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Abstract

Shared-nothing clusters are a well known and cost-effective approach
to database server scalability, in particular, with highlyintensive read-only
workloads typical of many 3-tier web-based applications. The common re-
liance on a centralized component and a simplistic propagation strategy em-
ployed by mainstream solutions however conduct to poor scalability with
traditional on-line transaction processing (OLTP), wherethe update ratio is
high. Such approaches also pose an additional obstacle to high availability
while introducing a single point of failure.

More recently, database replication protocols based on group communi-
cation have been shown to overcome such limitations, expanding the applica-
bility of shared-nothing clusters to more demanding transactional workloads.
These take simultaneous advantage of total order multicastand transactional
semantics to improve on mainstream solutions. However, none has already
been widely deployed in a general purpose database management system.

In this paper, we argue that a major hurdle for their acceptance is that
these proposals have disappointing performance with specific subsets of real-
world workloads. Such limitations are deep-rooted and working around them
requires in-depth understanding of protocols and changes to applications.
We address this issue with a novel protocol that combines multiple transac-
tion execution mechanisms and replication techniques and then show how it
avoids the identified pitfalls. Experimental results are obtained with a work-
load based on the industry standard TPC-C benchmark.

1 Introduction

Database replication based on group communication [8, 14, 13, 19, 9, 12]supplies
the foundation for affordable and scalable clusters that eschew a shared storage in-
frastructure. By enabling the use of commodity machines and a variety of database
solutions, it helps reduce costs associated with building fault-tolerant architectures
and easies the scale-out factor [15, 3]. The result also improves on reliability when
compared to most mainstream solutions, as these often reduce to lazy update or
rely on centralized components.
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Generically, the approach is eager and builds on the classical replicated state
machine [16]: The exact same sequence of update operations is applied tothe same
initial state, thus producing a consistent replicated output and final state. The prob-
lem is then to ensure deterministic processing without overly restricting concurrent
execution, which would dramatically reduce throughput.

This is achieved by executing the bulk of the transaction at a single replica
and then propagating raw updates, in a passive replication, which has theaddi-
tional advantage of avoiding re-execution. A single total order broadcast for each
transaction suffices for coordination, thus being able to achieve close to linear scal-
ability even with write-intensive loads [7]. In contrast, eager replication based on
distributed locking and atomic commit protocols, require much finer grained coor-
dination and fall prey of deadlocks [6].

Protocols differ mainly in whether transactions are executed optimistically [13,
8] or conservatively [14]. In the former, a transaction is executed by areceiv-
ing replica without a priori coordination with other replicas. Just before commit-
ting, replicas coordinate and check for conflicts between concurrent transactions.
Transactions that would locally commit may abort due to conflicts with remote
concurrent transactions. In the conservative approach, all replicas first agree on
the execution order for (potentially) conflicting transactions assuring thatwhen a
transaction executes there is no concurrent conflicting transaction beingexecuted
remotely and therefore its success depends entirely on the local databaseengine.
Clearly, two transactions conflict if both access the same conflict class (e.g. table)
and one of them update it.

Despite the promising benchmark results, the practicality of such protocols is
limited as all have disappointing performance with specific subsets of demanding
real-world workloads. Namely, the optimistic approach may become impractical
as long-running transactions may experiment unacceptable abort rates.This makes
it very hard to commit such transactions in a heavily loaded server, even when
resubmission is possible, thus compromising liveness. This issue does not arise
with conservative protocols. However, achieving good performance may require a
careful application-specific definition of conflict classes, if possible atall, without
changes to application semantics [7]. This is particularly troublesome as a labeling
mistake can lead to inconsistency.

Furtheremore, simple statements that update large number of items result in
heavy network traffic in both approaches, while saving little in avoiding re-execution.
The same is true for DDL statements (e.g. create index, alter table), in which ex-
tracting and applying updates may require intimate knowledge of database internals
and also yield large updates. In these situations active replication is desirable.

The challenge is therefore to combine the ease of use of the optimistic ap-
proach, with the fairness of the conservative approach and the straightforward im-
plementation of the active replication. This paper thus shows how it is possibleto
overcome this challenge and is organized as follows. Section 2 surveys thecurrent
protocols focusing on dynamic aspects, namely, on queuing that happensin dif-
ferent parts of the system and on the amount of concurrency that can be achieved.
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Figure 1: Notation.

