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Abstract. Although much of mathematics is algorithmic in nature, the
skills needed to formulate and solve algorithmic problems do not form
an integral part of mathematics education. In particular, logic, which
is central to algorithm development, is rarely taught explicitly at pre-
university level, under the justification that it is implicit in mathematics
and therefore does not need to be taught as an independent topic. This
paper argues in the opposite direction, describing a one-week workshop
done at the University of Minho, in Portugal, whose goal was to intro-
duce to high-school students calculational principles and techniques of
algorithmic problem solving supported by calculational logic. The work-
shop resorted to recreational problems to convey the principles and to
software tools, the Alloy Analyzer and Netlogo, to animate models.
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1 Introduction and overview

It is consensual that Logic plays an essential role in rigorous software develop-
ment. But the converse is also true, even if less well-known: literacy in logic,
i.e., the ability to make productive use of the logic methods and tools, can
be improved through algorithmic problem solving. Actually, two decades of re-
search on correct-by-construction program design have created a new discipline
of algorithmic problem solving and shed light on the underlying mathematical
structures, modelling, and reasoning principles. In particular, it emphasises goal-
directed, calculational construction of algorithms as opposed to more traditional
guess-and-verify methodologies. Starting with the pioneering work of Dijkstra
and Gries [8, 13], and in particular, through the development of the so-called
algebra of programming [5, 4], a calculational style [3, 11, 7] emerged, emphasis-
ing the use of systematic mathematical calculation in the design of algorithms.
The realisation that such a style is equally applicable to logical arguments [8,
13] and that it can greatly improve on traditional verbose proofs in natural lan-
guage has led to a systematisation that can, in return, also improve exposition in



the more classical branches of mathematics. In particular, lengthy and verbose
proofs (full of natural language explanations for “obvious” steps) are replaced by
easy-to-follow calculations presented in a standard layout which replaces classical
implication-first logic by variable-free algebraic reasoning [11, 12].

Such a systematisation of a calculational style of reasoning, proceeding in a
essentially syntactic way, greatly improves on the way proofs are presented. In
particular it may help to overcome the typical justification for omitting proofs
in school mathematics: that they are difficult to follow for all but exceptional
students.

However, and although much of mathematics is algorithmic in nature, the
skills needed to formulate and solve algorithmic problems do not form an in-
tegral part of mathematics education. Also, the teaching of computer-related
topics at pre-university level focuses on enabling students to be effective users of
information technology, rather than equip them with the skills to develop new
applications or to solve new problems.

In such a context, this paper reports on a concrete case-study on exploiting
and combining the dynamics of algorithmic problem solving and calculational
reasoning to introduce logic in high-school as a live and productive tool. A tool to
boost the abilities students need to overcome the challenges they will encounter
through life. This experiment shows that logic skills can be trained through
simple problems that emphasise formalisation and calculation. For example, logic
puzzles where the goal is to solve simultaneous equations on Booleans, can be
introduced by analogy with simultaneous equations on numbers. High-school
students already learn how to solve simultaneous equations on numbers; going
from the reals to the simpler Boolean domain, where each variable is either true
or false, seems a natural step to follow. Furthermore, illustrating how logic can
be used to model and solve algorithmic problems, improves the students’ abilities
to solve problems in general. Related research, leading to similar conclusions, is
reported in [6, 1, 2, 10].

2 An educational experiment

In July 2010, we organised a one-week workshop for Portuguese high-school
students (aged between 14 and 17) on algorithmic problem solving. The goal
was to show, through active involvement in tackling concrete problems, how
the principles and techniques developed by computing scientists can be used
to model and solve complex problems. There were 13 students enrolled in the
workshop, all above-average students with a high interest on mathematics.

The workshop provided the opportunity to assess how pre-university stu-
dents react to the calculational method and proof format. Two tools were used
to increase interactivity and to show how machines can assist in problem-solving:
Alloy Analyzer [15], to prototype models, and NetLogo [16], a multi-agent pro-
grammable modelling environment.

