
Under consideration for publication in Formal Aspects of Computing

Towards a Linear Algebra of
Programming
José N. Oliveira1

1 High Assurance Software Lab / INESC TEC & Univ. Minho, Portugal

Abstract. The Algebra of Programming (AoP) is a discipline for programming from specifications using
relation algebra. Specification vagueness and nondeterminism are captured by relations. (Final) implemen-
tations are functions.

Probabilistic functions are half way between relations and functions: they express the propensity, or like-
lihood of ambiguous, multiple outputs. This paper puts forward a basis for a Linear Algebra of Programming
(LAoP) extending standard AoP towards probabilistic functions. Because of the quantitative essence of these
functions, the allegory of binary relations which supports the AoP has to be extended. We show that, if one
restricts to discrete probability spaces, categories of matrices provide adequate support for the extension,
while preserving the pointfree reasoning style typical of the AoP.

Keywords: Algebra of programming, quantitative formal methods, probabilistic reasoning

1. Introduction

The Algebra of Programming (AoP) [BdM97] is a discipline for programming from specifications [Mor90] in
a pointfree, calculational manner. (Final) implementations are regarded as functions and specifications are
regarded as relations. The calculus is typed relation algebra [FS90].

Functions are special cases of relations — the deterministic, totally defined ones. But relations, too, can
be regarded as special cases of functions — the set-valued ones, as captured by universal property:

f = ΛR ≡ 〈∀ b, a :: bRa ≡ b ∈ f a〉 (1)

This tells that a binary relation R can be uniquely represented by a function ΛR which yields, for a given
input a, the (possibly empty) set of all b which R relates to a. Conversely, any set-valued function f “is” a
relation — precisely the one (R = ∈ · f , where · denotes composition) which relates every input a of f to
every possible outcome in set f a.

Note the word “possible” in the previous paragraph: it means that any such outcome may be output but

Correspondence and offprint requests to: José N. Oliveira, High Assurance Software Lab / INESC TEC & Univ. Minho, Gualtar
Campus, 4710-057 Braga, Portugal. E-mail: jno@di.uminho.pt

2 J.N. Oliveira

nothing is said about which outputs are more likely than others. Even if one could predict such a likelihood,
or propensity, how would it be expressed?

Written in terms of types, (1) is the isomorphism

A→ PB

(∈·)
**

∼= A→ B

Λ

jj (2)

whose left hand side A → PB is the functional type which can also be written (PB)
A

, where PB denotes
the powerset of B (set of all its subsets) and right hand side is the relational type A → B of all relations
R ⊆ B×A. The isomorphism is established, from right to left, by the operator Λ known as power transpose 1.
Since PB is in turn isomorphic to 2B , the set of all predicates on B, one might write A→ 2B for the type of
f in (1), where 2 = {0, 1} is the set of truth values, 0 meaning false and 1 meaning true. So, for every input
a ∈ A, f a is the predicate which tells which b ∈ B are likely as outputs.

Ranking output likelihood can be achieved by extending such predicates on B to distributions in [0, 1]B ,
where [0, 1] denotes the interval of real numbers between 0 and 1, which extends {0, 1} to the reals. Not
every function µ ∈ [0, 1]B qualifies: only those such that

∑
b∈B µ b = 1 holds. By defining [Sok05]

DB = {µ ∈ [0, 1]B |
∑
b∈B

µ b = 1} (3)

we will regard A → DB as the type of all probabilistic functions from A to B. Writing b =p f a as
alternative to (f a)b = p , both meaning that f outputs b for input a with probability p, one might regard
the following probabilistic factorial function

fac 0 =.95 1

fac 0 =.05 2

fac(n+ 1) =1 (n+ 1)× fac n

as a model of a faulty factorial function which, with low probability (5%), can wrongly double the factorial
of a number. Subscript 1 in the inductive case (100% probability) can be taken as default and omitted.

Probabilistic functions have been around in various guises. For B = A they can be regarded as Markov
chains [KS76] or as (elementary) probabilistic coalgebras [Sok05]. The latter reference deals with a hierarchy of
probabilistic coalgebras built upon the distribution functor D which, on a different register, is implemented
in [EK06] as a monad which supports the Haskell library PFP (Probabilistic Functional Programming). They
illustrate the use of basic library functions with examples which demonstrate the high-level declarative style
of probabilistic functional programming.

On a different front, functions such as the adulterated factorial above can be regarded as an instance
of software fault injection [VM97], a more and more widespread technique for quality software assurance
by measuring the propagation of a fault through paths that might otherwise rarely be followed in testing.
The prospect of predicting the behaviour of such adulterated code rather than testing (running) it calls for
an algebra of probabilistic functions similar to that developed by for “normal” functions and relations in
[BdM97]. (Note that normal, “sharp” functions of type A → B are special cases of probabilistic functions
— those such that every output distribution is 1 on a single b ∈ B and 0 everywhere else — the Dirac δ
function.)