Section 3 proposes the novel AKARA database replication protocol based on group
communication. As happens with conservative protocols, AKARA is fair andtakes
advantage of a judicious definition of conflict classes to maximize concurrency.
However, to attain the performance level of optimistic protocols, AKARA exploits
the tentative execution of potentially conflicting transactions as allowed by the un-
derlying system, i.e. by any database management system. Furthermore, as in
active replication protocols, AKARA allows any deterministic statement to be ac-
tively replicated. Section 4 evaluates AKARA using the workload from TPC-C
and show that it provides, even with a generic application independent (i.e. strictly
syntactic) definition of conflict classes, peak performance comparable with a purely
optimistic protocol while at the same time enforcing fairness. Section 5 discusses
open issues and Section 6 concludes the paper.

2 Background

In this section we make a brief overview of major approaches to database replica-
tion using group communication. We do this survey however with a novel twist.
We focus on dynamic aspects, namely, (i) on queuing that happens in different
parts of the system and (ii) on the amount of concurrency that can be achieved.
Then, we contrast the original assumptions underlying such protocols withour
experience with actual implementations and using the TPC-C workload [7]. This
is extremely relevant, as previous protocols have been proposed as exploiting op-
timistic assumptions on system dynamics that we are not able to confirm in our
realistic setting. The conclusion sets the motivation for proposing the AKARA
protocol in Section 3.

Figure 1 introduces the notation used to depict protocol state-machines. Given
the emphasis on dynamic aspects, we use different symbols for states that represent
queuing and states in which at most a single non-conflicting transaction can be at
any given time. We show also which queues are likely to grow without bound when
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the system is congested. When alternative paths exist, due to optimistic execution,
we show which is considered to be the more likely to be executed. We make
a distinction between local and replicated queues and identify relevant actions:
execute, apply, certify and wait.

Since all protocols involve an atomic broadcast step, we use a consistent nam-
ing for queues in different protocols. Q0 is before the abcast, Q1 is between abcast
and delivery, and Q2 is after delivery. Protocols with an optimistic assumptionuse
messages in Q1 which has messages with tentative order, i.e. messages that were
optimistically delivered. In contrast, messages in Q2 have a final order.

2.1 Non-Disjoint conflict classes and Optimistic multicast(NODO)

In NODO, data is a priori partitioned in conflict classes, not necessarily disjoint.
Each transaction has an associated set of conflict classes (the data partitions it ac-
cesses) which are assumed to be known in advance. This approach requires to know
the entire transaction before its execution precluding the processing of interactive
transactions.

When a transaction is submitted (Q0), its id and conflict classes are atomically
multicast to all replicas obtaining a total order position (Q2). Each replica hasa
queue associated with each conflict class and, once delivered, a transaction is clas-
sified according to its conflict classes and enqueued in all corresponding queues.
As soon as a transaction reaches the head of all of its conflict class queues it is
executed. Transactions are executed by the replica to which they are submitted.

Clearly, the conflict classes have a direct impact on performance. The fewer the
number of transactions with overlapping conflict classes, the better the interleave
among transactions. Conflict classes are usually defined at the table levelbut can
have a finer grain at the expense of a non-trivial validation process to guarantee that
a transaction does not access conflict classes that were not previously specified.

When the commit request is received, the outcome of the transaction is reliably
multicast to all replicas along with the replica’s changes (write-set) and a reply is
sent to the client. Each replica applies the remote transaction’s updates with the
parallelism allowed by the initially established total order of the transaction.

The protocol ensures 1-copy serializability [2] as long as transactions are clas-
sified taking into account read/write conflicts. To achieve 1-copy snapshot isola-
tion [9] transactions must be classified take into account just write/write conflicts.

A transaction is scheduled optimistically if there is no conflicting transaction
already ordered (Q2). This tentative execution may be done at the expense of an
abort if a concurrent transaction is later on ordered before it.

Figure 2(a) shows the states that a transaction goes through upon being sub-
mitted by a client. According to the designers’ assumptions, the time spent in the
queue waiting for total order (Q1) is significant enough compared to time taken
to actually execute such that it is worthwhile to optimistically execute transactions
(transition 2 instead of transition 1). This makes it possible that when a transaction
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(a) Assumption of the designers.

(b) Our assumption.

Figure 2: States, transitions, and queues in NODO.
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is ordered, it is immediately committed (transition 4). Assuming that optimistic
ordering is correct, a rollback (transition 3) is unlikely.

We have however reasons to believe that this assumption is invalid. The first
hints for these are actually in the original description of the proposal [14]. First, the
end-to-end transaction execution latency measured is larger than 50 ms, ofwhich
most surely only less than 10% can be attributed to the latency of group commu-
nication. In fact, the protocol used for experiments, is very well known for its
extremely good performance [1]. If this is true, then queuing will happen inqueue
Q2 and not in queue Q1. Thus if Q2 is never empty, then no transaction in queue
Q1 is eligible for optimistic execution. This is confirmed by the abort rate being al-
ways extremely low, even with a large share of conflicting update transactions [14],
a hint that transition 2 is never taken.