A summary of the plan of activities is shown in table 1. The week was divided
into three main parts, detailed in the sequel. The first two days were used to



introduce computer modelling, supported by Alloy. The two following days were
devoted to basic concepts in algorithmic problem solving: concision in naming
the elements of a problem, symmetry, calculational logic, and invariants. These
concepts were introduced using a pen-and-paper approach to reinforce the idea
that computers are not needed to explore the topics that underlie computing.
The final day was devoted to modelling complex systems in NetLogo.

Day Activities

1 Introduction to Alloy. Modelling of a simple logic problem.

2 Modelling “The chameleons of Camelot” in Alloy.

3 Importance of concision and symmetry in algorithmic problem solving. River-
crossing problems.

4 Introduction to calculational logic (through a logic puzzle). Introduction to
invariants. Definitive solution to the problem “The chameleons of Camelot”.

5 Introduction to NetLogo. Modelling of the problem “The chameleons of
Camelot” in NetLogo.

Table 1. Plan of activities (the duration of each session was 3 hours).

Modelling problems in Alloy Alloy is a formal specification language based
on relational logic (first-order logic enriched with relational product, composi-
tion, meet, converse and other relational operators). Alloy is getting increasingly
popular in the software engineering community since it embodies a lightweight
approach to formal methods: its minimalist syntax and straightforward seman-
tics (centered in the unifying concept of relation) make it particularly easy to
learn and well-suited for automatic verification. Bounded verification of Alloy
assertions can be performed by the Alloy Analyzer tool: the model is trans-
lated to propositional logic and fed to an off-the-shelf SAT solver; when found,
counter-examples are graphically displayed for better comprehension.

Alloy proved quite effective in this workshop. Set-theory is part of high-
school curriculum, and the knowledge of the students was enough to understand
the usage of relations as a specification formalism and even to develop small
models after a one morning introductory course. As an example, in day 1, the
students used Alloy to determine when they can be their own grandfathers (more
precisely, when someone is her own step-grandfather). More important than the
tackled problems, was the realisation that logic could be made “alive” with the
help of computational tools: after modelling, Alloy Analyzer was used to explore
properties of the problem in an interactive way.

Pen-and-paper approach The pen-and-paper approach was central to the
workshop dynamics. Our starting point was the following logic puzzle:

In an abridged version of Shakespeare’s Merchant of Venice, Portia had
two caskets: gold and silver. Inside one of these caskets, Portia had put



her portrait, and on each was an inscription. Portia explained to her
suitor that each inscription could be either true or false but, on the basis
of the inscriptions, he was to choose the casket containing the portrait.
If he succeeded, he could marry her.

The inscriptions were:

Silver: The portrait is not in this casket.
Gold: Exactly one of these inscriptions is true.

Which casket contained the portrait? What can we deduce about the
inscriptions?

One way of solving the problem is to introduce the variables pg for “the
portrait is in the gold casket”, ps for “the portrait is in the silver casket”, ig
for “the inscription in the gold casket is true”, and is for “the inscription in the
silver casket is true”. Then, we are given:

(ig≡(ig≡¬is)) ∧ (is≡¬ps) ∧ (pg≡¬ps) .

The calculation that determines the values of the variables is a straightfor-
ward exercise in calculational logic:

(ig ≡ (ig ≡¬is)) ∧ (is≡¬ps)∧ (pg ≡¬ps)

= { associativity }

((ig ≡ ig)≡¬is)∧ (is≡¬ps)∧ (pg ≡¬ps)

= { reflexivity and negation }

(false≡ is)∧ (is≡¬ps)∧ (pg ≡¬ps)

= { substitution of equals for equals }

(false≡ is)∧ (false≡¬ps)∧ (pg ≡¬ps)

= { negation and substitution of equals for equals }

(false≡ is)∧ (true≡ ps)∧ (pg ≡ false) .

