention with high write ratio. This technique additionally has the draw-



back of requiring a parser to remove non-deterministic information (e.dora()
or date()), thereby leading to re-implement several features alreastidpd by a
database management system.

The active replication pays off when the overhead between trangfawmim
updates in a passive replication is higher then re-executing statementsof And
course, it makes it easy to execute DDL statements.

2.3 Database State Machine(DBSM) and Postgres-R(PGR)

In both protocols, transactions are immediately executed by the replicas tb whic
they are submitted without any a priori coordination. Locally, transactionsya-
chronized according to the specific concurrency control mechanitine ofatabase
engine.

Upon receiving a commit request, a successful transaction is not readily
mitted. Instead, its changes (write-set) and read data (read-set) agecgadimd a
termination protocol initiated. The goal of the termination protocol is to decide the
order and the outcome of the transaction such that a global correchites®ic
is satisfied (e.g 1-copy serializability [2] or 1-copy shapshot isolatign [Bhis is
achieved by establishing a total order position for the transaction andyoegtif
it against concurrently executed transactions. The certification of aatcdon is
done by evaluating the intersection of its read-set and write-set (or jitstset in
case of the snapshot isolation) with the write-set of concurrent, prelyiondered
transactions. The fate of a transaction is therefore determined by the téomina
protocol and a transaction that would locally commit may end up aborted.

These protocols differ on the termination procedure. Considering {-sep
rializability, both protocols use the transaction’s read-set in the certification
cedure. In the PGR, the transaction’s read-set is not propagatatiumndnly the
replica executing the transaction is able to certify it. In the DBSM, converdaly
transaction’s read-set is propagated allowing each replica to autononoeutfy
the transaction.

In detail, upon the reception of the commit request for a transattiolPGR
the executing replica atomically multicasts id andt’s write-set. As soon as all
transactions ordered befarare processed, the executing replica certifigisd re-
liably multicasts the outcome to all replicas. The certification procedure comsists
checkingt's read-set and write-set against the write-sets of all transactioeseatd
beforet. The executing replica then commits or abartscally and replies to the
client. Upon the reception afs commit outcome each replica appligs changes
through the execution of a high priority transaction consisting of updatsstti
and deletes according t& previously multicast write-set. The high priority of the
transaction means that it must be assured of acquiring all required wikis foas-
sibly aborting any locally executing transactions. In other wordsddes not end
up aborted by a high priority transaction, it is transparently and indirecttified
what we entitle an in-core certification.

The termination protocol in the DBSM is significantly different and works as
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Figure 3: States, transitions, and queues in DBSM (our assumption).

follows. Upon the reception of the commit request for a transadfithe executing
replica atomically multicastss id, the version of the database on whiclas ex-
ecuted, and’s read-set and write-set. As soontas ordered, each replica is able
to certify ¢t on its own. For the certification procedurés read-set and write-set
are checked against the write-sets of all transactions committedsriatabase
version. If they do not intersect,commits, otherwise aborts. Ift commits then
its changes are applied through the execution of a high priority transactiist-
ing of updates, inserts and deletes accordingstpreviously multicast write-set.
Again, the high priority of the transaction means that it must be assuredjoirac
ing all required write locks, possibly aborting any locally executing trainsas.
The executing replica replies to the client at the entl of

In both protocols, transactions are queued while executing, as woujgthap
in a non-replicated database, using whatever native mechanism is usddrzee
ACID properties. This is queue QO in Figures 3 and 4.

The most noteworthy feature of both protocols is that ever since a ttaorsac
starts until it is certified, it is vulnerable to being aborted by a concurranstr
action that gets to commit and write a conflicting item. On the other hand, from
the instant that a transaction is certified until it finally commits on every node, it
is a menace to other transactions which will be aborted if they touch a conflicting
item. Latency in any processing stage is thus bound to increase the aborira
side-effect of this is that the resulting system, when loaded, is extremedyr tmf
long running transactions.