The appropriate scenario for the NODO protocol is thus depicted in Figure2(b):
The optimistic path is seldom used and the protocol boils down to a coarse-grained
distributed locking approach, which has a very large impact in scalability. Notice
that if there arek (disjoint) conflict classes, there can be at mostk transactions
executing in the whole system. Again, this seems to be confirmed by the origi-
nal presentation of the protocol (Figure 6 of [14]): With an update intensive load
andk = 16 distinct conflict classes, the scale factor for 15 nodes is just five-fold
(5×). Although this is attributed to saturating system resources, one cannot know
for sure as it is not measured. One should expect that ifk is smaller, this result is
even worse.

Our experiments using the TPC-C workload confirm these hints. Figure 7
show the NODO protocol saturating when there are still plenty of system resources
available. Although our implementation does not have the optimistic functionality,
queue Q2 is always large and thus the optimistic path would not be used anyway.

2.2 Active replication

Active replication is a technique to build fault-tolerant systems in which transac-
tions are deterministically processed at all replicas and as such requires that each
transaction’s statement be processed by the same order at them. This might be
ensured by means of a centralized or a distributed scheduler.

Sequoia 4.x [4], which was built after the C-JDBC [3], for instance, uses a cen-
tralized scheduler at the expense of introducing a single point of failure.Usually,
any distributed scheduler would circumvent this resilience problem but would re-
quire a distributed deadlock detection mechanism. To avoid the distributed dead-
locks, one might annotate transactions with conflict-classes and request distributed
locks through an atomic multicast before starting executing a transaction. In con-
trast with NODO, however, a reliable message to propagate changes wouldnot be
needed as transactions would be actively executed. In both approaches, the consis-
tency criteria would be similar to those provided by NODO.

The case against the active replication is shown in the NODO paper: unbear-
able contention with high write ratio. This technique additionally has the draw-
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back of requiring a parser to remove non-deterministic information (e.g. random()
or date()), thereby leading to re-implement several features already provided by a
database management system.

The active replication pays off when the overhead between transferring raw
updates in a passive replication is higher then re-executing statements. Andof
course, it makes it easy to execute DDL statements.

2.3 Database State Machine(DBSM) and Postgres-R(PGR)

In both protocols, transactions are immediately executed by the replicas to which
they are submitted without any a priori coordination. Locally, transactions are syn-
chronized according to the specific concurrency control mechanism ofthe database
engine.

Upon receiving a commit request, a successful transaction is not readilycom-
mitted. Instead, its changes (write-set) and read data (read-set) are gathered and a
termination protocol initiated. The goal of the termination protocol is to decide the
order and the outcome of the transaction such that a global correctness criterion
is satisfied (e.g 1-copy serializability [2] or 1-copy snapshot isolation [9]). This is
achieved by establishing a total order position for the transaction and certifying
it against concurrently executed transactions. The certification of a transaction is
done by evaluating the intersection of its read-set and write-set (or just write-set in
case of the snapshot isolation) with the write-set of concurrent, previously ordered
transactions. The fate of a transaction is therefore determined by the termination
protocol and a transaction that would locally commit may end up aborted.

These protocols differ on the termination procedure. Considering 1-copy se-
rializability, both protocols use the transaction’s read-set in the certificationpro-
cedure. In the PGR, the transaction’s read-set is not propagated andthus only the
replica executing the transaction is able to certify it. In the DBSM, conversely, the
transaction’s read-set is propagated allowing each replica to autonomouslycertify
the transaction.

In detail, upon the reception of the commit request for a transactiont, in PGR
the executing replica atomically multicastst’s id andt’s write-set. As soon as all
transactions ordered beforet are processed, the executing replica certifiest and re-
liably multicasts the outcome to all replicas. The certification procedure consistsin
checkingt’s read-set and write-set against the write-sets of all transactions ordered
beforet. The executing replica then commits or abortst locally and replies to the
client. Upon the reception oft’s commit outcome each replica appliest’s changes
through the execution of a high priority transaction consisting of updates, inserts
and deletes according tot’s previously multicast write-set. The high priority of the
transaction means that it must be assured of acquiring all required write locks, pos-
sibly aborting any locally executing transactions. In other words, ift does not end
up aborted by a high priority transaction, it is transparently and indirectly certified
what we entitle an in-core certification.