After being introduced to the rules used in the calculation above, the students
came up with the same solution very easily.

Modelling complex systems in NetLogo The use of Netlogo allowed the in-
troduction of a few examples of how very simple models can give rise to complex
interactions. The covered examples included models for forest fires, community
segregation, and soil erosion. Following these examples, and inspecting the code,
the students could assess classical cases of complex systems and emergent be-
haviour.

In particular, the forest fire model shows how tree density plays an important
role in the percentage of forest burned by a fire event. By playing with the model,
students could perceive critical values in the density that when reached lead to a



phase transition where most of the forest is burned. The language is so accessible
that, even at first contact, some students could add to the model the influence
of wind to the fire propagation.

Unifying the three parts As we can see in table 1, the problem “The chameleons
of Camelot” was discussed in each of the three parts. In fact, the problem was
used to unify them. Using Alloy Analyzer, the students were able to find exam-
ples of arguments for which the problem can be solved. However, since Alloy
models are verified in bounded domains, a definitive answer could not be ob-
tained for all arguments, namely those for which there is no solution. We then
modelled the problem using pen and paper and we were able to get a definitive
answer. Finally, we modelled the problem in NetLogo. The graphical interface of
the tool enriched the experience and allowed the students to interact with the
problem. In the next section, we describe the problem and provide more details
about how the three different approaches complement each other.

3 An algorithmic problem: the chameleons of Camelot

One of the problems extensively used in the workshop was a generalisation of
“The chameleons of Camelot”, as stated in [14, p. 140] (a more recent and ac-
cessible reference is [17]). The problem was used to help students to recognise,
model, and solve algorithmic problems. In particular, it has a good potential
to introduce non-determinism, problem decomposition, invariants, and program
termination.

Problem statement On the island of Camelot there are three different types
of chameleons: grey chameleons, brown chameleons, and crimson chameleons.
Whenever two chameleons of different colours meet, they both change colour to
the third colour. For which number of grey, brown, and crimson chameleons is
it possible to arrange a succession of meetings that results in all the chameleons
displaying the same colour?

For example, if the number of the three different types of chameleons is 4 ,
7 , and 19 (irrespective of the colour), we can arrange a succession of meetings
that results in a monochromatic state:

(4 , 7 , 19)→(6 , 6 , 18)→(5 , 5 , 20)→· · ·→(0 , 0 , 30) .

On the other hand, if the number of chameleons is 1 , 2 , and 3 , it is impossible
to make them all display the same colour.

Modelling the problem in Alloy The first step towards the solution was to
model the problem in Alloy. After modelling the rules governing the evolution of
the chameleon colony, Alloy Analyzer was used to explore different combinations
of colours and detect which could evolve to a monochromatic state (automatically
detecting the succession of meetings leading to that state). This provided useful
insight into finding the logical invariant constraining the state, and motivated
the students for the following pen-and-paper approach.



Pen-and-paper solution Although Alloy Analyzer could be used to determine
if given colonies of chameleons could reach a monochromatic state, it could not
give a definitive answer when there was no solution. This limitation motivated a
new approach. Using g , b , and c to denote, respectively, the number of grey,
brown, and crimson chameleons, the first step was to model the algorithm that
underlies the problem and to decompose it into two simpler parts:

do g 6= b∧ g 6= c∧ b 6= c →

if 0 < g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0 < g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0 < b∧ 0 < c → g , b , c := g+2 , b−1 , c−1

fi

od

{ g = b ∨ g = c ∨ b = c } ;

Two classes of chameleons are now equally numbered. Arrange

a meeting between all the chameleons of these two classes.

{ (g = 0∧ b = 0) ∨ (g = 0∧ c = 0) ∨ (b = 0∧ c = 0) } .