In the DBSM, the initial assumption was that the only added latency intro-
duced by replication was in the atomic multicast step, similarly to NODO (Q1) in
Figure 2(a). PGR [8] does not use optimistic delivery. However, this ig an
issue in WANSs. In clusters, latency comes from exhausting resourceis \wibh
replica as queues build up in Q0 and Q2. It is thus no surprise that atgndimm
whatsoever makes the abort rate shoot up.
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Figure 5: States, transitions, and queues in AKARA.

3 The AKARA Protocol

3.1 Intuition

The goal of AKARA is three-fold: maximize resource usage by schedslirifi
cient concurrent executions (avoiding the pitfall of NODO) while at theeséime
keeping queuing outside the danger zones thus ensuring fairnegtirigube pit-
falls of DBSM) and overcome a profound limitation of both NODO and DBSM by
allowing seamless active execution.

Figure 5 depicts the major states, transitions, and queues of this prototol. Le
us assume that conflict classes are tables and, for simplicity, that all ¢tiomsa
access at least a common table. In Section 3.2, we relax this assumption@nd als
consider the case that transactions have no conflict classes in common.

Upon submission, transactions are classified according to a set of tolafises
and totally ordered by means of an atomic multicast primitive. This global order



allows to prevent conflicting transactions to run concurrently. Onceredde
transaction is queued into Q2a waiting to be scheduled. Progression iné@2a d
pends on an admission control policy. When a transaction reaches thE@@ao

it is transferred to Q2b and then executed. Transactions executed wig)i2bin

are said to be run optimistically as they may end up aborting due to conflicts with
concurrent transactions in Q2b or Q2c. After execution, and haviaches the

top of Q2b, a transaction is transferred to Q2c. When a transactioneetietop

of Q2c it may be ready to commit or not (because it had to abort due to dehflic

If it is ready to commit, its changes are propagated to all other replicas and the
transaction commits. Otherwise, the transaction is re-executed conselyatyv
imposing its priority on any locally running transaction.

AKARA maximizes resource usage through the concurrent executiootenp
tially conflicting transactions by means of an admission control mechanism. It is
worth noticing however that an admission policy that only allows to execute non
conflicting transactions according to their conflict classes makes AKARAlto f
down as a simple conservative protocol as NODO. The key is therefqtalito
ciously schedule the execution of each transaction in order to exploit idl¢mes
reducing contention introduced by a conservative execution while aathe 8me
avoiding re-execution. We assume here a policy that just allows to optimistically
executen transactions in parallel. The analysis of more sophisticated policies is
not target in this paper as this simple policy suffices to show the effectigarfe
our novel protocol.

Such optimistic executions however may lead to local deadlocks. Consider
two conflicting transactionsandt/ that are ordereet ¢, ¢/ > and scheduled to run
concurrently (both are in Q2b). if grabs a lock first on a conflicting data item, it
prevents from running. Howevet/ cannot leave Q2b befotewithout infringing
the global commit order. Two extreme solutions for this problem are:

* Roll back right after execution, reapplying updates later on if no casflic
arise. This has a serious drawback as itimposes a severe overkead®n
conflicts are unlikely or even nonexistent. And, when there are confiicts,
always implies a re-execution.

» The other solution is to abort a transaction that gets to the top of the queue
(that is, reaches its commit order) if a subsequent transaction must finish
execution before it. This has however the severe drawback that gmev
many non-conflicting transactions to be executed simultaneously, degreasin
the value of the optimistic execution.

If both transactions have the same conflict classes and, of courdecally
executed at the same replica, a better alternative is to alltovovertaket in the
global commit order. Notice that when a transacti@totally ordered this ensures
that no conflicting transaction will be executed concurrently at any otgice.
Therefore, ift's order is swapped with that of @ with the very same conflict
classes then it is still guaranteed that bo#ind¢ are still executed without the
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interference of any remote conflicting transaction. In the experimentsictediin
Section 4 with the TPC-C, the likelihood of having two transactions with the very
same conflict classes is high as more than 85% of the ocurrences are tthge to
NewOrder andPayment transactions.

Finally, the AKARA protocol also allows transactions to be actively executed
thus providing a mechanism to easily replicate DDL statements and to reduce net-
work usage. This execution steps are detailed in the next section.