The termination protocol in the DBSM is significantly different and works as
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Figure 3: States, transitions, and queues in DBSM (our assumption).

follows. Upon the reception of the commit request for a transactiont, the executing
replica atomically multicastst’s id, the version of the database on whicht was ex-
ecuted, andt’s read-set and write-set. As soon ast is ordered, each replica is able
to certify t on its own. For the certification procedure,t’s read-set and write-set
are checked against the write-sets of all transactions committed sincet’s database
version. If they do not intersect,t commits, otherwiset aborts. Ift commits then
its changes are applied through the execution of a high priority transaction consist-
ing of updates, inserts and deletes according tot’s previously multicast write-set.
Again, the high priority of the transaction means that it must be assured of acquir-
ing all required write locks, possibly aborting any locally executing transactions.
The executing replica replies to the client at the end oft.

In both protocols, transactions are queued while executing, as would happen
in a non-replicated database, using whatever native mechanism is used to enforce
ACID properties. This is queue Q0 in Figures 3 and 4.

The most noteworthy feature of both protocols is that ever since a transaction
starts until it is certified, it is vulnerable to being aborted by a concurrent trans-
action that gets to commit and write a conflicting item. On the other hand, from
the instant that a transaction is certified until it finally commits on every node, it
is a menace to other transactions which will be aborted if they touch a conflicting
item. Latency in any processing stage is thus bound to increase the abort rate. A
side-effect of this is that the resulting system, when loaded, is extremely unfair to
long running transactions.

In the DBSM, the initial assumption was that the only added latency intro-
duced by replication was in the atomic multicast step, similarly to NODO (Q1) in
Figure 2(a). PGR [8] does not use optimistic delivery. However, this is only an
issue in WANs. In clusters, latency comes from exhausting resources within each
replica as queues build up in Q0 and Q2. It is thus no surprise that any contention
whatsoever makes the abort rate shoot up.
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Figure 4: States, transitions, and queues in PGR.

Figure 5: States, transitions, and queues in AKARA.

3 The AKARA Protocol

3.1 Intuition

The goal of AKARA is three-fold: maximize resource usage by schedulingsuffi-
cient concurrent executions (avoiding the pitfall of NODO) while at the same time
keeping queuing outside the danger zones thus ensuring fairness (avoiding the pit-
falls of DBSM) and overcome a profound limitation of both NODO and DBSM by
allowing seamless active execution.

Figure 5 depicts the major states, transitions, and queues of this protocol. Let
us assume that conflict classes are tables and, for simplicity, that all transactions
access at least a common table. In Section 3.2, we relax this assumption and also
consider the case that transactions have no conflict classes in common.

Upon submission, transactions are classified according to a set of conflict classes
and totally ordered by means of an atomic multicast primitive. This global order
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allows to prevent conflicting transactions to run concurrently. Once ordered, a
transaction is queued into Q2a waiting to be scheduled. Progression in Q2a de-
pends on an admission control policy. When a transaction reaches the top of Q2a
it is transferred to Q2b and then executed. Transactions executed while inQ2b
are said to be run optimistically as they may end up aborting due to conflicts with
concurrent transactions in Q2b or Q2c. After execution, and having reached the
top of Q2b, a transaction is transferred to Q2c. When a transaction reaches the top
of Q2c it may be ready to commit or not (because it had to abort due to conflicts).
If it is ready to commit, its changes are propagated to all other replicas and the
transaction commits. Otherwise, the transaction is re-executed conservatively by
imposing its priority on any locally running transaction.

AKARA maximizes resource usage through the concurrent execution of poten-
tially conflicting transactions by means of an admission control mechanism. It is
worth noticing however that an admission policy that only allows to execute non-
conflicting transactions according to their conflict classes makes AKARA to fall
down as a simple conservative protocol as NODO. The key is therefore tojudi-
ciously schedule the execution of each transaction in order to exploit idleness thus
reducing contention introduced by a conservative execution while at the same time
avoiding re-execution. We assume here a policy that just allows to optimistically
executen transactions in parallel. The analysis of more sophisticated policies is
not target in this paper as this simple policy suffices to show the effectiveness of
our novel protocol.

Such optimistic executions however may lead to local deadlocks. Consider
two conflicting transactionst andt′ that are ordered< t, t′ > and scheduled to run
concurrently (both are in Q2b). Ift′ grabs a lock first on a conflicting data item, it
preventst from running. Howevert′ cannot leave Q2b beforet without infringing
the global commit order. Two extreme solutions for this problem are:

• Roll back right after execution, reapplying updates later on if no conflicts
arise. This has a serious drawback as it imposes a severe overhead even when
conflicts are unlikely or even nonexistent. And, when there are conflicts,it
always implies a re-execution.