The question arises: how much of the Algebra of Programming [BdM97] extends to probabilistic functions?
This question may be addressed in several ways. One is to regard probabilistic functions just as normal, D-
resultic functions and stay within functions. But staying with functions is not the lesson learnt from the
AoP, where functions are most of the time handled as relations, making rich operators such as converse and
division universally applicable.

In the same vein, one should search for an isomorphism similar to (1), this time with DB instead of PB.

This is not hard to achieve: just write (DB)
A

instead of A→ DB and expand DB into [0, 1]B , temporarily

leaving aside the requirement captured by the summation in (3): by uncurrying, ([0, 1]B)
A

is isomorphic

1 See [FS90, BdM97].

Towards a Linear Algebra of Programming 3

to [0, 1]B×A which can be regarded as the mathematical space of all [0, 1]-valued matrices with as many

columns as elements in A and rows as elements in B. So, given probabilistic function A
f // DB , its

matrix transform [[f]] is the unique matrix M such that

M = [[f]] ≡ 〈∀ b, a :: M(b, a) = (f a)b〉 (4)

holds. Recalling (3), every such matrix will be such that all its columns sum up to 1 — a left-stochastic (LS)
matrix 2.

How useful is such a matrix transpose? The main aim of this paper is to show that it is as productive
with respect to probabilistic functions as relations are concerning standard, sharp functions. But, for this to
happen, such matrices should be regarded not as mere rectangles with numbers (data structures) but rather
as typed mathematical objects describing computations.

Under the slogan “matrices as arrows”, the authors of [MO10] have campaigned in this direction, putting
matrices side by side with relations in the style of Schmidt’s relational mathematics 3. In the same vein, the
current paper will show how typed, index-free reasoning helps in keeping probability (convoluted) notation
under control. For instance, we will show that expression

! · [[f]] = ! (5)

will be enough to capture the fact that the columns of [[f]] are distributions as in (3), putting summations
off the way, where M ·N denotes matrix-matrix multiplication and ! is a special vector wholly filled with 1s.
(Details later on.)

Structure of the paper. We start by reviewing the essentials of “matrices as arrows” [MO10] in section
2. Section 3 shows how to encode elementary probability theory in such a typed linear algebra. Section 4
expresses a number of probabilistic extensions to standard AoP combinators using the matrix transform.
Section 5 illustrates the emerging linear algebra of programming with the calculation of a result concerning
probabilistic folds. Section 6 reviews related work. Finally, section 7 concludes and points directions for
future work.

2. Typed linear algebra

Matrices as arrows. A matrix M with n rows and m columns is a function M(r, c) which tells the value
occupying each cell (r, c), for 1 ≤ r ≤ n, 1 ≤ c ≤ m. In this paper we will follow the arrow notation of

[MO10] and write n m
Moo to denote that matrix M is of type n moo (m columns, n rows). Thus

matrix-matrix multiplication can be expressed by arrow composition:

n m
Moo k

Noo

P=M ·N

ff (6)

For every n there is a matrix of type n noo which is the unit of composition. This is nothing but the

identity matrix of size n, indistinguishably denoted by n n
idnoo or n n

1oo , which is the diagonal of
size n, that is, id(r, c) 4 r = c (x 4 y means x = y by definition) under the {0, 1} encoding of the Booleans:

idn =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 n n
idnoo

2 Recall that a left (resp. right) stochastic matrix is a matrix of nonnegative reals each of whose columns (resp. row) sums up
to 1 [LR99].
3 See [Sch10] and references thereof to the pioneering works in the field by de Morgan, Schröder, Tarski, Maddux and others. An
account of the origins of relation algebra can also be found in [Mad91] and [Pra92]. A categorial (typed) approach to relations
(generally, to matrices over locales) can be found in [FS90].

4 J.N. Oliveira

Therefore:

idn ·M = M = M · idm m

M

��

m
idmoo

M

��M}}
n n

idn

oo

(7)

Subscripts m and n can be omitted wherever the underlying diagrams are assumed.
Under composition M ·N (6) matrices form a category whose objects are matrix dimensions and whose

morphisms m n
Moo , n k

Noo etc are the matrices themselves [Mac98, MB99]. Strictly speaking, there
is one such category per matrix cell value algebra, which is usually a field but can also be a semiring, a
Kleene algebra, etc. In this paper we stick to MatR, the category of matrices over the field R of the real
numbers. The interval [0, 1] will be particularly at target in handling probabilistic functions. The particular
class of Boolean matrices, ie. R-valued matrices only holding the extreme points of such an interval will be
handled using operations on R, eg. +, ×, etc and not disjunction, conjunction etc.

Vectors as arrows. Vectors are special cases of matrices in which one of the dimensions is 1, for instance

v =

 v1

...
vm

 and w = (w1 . . . wn)

Column vector v is of type m 1oo (m rows, one column) and row vector w is of type 1 noo (one
row, n columns). Our convention is that lowercase letters (eg. v, w) denote vectors and uppercase letters (eg.
M , M) denote arbitrary matrices.