3.2 Algorithm

1 Q0, Q2a, Q2b, Q2c: sets; 29 upon deliver(passive,t) to others
30 putt into Q2aq;

2 function submit(t) 31 wait (t = next@2a, t.cc));

in ; \
¢ liecompue ypep, 2 PUInOQ
_ - ’ 33 wait (t = next(@2b, t.cc));
5 t.cc = compute_classey( ; .
6 abcast{.type,t); 34 put_t into Q2c,
35 wait (t = next@2c, t.cc) A
7 end 36 t.updates were delivered);
8 upon deliver(passive,t) to self 37 applyt.updates with
9 putt into Q2a; priority;
10 wait (t = next(@2a, t.cc) A 38 committ;
11 scheduledy); 39 removet from Q2c;
12 putt into Q2b; 40 end
13 execute; 41 upon deliver(active,t)
14 end 42 putt into Q2a;
15 upon (t is local A 43 wait (t = next(@2a, t.cc));
16 tIis executed\ 44 putt into Q2b;
17 t=nextQ2b, t.cc)) 45 wait (t = next(@2b, t.cc));
18 putt into Q2c; 46 putt into Q2c;
19 wait (t = next(@2c, t.cc)); 47 wait (¢ = next@Q2c, t.cc));
20 if (¢ is not ready to commit) 48 execute with priority;
then 49 committ;
21 executer with priority; 50 removet from Q2c;
22 rbcast {.updates, t); 51 end

23 commitg;

/ !/
" removet from Q2c: 52 upon (t,t" are localnt #£ t' A

53 tisready to commin

25 end 54 t' = nextQ2b, t.cc))

26 function next@,cc) =t € Q st. 55 if (t.cc ==tl.cc) then

27 t.seq = min ({t’.seq |t/ € 56 swap(.seq, t!.seq);
Q A tl.cc N cc}) 57 elseabortt;

28 end 58 end

Figure 6: AKARA algorithm.

The AKARA algorithm is presented in Figure 6. In that, a transaction is rep-
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resented by a data structure containing the following informatien:- a global
sequence number which corresponds to the total order established atpthie
multicast;cc - the transaction’s estimated set of conflict classgs: - whether the
transaction should be passively or actively executed. Although ndicikpused

in the algorithm of Figure 6, we assume that this data structure also contains the
transaction’s write-set.

Each replica maintains different set@d, Q2a, Q2b andQ2c whose utilization
were introduced in Sections 2 and 3 and shall be detailed next.

Once a transaction is submitteei,bmit(t) is invoked. The transactiohis
put into Q0, which used to store transactions before any coordination action is
carried on. Right after, an external function (line 4) is used to computéype
of t: passive or active. Then another external function (line 5) classiftesith
respect to its conflict classésOncet is classified, it is atomically multicast to all
replicas (line 6). Upon delivery (lines 8, 29 and 4iis put intoQQ2a andt.seq is
set. This giveg its commit order, which is total with respect to all its conflicting
transactions. It is worth noticing that we omittéd here as we do not exploit fast
delivered transactions.

Assuming a passive execution (line 8), the initiating replica waits tinéh be
the next inQQ2a to be transferred t@)2b and a scheduler decides to optimistically
execute it (line 10). In particular, the functiorext(Q, cc) (line 26) looks at a
gueue, in this cas@2a, and retrieves information on conflicting transactions. If
there is a conflicting transaction ordered befgriee. t # next(Q2a,t.cc), t waits
for its turn. Otherwise, it can be removed fr@p2a and proceed.

Once the previous condition is achieved (line 0%, put intoQ2b and its exe-
cution is started. From this moment uritdan be removed fror®2c, it is vulnera-
ble to be aborted by a remote high priority transaction. Therefore it may tetemina
its execution either upon requesting a commit or due to an abort requested by
conflicting and remote high priority transaction. In the former case, it is ndaake
ready to commit.

One needs to wait untilis executed and can be removed frg)2b (line 15).
However, due to interleaves of concurrent events inside a datab@sesactiorts
ordered before may be blocked by thus not being able to make progress and not
allowing t to be removed front)2b and proceed. To overcome this problem, the
algorithm (lines 52-58) allows to overtaket/ in the global commit order, when
both have the same conflict classes and belong to the same replica. Othérwise
abortst.