• The other solution is to abort a transaction that gets to the top of the queue
(that is, reaches its commit order) if a subsequent transaction must finish
execution before it. This has however the severe drawback that it prevents
many non-conflicting transactions to be executed simultaneously, decreasing
the value of the optimistic execution.

If both transactions have the same conflict classes and, of course, arelocally
executed at the same replica, a better alternative is to allowt′ to overtaket in the
global commit order. Notice that when a transactiont is totally ordered this ensures
that no conflicting transaction will be executed concurrently at any other replica.
Therefore, ift’s order is swapped with that of at′ with the very same conflict
classes then it is still guaranteed that botht and t′ are still executed without the
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interference of any remote conflicting transaction. In the experiments conducted in
Section 4 with the TPC-C, the likelihood of having two transactions with the very
same conflict classes is high as more than 85% of the ocurrences are due tothe
NewOrder andPayment transactions.

Finally, the AKARA protocol also allows transactions to be actively executed
thus providing a mechanism to easily replicate DDL statements and to reduce net-
work usage. This execution steps are detailed in the next section.

3.2 Algorithm

Q0, Q2a, Q2b, Q2c: sets;1

function submit(t)2

put t into Q0;3

t.type = compute_type(t);4

t.cc = compute_classes(t);5

abcast(t.type,t);6

end7

upon deliver(passive,t) to self8

put t into Q2a;9

wait (t = next(Q2a, t.cc) ∧10

scheduled(t));11

put t into Q2b;12

executet;13

end14

upon (t is local∧15

t is executed∧16

t = next(Q2b, t.cc))17

put t into Q2c;18

wait (t = next(Q2c, t.cc));19

if (t is not ready to commit)20

then
executet with priority;21

rbcast (t.updates, t);22

committ;23

removet from Q2c;24

end25

function next(Q,cc) ≡ t ∈ Q st.26

t.seq = min ({t′.seq | t′ ∈27

Q ∧ t′.cc ∩ cc})
end28

upon deliver(passive,t) to others29

put t into Q2a;30

wait (t = next(Q2a, t.cc));31

put t into Q2b;32

wait (t = next(Q2b, t.cc));33

put t into Q2c;34

wait (t = next(Q2c, t.cc) ∧35

t.updates were delivered);36

applyt.updates with37

priority;
committ;38

removet from Q2c;39

end40

upon deliver(active,t)41

put t into Q2a;42

wait (t = next(Q2a, t.cc));43

put t into Q2b;44

wait (t = next(Q2b, t.cc));45

put t into Q2c;46

wait (t = next(Q2c, t.cc));47

executet with priority;48

committ;49

removet from Q2c;50

end51

upon (t, t′ are local∧ t 6= t′ ∧52

t is ready to commit∧53

t′ = next(Q2b, t.cc))54

if (t.cc == t′.cc) then55

swap(t.seq, t′.seq);56

elseabortt;57

end58

Figure 6: AKARA algorithm.

The AKARA algorithm is presented in Figure 6. In that, a transaction is rep-
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resented by a data structure containing the following information:seq - a global
sequence number which corresponds to the total order established by theatomic
multicast;cc - the transaction’s estimated set of conflict classes;type - whether the
transaction should be passively or actively executed. Although not explicitly used
in the algorithm of Figure 6, we assume that this data structure also contains the
transaction’s write-set.

Each replica maintains different sets:Q0, Q2a, Q2b andQ2c whose utilization
were introduced in Sections 2 and 3 and shall be detailed next.

Once a transaction is submitted,submit(t) is invoked. The transactiont is
put into Q0, which used to store transactions before any coordination action is
carried on. Right after, an external function (line 4) is used to compute thetype
of t: passive or active. Then another external function (line 5) classifiest with
respect to its conflict classes.1 Oncet is classified, it is atomically multicast to all
replicas (line 6). Upon delivery (lines 8, 29 and 41),t is put intoQ2a andt.seq is
set. This givest its commit order, which is total with respect to all its conflicting
transactions. It is worth noticing that we omittedQ1 here as we do not exploit fast
delivered transactions.

Assuming a passive execution (line 8), the initiating replica waits untilt can be
the next inQ2a to be transferred toQ2b and a scheduler decides to optimistically
execute it (line 10). In particular, the functionnext(Q, cc) (line 26) looks at a
queue, in this caseQ2a, and retrieves information on conflicting transactions. If
there is a conflicting transaction ordered beforet, i.e. t 6= next(Q2a, t.cc), t waits
for its turn. Otherwise, it can be removed fromQ2a and proceed.