The algorithm consists of a loop (enclosed between the keywords do and od)
that terminates when two classes of chameleons are equally numbered. Once we
reach such a state, the problem is easy to solve.

The loop executes while at least one of the three guards (the conditions at the
left of the arrow → ) is satisfied. If more than one guard is satisfied, the block
operator ( 2 ) ensures that only one of the three assignments is chosen non-
deterministically. The first assignment, for example, corresponds to a meeting
between a grey chameleon and a brown chameleon: provided that there are
chameleons of both these colours, the number of grey chameleons ( g ) and brown
chameleons ( b ) both decrease by 1 , whilst the number of crimson chameleons
( c ) increases by 2 .

The next step of the solution was to find an invariant of the three assignments.
Based on the postcondition of the loop, we calculated the invariant

g ∼= b (mod 3) ∨ g ∼= c (mod 3) ∨ b ∼= c (mod 3) .

This pointed to the conclusion that if the initial numbers of chameleons do not
satisfy the invariant, that is, if no two initial numbers are congruent modulo
3 , it is impossible to organise a succession of meetings that results in all the
chameleons displaying the same colour. At this point, the students understood
why Alloy Analyzer could not find any succession of meetings when two initial
numbers were not congruent modulo 3 .

Finally, we discussed how to remove the non-determinism from the algorithm
shown above so that we can guarantee termination.

The pen-and-paper approach to this problem is fully described in [9] (includ-
ing the solution, notes on how to present the problem, and exercises).



Modelling the problem in NetLogo Modelling this problem in NetLogo al-
lowed a closer simulation of how the encounters could occur in a spacial setting.
The model places the chameleon population in a virtual torus and allows them
to roam at constant speed. When a pair of chameleons reaches a given proximity
threshold they interact and possibly change colour. As the simulation proceeds,
a graph shows the population sizes for each colour along time. The interface
allows either a randomised allocation of colours to a given total population size
or an individual assignment of each initial colour population.

The experiment helped to determine how fast (when possible) one can observe
convergence to a single colour state, in this idealised movement model. It also
illustrated, empirically, that although some initial colour distributions can allow
a set of encounters that leads to single colour convergence, this is statistically
highly unlikely for all but the smallest sized populations.

4 Conclusions

At least from the point of view of the 13 students present, who were asked to fill
an anonymous assessment survey at the end, the workshop was a success. The
proposed questions sought open answers, where students could provide their
opinion not being limited to a few standard cases. Although this does not allow
for a statistical treatment of the results, it provides us with a more personal
feedback and interesting insights about the outcome of the workshop.

Most students wrote that their expectations were exceeded. Some remarked
the workshop has further stimulated their interest in mathematics, while other
stated to have learned something about how software is developed and the ac-
tivity of the professionals working in this field. Asked whether anything in that
activity came as a surprise, most of them pointed out that the connection be-
tween programming computers and solving logical problems was by and large
unexpected. They were also surprised by the accessible and interesting contents,
while highlighting the overall quality of the sessions. All the students considered
the pace of this workshop appropriate, although some recognised that it was
faster than in high-school.

They were expecting to have more contact with programming languages and
computers, but in the end, they seem to have understood that clear and struc-
tured reasoning is the key to solve problems and write good software, and that
computers can be useless if the programs they put in motion are not carefully
designed. They also remarked they have enjoyed approaching general problems
and understood the role of abstraction and genericity in programming.

Certainly, no general conclusions can be extracted from a limited and single
experiment. In general, however, the challenge placed to students was surpris-
ingly well received and the feedback was quite positive. For example, the students
calculated the solution of a logic puzzle very easily, which suggests that calcu-
lational logic can indeed be introduced at high-school level. Furthermore, most
of them enjoyed the recreational flavour of the problems, and, at the end of the
week, they were able to apply techniques like invariants by themselves. They



also liked the interactivity provided by the software tools that we have used,
and, most important, they enjoyed being challenged.
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