Once the previous condition is achieved (line 155 put into@2c. Whent
can be removed from)2c¢, its write-set is reliably multicast to all replicas if it is
still ready to commit. Otherwiseg,is executed as a high priority transaction and
right after its write-set is reliably multicast to all replicas. Finallys committed
at the initiating replica and removed frofg2c.

At aremote replica, the execution of a transactiastraightforward (line 29).

1See Section 5 for a brief discussion on these functions.
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Whent can be removed fror®2a, it is immediately moved t@)2b, and so forth,
until it gets toQ2¢c. Whent can proceed frond)2¢ and its write-set is delivered,

it is applied on the replica with a high priority, committed and them removed from
Q2c.

A transactiont marked as active is executed at all replicas without distinc-
tion between a initiating or a remote replica, and its execution is straightforward
(line 41). Whert can be removed fror®2a, it is immediately moved t6)2b, and
so forth, until it gets taQ2c. Whent can proceed frond)2c, it is executed with a
high priority, committed and them removed frapg2c. Active transactions are not
executed optimistically to avoid different interleaves at different replicas.

4 Evaluation

4.1 Simulation Environment

The simulation environment is based on a centralized simulation model that com-
bines real software components with simulated hardware, software &irdren
ment components to model a distributed system. This allows us to setup and run
multiple realistic tests with slight variations of configuration parameters that would
otherwise be impractical to perform, specially if one considers a large nuofibe
clients and replicas [20].

The key components, the replication and the group communication protocols,
are real implementations while both the database engine and the network are sim-
ulated.

The simulation environment represents a LAN with 9 replicas connected by a
network with a bandwidth of 1Gbps and a latency of 220Each replica corre-
sponds to a dual processor AMD Opteron at 2.4GHz with 4GB of memanrgjmg
the Linux Fedora Core 3 Distribution with kernel version 2.6.10. For storag
used a fiber-channel attached box with 4, 36GB SCSI disks in a RAIGR&gL-
ration and the Ext3 file system. The database running is a PostgreSQL 7.4.6 with
shapshot isolation and the global consistency criterion is 1-copy soiajssia-
tion [9].

Clients run an implementation that mimics the industry standard on-line trans-
action processing benchmark TPC-C [21]. TPC-C specifies five ithosa: NewOrder
with 44% of the occurrence®ayment with 44%; Order Satus with 4%; Delivery
with 4%; andStockLevel with 4%. TheNewOrder, Payment andDelivery are up-
date transactions while the others are read-only.

For the experiments in Section 4.2, we added to the benchmark three more
transactions that mimic maintenance activities such as adding users, chemging
dexes in tables or updating taxes over items. Specifically, the first transhigit-

Tran creates a constraint on a table if it does not exist or drops it otherwise. T
second transactioctive-Tran increases the price of products and is actively exe-
cuted. Converselyrassive-Tran does the same maintenance activity but its changes
are passively propagated. These transactions are never exectliedsame run,

13



have a probability of 1% and when are executing the probability oNeéwveOrder
is reduced to 43%.

We varied the total number of clients from 270 to 3960 and distributed them
evenly among the replicas and each run has 150001 transactions.

4.2 Results

The first set of experiments evaluate the DBSM, NODO and PGR appm@satm
the NODO approach, we use the simple definition of a conflict class fortahtsh
what can be easily extracted from the SQL code. Figures 7 and 8 corhgare
DBSM, PGR and NODO.
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Figure 7: Performance of DBSM, PGR and NODO.

The DBSM and PGR show a throughput higher than 20@@ (Figure 7(a)).
In fact, both present similar results and the higher the throughput therhighe
number of requests per second inside the database (Figure 7(bpe fdwuests
represent access to the storage, CPU, lock manager and to the replicatmool.
Clearly, the database is not a bottleneck. In contrast, the throughmeneel
by NODO is extremely low, around 400@m, and its latency is extremely high
(Figure 7(c)). This drawback can be easily explained by the contenkisareed
in Q2 (Figure 7(d)).