Once the previous condition is achieved (line 10),t is put intoQ2b and its exe-
cution is started. From this moment untilt can be removed fromQ2c, it is vulnera-
ble to be aborted by a remote high priority transaction. Therefore it may terminate
its execution either upon requesting a commit or due to an abort requested bya
conflicting and remote high priority transaction. In the former case, it is marked as
ready to commit.

One needs to wait untilt is executed and can be removed fromQ2b (line 15).
However, due to interleaves of concurrent events inside a database, atransactiont′
ordered beforet may be blocked byt thus not being able to make progress and not
allowing t to be removed fromQ2b and proceed. To overcome this problem, the
algorithm (lines 52–58) allowst to overtaket′ in the global commit order, when
both have the same conflict classes and belong to the same replica. Otherwise, it
abortst.

Once the previous condition is achieved (line 15),t is put intoQ2c. Whent

can be removed fromQ2c, its write-set is reliably multicast to all replicas if it is
still ready to commit. Otherwise,t is executed as a high priority transaction and
right after its write-set is reliably multicast to all replicas. Finally,t is committed
at the initiating replica and removed fromQ2c.

At a remote replica, the execution of a transactiont is straightforward (line 29).

1See Section 5 for a brief discussion on these functions.
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Whent can be removed fromQ2a, it is immediately moved toQ2b, and so forth,
until it gets toQ2c. Whent can proceed fromQ2c and its write-set is delivered,
it is applied on the replica with a high priority, committed and them removed from
Q2c.

A transactiont marked as active is executed at all replicas without distinc-
tion between a initiating or a remote replica, and its execution is straightforward
(line 41). Whent can be removed fromQ2a, it is immediately moved toQ2b, and
so forth, until it gets toQ2c. Whent can proceed fromQ2c, it is executed with a
high priority, committed and them removed fromQ2c. Active transactions are not
executed optimistically to avoid different interleaves at different replicas.

4 Evaluation

4.1 Simulation Environment

The simulation environment is based on a centralized simulation model that com-
bines real software components with simulated hardware, software and environ-
ment components to model a distributed system. This allows us to setup and run
multiple realistic tests with slight variations of configuration parameters that would
otherwise be impractical to perform, specially if one considers a large number of
clients and replicas [20].

The key components, the replication and the group communication protocols,
are real implementations while both the database engine and the network are sim-
ulated.

The simulation environment represents a LAN with 9 replicas connected by a
network with a bandwidth of 1Gbps and a latency of 120µs. Each replica corre-
sponds to a dual processor AMD Opteron at 2.4GHz with 4GB of memory, running
the Linux Fedora Core 3 Distribution with kernel version 2.6.10. For storage we
used a fiber-channel attached box with 4, 36GB SCSI disks in a RAID-5 configu-
ration and the Ext3 file system. The database running is a PostgreSQL 7.4.6 with
snapshot isolation and the global consistency criterion is 1-copy snapshot isola-
tion [9].

Clients run an implementation that mimics the industry standard on-line trans-
action processing benchmark TPC-C [21]. TPC-C specifies five transactions:NewOrder
with 44% of the occurrences;Payment with 44%;OrderStatus with 4%; Delivery
with 4%; andStockLevel with 4%. TheNewOrder, Payment andDelivery are up-
date transactions while the others are read-only.

For the experiments in Section 4.2, we added to the benchmark three more
transactions that mimic maintenance activities such as adding users, changingin-
dexes in tables or updating taxes over items. Specifically, the first transaction Light-
Tran creates a constraint on a table if it does not exist or drops it otherwise. The
second transactionActive-Tran increases the price of products and is actively exe-
cuted. Conversely,Passive-Tran does the same maintenance activity but its changes
are passively propagated. These transactions are never executed inthe same run,
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have a probability of 1% and when are executing the probability of theNewOrder
is reduced to 43%.

We varied the total number of clients from 270 to 3960 and distributed them
evenly among the replicas and each run has 150001 transactions.

4.2 Results

The first set of experiments evaluate the DBSM, NODO and PGR approaches. In
the NODO approach, we use the simple definition of a conflict class for eachtable,
what can be easily extracted from the SQL code. Figures 7 and 8 comparethe
DBSM, PGR and NODO.
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Figure 7: Performance of DBSM, PGR and NODO.

The DBSM and PGR show a throughput higher than 20000tpm (Figure 7(a)).
In fact, both present similar results and the higher the throughput the higher the
number of requests per second inside the database (Figure 7(b)). These requests
represent access to the storage, CPU, lock manager and to the replicationprotocol.
Clearly, the database is not a bottleneck. In contrast, the throughput presented
by NODO is extremely low, around 4000tpm, and its latency is extremely high
(Figure 7(c)). This drawback can be easily explained by the contention observed
in Q2 (Figure 7(d)).

Unfortunately, with the conservative and optimistic approaches presentedabove,
one may have to choose between latency and fairness. In the NODO, for 3240

14



 0

 100

 200

 300

 400

 500

 500  1000  1500  2000  2500  3000  3500

tim
e 

(m
s)

clients

Time

    DBSM
     PGR

    NODO

(a) Time in Q2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 500  1000  1500  2000  2500  3000  3500

%
 a

bo
rt

s

clients

Aborts

    DBSM
      PGR
    NODO

(b) Abort

 40

 50

 60

 70

 80

 90

 100

 500  1000  1500  2000  2500  3000  3500

%
 a

bo
rt

s

clients

Aborts

(c) Delivery’s Abort in DBSM

Figure 8: Latency versus Abort (DBSM, PGR and NODO).

clients, 2481 transactions wait inQ2 around 40s to start executing (Figure 8(a)).
In contrast, an optimistic transaction waits 1000 times less and the number of trans-
actions waiting to be applied is very low.

The abort rate is below 1% in both optimistic approaches as there is no con-
tention and the likelihood of conflicts is low in such situations (Figure 8(b)). How-
ever, to show that the optimistic protocols may not guarantee fairness, we con-
ducted a set of experiments in which one requests an explicit table level locking on
behalf of theDelivery transaction thus mimicing a hotspot. This is a pretty com-
mon situation in pratice, as application developers may explicitly request locks
to improve performance or avoid concurrency anomalies. In this case, theabort
rate is around 5% and this fact does not have an observable impact on latency and
throughput but almost all Delivery Transactions abort, around 99% (Figure 8(c)).
In [7], a table level locking is acquired on behalf of theDelivery transaction to
avoid flooding the network and improve the certification procedure. Although the
reason to do so is diferent, the issue is the same.

In all the experiments, the time between an optimistic delivery and a final de-
livery were always below 1ms, thus excludingQ1 from being an issue.

To improve the performance of the conservative approach while at the same
time guaranteeing fairness, we used the AKARA protocol. We ran the AKARA
protocol varying the number of optimistic transactions that might be concurrently
submitted to the database in order to figure out which would be the best value for
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Latency (ms) Throughput (tpm) Unsuccess rate (%)
AKARA-25 178 16780 2
AKARA-45 480 16474 5
AKARA-n 37255 3954 89
AKARA-25 with Light-Tran 8151 9950 21
AKARA-25 with Active-Tran 109420 1597 21
AKARA-25 with Passive-Tran 295884 625 22

Table 1: Analysis of AKARA.

our environment. This degree of optimistic execution is indicated by a number
after the name of the protocol. For instance, AKARA-25 means that 25 optimistic
transactions might be concurrently submitted and AKARA-n means that there is
no restriction on this number.

Table 1 shows that indefinitely increasing the number of optimistic transactions
that might be concurrently submitted is not worth. Basically for AKARA-n, la-
tency drastically increases and as a consequence throughput decreases. This occurs
because the number of transactions that fails the certification procedure increases.
For 3240 clients, more than 89% of the transactions fail the certification procedure
(i.e. in-core certification procedure like in PGR, see Section 2.3). Furthermore, af-
ter failing such transactions are conservatively executed and compete for resources
with optimistic transactions that may be executing. Keeping the number of opti-
mistic transactions low however reduces the number of transactions allowed inthe
database and neither is worth. After varying this number from 5 to 50 in stepsof
1, we figured out that the best value for the TPC-C in our environment is 25.
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Figure 9: DBSM, NODO and AKARA-25.

In what follows, we used the DBSM as the representative of the family of op-
timistic protocols thus omitting the PGR. Although both protocols present similar
performance in a LAN, the PGR is not worth in a WAN due to its extra communi-
cation step [7].

Figure 9 depicts the benefits provided by the AKARA-25. In Figure 9(a),we
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notice that latency in the NODO is extremely high. In contrast, the AKARA-25
starts degenerating after 3240 clients. For 3240 clients the latency in the DBSM is
about 9ms, and in the AKARA-25, it is about 178ms. This increase in latency
directly affects throughput as shown in Figure 9(b). The NODO presents a steady
throughput of 4000tpm; the AKARA-25, a steady throughput of 18605tpm after
3960 clients; while the DBSM increases its throughput almost linearly. The DBSM
starts degenerating when the database becomes a bottleneck what was notour goal
with these experiments.