Unfortunately, with the conservative and optimistic approaches presainted,
one may have to choose between latency and fairness. In the NODOR46r 3
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Figure 8: Latency versus Abort (DBSM, PGR and NODO).

clients, 2481 transactions wait (32 around 40s to start executing (Figure 8(a)).
In contrast, an optimistic transaction waits 1000 times less and the number ef trans
actions waiting to be applied is very low.

The abort rate is below 1% in both optimistic approaches as there is no con-
tention and the likelihood of conflicts is low in such situations (Figure 8(b)). How
ever, to show that the optimistic protocols may not guarantee fairness, we co
ducted a set of experiments in which one requests an explicit table levaidomk
behalf of theDelivery transaction thus mimicing a hotspot. This is a pretty com-
mon situation in pratice, as application developers may explicitly request locks
to improve performance or avoid concurrency anomalies. In this casabtré
rate is around 5% and this fact does not have an observable impact iocylatel
throughput but almost all Delivery Transactions abort, around 99gu(€ 8(c)).
In[7], a table level locking is acquired on behalf of tBelivery transaction to
avoid flooding the network and improve the certification procedure. Althdhg
reason to do so is diferent, the issue is the same.

In all the experiments, the time between an optimistic delivery and a final de-
livery were always below Ins, thus excluding?1 from being an issue.

To improve the performance of the conservative approach while at the sa
time guaranteeing fairness, we used the AKARA protocol. We ran the AKARA
protocol varying the number of optimistic transactions that might be contyre
submitted to the database in order to figure out which would be the best ealue f
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Latency (ms) | Throughput (tpm) | Unsuccess rate (%)
AKARA-25 178 16780 2
AKARA-45 480 16474 5
AKARA-n 37255 3954 89
AKARA-25 with Light-Tran 8151 9950 21
AKARA-25 with Active-Tran 109420 1597 21
AKARA-25 with Passive-Tran 295884 625 22

Table 1: Analysis of AKARA.

our environment. This degree of optimistic execution is indicated by a number
after the name of the protocol. For instance, AKARA-25 means that 25 optimistic
transactions might be concurrently submitted and AKARA-n means that there is
no restriction on this number.

Table 1 shows that indefinitely increasing the number of optimistic transactions
that might be concurrently submitted is not worth. Basically for AKARA-n, la-
tency drastically increases and as a consequence throughputsscrélis occurs
because the number of transactions that fails the certification procedveases.

For 3240 clients, more than 89% of the transactions fail the certificatioreguve

(i.e. in-core certification procedure like in PGR, see Section 2.3). Funtrey, af-

ter failing such transactions are conservatively executed and competsdurces
with optimistic transactions that may be executing. Keeping the number of opti-
mistic transactions low however reduces the number of transactions allowre=l in
database and neither is worth. After varying this number from 5 to 50 in sfeps
1, we figured out that the best value for the TPC-C in our environmeri.is 2
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Figure 9: DBSM, NODO and AKARA-25.

In what follows, we used the DBSM as the representative of the family -of op
timistic protocols thus omitting the PGR. Although both protocols present similar
performance in a LAN, the PGR is not worth in a WAN due to its extra communi-
cation step [7].

Figure 9 depicts the benefits provided by the AKARA-25. In Figure &),
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notice that latency in the NODO is extremely high. In contrast, the AKARA-25
starts degenerating after 3240 clients. For 3240 clients the latency in th®1BBS
about 9ms, and in the AKARA-25, it is about 178:s. This increase in latency
directly affects throughput as shown in Figure 9(b). The NODO ptesesteady
throughput of 4000pm; the AKARA-25, a steady throughput of 1860am after
3960 clients; while the DBSM increases its throughput almost linearly. THaNDB
starts degenerating when the database becomes a bottleneck what oasgoatl
with these experiments.