Table 1 shows the impact on performance when the maintenance activities are
handled by our protocol. These maintenance activities represented by thetransac-
tionsActive-Tran andLight-Tran are actively executed and integrated in runs with
the AKARA-25: AKARA with Active-Tran and AKARA with Light-Tran, respec-
tively. In order to show the benefits of an active execution in such scenario, we
provide a run namedAKARA with Passive-Tran in which the updates performed by
the Active-Tran are atomically multicast. The run with thePassive-Tran presents
a latency higher than that with theActive-Tran as the former needs to transfer the
updates through the network. However, both approaches have a reduced through-
put and high latency when compared to the normal AKARA-25 due to contention
caused by a large number of updates.

The run with theLight-Tran does not have a large number of updates but its
throughput decreases when compared to the AKARA-25 due to failures inthe cer-
tification procedure. This is caused by the fact that the transactionLight-Tran mim-
ics a change on the structure of a table and thus requires an exclusive lock on it.

In a real environment, we expect that maintenance operations occur with arate
lower than 1% and so they should not be a problem as the optimistic execution of
other transactions might compensate the temporary decrease in performance.

5 Open Issues

Most benchmarks are modeled as an open or closed system, although, a partly-
open system is more accurate for most real scenarios. In particular, theTPC-C is
modeled as a closed system [18].

This has a direct impact on the results presented in this paper. Open and partly-
open system have a worse degradation in performance due to contention when
compared to closed systems: a higher mean response time and reduced throughput.
The variability of service demand also has a huge impact on the mean response
time. This is particular important when taking into account theDelivery transaction
which takes around 35ms to execute, in contrast to others that take no more than
10ms.

Any additional contention introduced by a replication protocol is troublesome
for the overall system performance and should be avoided or circumvented when-
ever possible. Disregarding this key factor leads to the intensification of weakness
in the protocols (e.g. queuing and abort rate) and most likely makes them infeasi-
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ble for most real application scenarios. For those reasons, it is extremelyimportant
to evaluate the protocols presented here, in particular AKARA, with a partly-open
benchmark in order to figure out whether it would behave as expected ornot.

Although the current implementation of the AKARA statically specifies the
multiprogramming limit (MPL) by establishing the number of optimistic trans-
actions that can be concurrently executed on a replica, this information could be
dynamically defined as in [17]. One might use an adaptive mechanism [10] tode-
termine this value taking into account the idleness of the database and the abort
rate due to the optimistic execution.

In [11], it is proposed an adaptive mechanism to control the MPL. However,
in this case, it basically avoids that latency of the conservative protocol increases
drastically by reducing or increasing the number of connections or balancing load
among replicas. There is no attempt to reduce the time spent in queues.

Deciding whether a transaction should be passively or actively executedis a
task that might be done automatically or manually. In the former case, AKARA
might learn from previous executions of a transaction in order to come up witha
decision. Usually, the higher the number of changes the more appropriate isthe use
of an active replication. Furthermore, AKARA might exploit the GORDA API [5]
to extract information from a database such as the number of changes madeby a
transaction and whether there are DDL statements or not. The GORDA API might
also be used to help in removing non-deterministic information in statements by
withdrawing most of the work from the replication middleware.

Finally, it is worth noticing that having conflict classes based on tables easies
the classification procedure regardless if it is done automatically or manually.In
particular, if the classification is done manually, it is pretty simple to automatically
detect labeling mistakes.

6 Conclusion

The performance of group-based database replication protocols can be challenged
by demanding workloads. Namely, conservatively synchronized protocols overly
restrict concurrency, and thus throughput, unless a careful application-specific def-
inition of conflict classes is done. On the other hand, optimistically synchronized
protocols make it difficult that long lived and prone to conflicts transactionscan
commit. Finally, both depend on shipping updated data items, which makes it hard
to deal with very large updates or DDL statements. Although all these issues can
easily be avoided in benchmarks, they are a significant hurdle to adoption inreal
scenarios.

In this paper we address these issues with the AKARA protocol, which seam-
lessly combines multiple execution strategies. Experimental evaluation with the
TPC-C workload shows that the proposed protocol provides adequatethroughput
without requiring application-specific tuning of conflict classes. By introducing a
small number of transactions with large write sets or DDL statements in the mix to
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be actively replicated, one also shows that fairness is ensured and network usage
minimized.
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