Table 1 shows the impact on performance when the maintenance activities are
handled by our protocol. These maintenance activities represented trgrikac-
tions Active-Tran andLight-Tran are actively executed and integrated in runs with
the AKARA-25: AKARA with Active-Tran and AKARA with Light-Tran, respec-
tively. In order to show the benefits of an active execution in such scervee
provide a run nameAKARA with Passive-Tran in which the updates performed by
the Active-Tran are atomically multicast. The run with tiassive-Tran presents
a latency higher than that with thtive-Tran as the former needs to transfer the
updates through the network. However, both approaches have @erttiuough-
put and high latency when compared to the normal AKARA-25 due to contentio
caused by a large number of updates.

The run with theLight-Tran does not have a large number of updates but its
throughput decreases when compared to the AKARA-25 due to failutas iter-
tification procedure. This is caused by the fact that the transalcitipr Tran mim-
ics a change on the structure of a table and thus requires an exclusivenldc

In a real environment, we expect that maintenance operations occur kgt a
lower than 1% and so they should not be a problem as the optimistic execution of
other transactions might compensate the temporary decrease in perfermanc

5 Open Issues

Most benchmarks are modeled as an open or closed system, althougtlya pa
open system is more accurate for most real scenarios. In particularPBeC is
modeled as a closed system [18].

This has a direct impact on the results presented in this paper. Openrégd pa
open system have a worse degradation in performance due to contefgon w
compared to closed systems: a higher mean response time and reducgdphtou
The variability of service demand also has a huge impact on the mean respons
time. This is particular important when taking into account@edvery transaction
which takes around 3bus to execute, in contrast to others that take no more than
10ms.

Any additional contention introduced by a replication protocol is troublesome
for the overall system performance and should be avoided or circuet/@ren-
ever possible. Disregarding this key factor leads to the intensification aivess
in the protocols (e.g. queuing and abort rate) and most likely makes theasinfe
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ble for most real application scenarios. For those reasons, it is extramubytant
to evaluate the protocols presented here, in particular AKARA, with a papi&yn
benchmark in order to figure out whether it would behave as expectsat.or

Although the current implementation of the AKARA statically specifies the
multiprogramming limit (MPL) by establishing the number of optimistic trans-
actions that can be concurrently executed on a replica, this informatidd beu
dynamically defined as in[17]. One might use an adaptive mechanism [bi@} to
termine this value taking into account the idleness of the database and the abor
rate due to the optimistic execution.

In[11], it is proposed an adaptive mechanism to control the MPL. Hewev
in this case, it basically avoids that latency of the conservative protocadses
drastically by reducing or increasing the number of connections or batatuad
among replicas. There is no attempt to reduce the time spent in queues.

Deciding whether a transaction should be passively or actively exeited
task that might be done automatically or manually. In the former case, AKARA
might learn from previous executions of a transaction in order to come upawith
decision. Usually, the higher the number of changes the more approptia¢aiise
of an active replication. Furthermore, AKARA might exploit the GORDA AB]I [
to extract information from a database such as the number of changesgnade
transaction and whether there are DDL statements or not. The GORDA APt migh
also be used to help in removing non-deterministic information in statements by
withdrawing most of the work from the replication middleware.

Finally, it is worth noticing that having conflict classes based on tablessasie
the classification procedure regardless if it is done automatically or manurlly.
particular, if the classification is done manually, it is pretty simple to automatically
detect labeling mistakes.

6 Conclusion

The performance of group-based database replication protocolsadrabenged

by demanding workloads. Namely, conservatively synchronized mistaverly
restrict concurrency, and thus throughput, unless a careful appfiespecific def-
inition of conflict classes is done. On the other hand, optimistically synchedniz
protocols make it difficult that long lived and prone to conflicts transactoams
commit. Finally, both depend on shipping updated data items, which makes it hard
to deal with very large updates or DDL statements. Although all these isanes ¢
easily be avoided in benchmarks, they are a significant hurdle to adoptiealin
scenarios.

In this paper we address these issues with the AKARA protocol, which seam-
lessly combines multiple execution strategies. Experimental evaluation with the
TPC-C workload shows that the proposed protocol provides adetivateghput
without requiring application-specific tuning of conflict classes. By inigidg a
small number of transactions with large write sets or DDL statements in the mix to
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be actively replicated, one also shows that fairness is ensured andrketsage
minimized.
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