Converse of a matrix. One of the kernel operations of linear algebra (LA) is transposition, whereby a

given matrix changes shape by turning its rows into columns and vice-versa. Given matrix n m
Moo ,

notation m n
M◦oo denotes its transpose, or converse. The following idempotence and contravariance laws

hold:

(M◦)◦ = M (8)

(M ·N)◦ = N◦ ·M◦ (9)

Bilinearity. Given two matrices of the same type m n
M,Noo it makes sense to add them up index-wise,

leading to matrix M + N where symbol + promotes the underlying cell-level additive operator to matrix-
level. Likewise, additive unit cell value 0 is promoted to matrix 0 wholly filled with 0s, the unit of matrix
addition and zero of matrix composition:

M + 0 = M = 0 +M (10)

M · 0 = 0 = 0 ·M (11)

Composition is bilinear relative to +:

M · (N + P) = M ·N +M · C (12)

(N + P) ·M = N ·M + P ·M (13)

In the same way M +N denotes the promotion of addition of matrix cells to matrix addition, the same
promotion can take place with respect to the whole cell-level algebra. For instance, cell value multiplication
leads to matrix multiplication, denoted M ×N or simply MN (for M and N of the same type), also known
as the Hadamard product, which is commutative, associative and distributive over addition (ie. bilinear).
Clearly,

M ×> = >×M = M (14)

where matrix > is of the same type as M and is wholly filled with 1s — a Boolean matrix.

Towards a Linear Algebra of Programming 5

Boolean matrices. A matrix M is Boolean iff

M ×M = M (15)

that is, its entries are either 0 or 1 4. One such matrix is the identity (7). The following symbols will denote
other Boolean matrices which will play a role in the sequel:

• The top matrix n m
>oo wholly filled with 1s and already seen above — the largest Boolean matrix

of its type.

• The bottom matrix n m
⊥oo , wholly filled with 0s — the smallest Boolean matrix of its type, also

denoted by 0, recall (10,11).

• The bang (row) vector 1 m
!oo , wholly filled with 1s.

Thus, bang vectors are special (typewise) cases of top matrices:

1 m
!oo = 1 m

>oo (16)

Also note that, on type 1 1oo :

> = ! = id (17)

Boolean matrices allow for the encoding of binary relations as matrices. Relation intersection corresponds
to the matrix (Hadamard) product, M ∩N = M×N for Boolean matrices M,N of the same type. We define
their union as follows:

M ∪N = M +N −M ×N (18)

Note the need to subtract the entries which are both in M and in N to stay within Boolean matrices 5.
Boolean matrices at most the identity (M ≤ id) will be referred to as partial identities or coreflexive ma-

trices. We will tend to denote coreflexive matrices using capital Greek letters. Any coreflexive Φ is symmetric,
that is, Φ◦ = Φ. Two coreflexives Φ and Ψ are said to be complementary iff Φ + Ψ = id.

The affinity between relations and matrices extends from Boolean matrices to arbitrary matrices. To see
this we need to introduce the combinators which underlie matrix blocked notation.

Block notation. Two basic binary combinators are available for building matrices out of other matrices,
say M and N :

• [M |N] — M and N side by side (read [M |N] as “M juncN”)

•
[
M
N

]
— M on top of N (read

[
M
N

]
as “M splitN”).

That is, matrices are stacked either vertically (
[
M
N

]
) or horizontally ([M |N]). Dimensions should agree, as

shown in the diagram below, taken from [MO10], where m, n, p and t are types:

m

n

M

>>

i1
// n+ p

[M |N]

OO

π1oo π2 //
p

i2
oo

N

``

t

P

``
[
P
Q

]
OO

Q

>>

[M |N] = M · π1 +N · π2 (19)[
P

Q

]
= i1 · P + i2 ·Q (20)

4 Since x = 0, 1 are the two only solutions of equation x2 = x in R.
5 Checking that M ∪N (18) satisfies (15) in MatR is routine work once M and N are assumed to do so.

6 J.N. Oliveira

The special Boolean matrices i1, i2, π1 and π2 are fragments of the identity matrix as given by the so-called
reflexion laws 6:

[i1 |i2] = id (21)[
π1

π2

]
= id (22)

They play an important role in explaining the semantics of the two combinators. In brief, junc (19) and
split (20) form a so-called biproduct. The details of this, however, can be skipped for the purposes of the
current paper 7, sufficing to know the rich algebra of such combinators of which the most useful laws follow,
where capital letters M , N , etc. denote suitably typed matrices (the types, i.e. dimensions, involved in each
equality can be inferred by drawing the corresponding diagram):

• “Fusion”-laws:

P · [M |N] = [P ·M |P ·N] (23)[
M

N

]
· P =

[
M · P
N · P

]
(24)

• Divide-and-conquer:

[M |N] ·
[
P

Q

]
= M · P +N ·Q (25)

• Converse duality:

[R |S]
◦

=

[
R◦

S◦

]
(26)

Putting (26) and (25) together:

[M |N] · [P |Q]
◦

= M · P ◦ +N ·Q◦ (27)

• The exchange law :[
[M |N]
[P |Q]

]
=

[[
M
P

]
|
[
N
Q

]]
=

[
M N
P Q

]
(28)

The last property tells the equivalence between row-major and column-major construction of matrices by
blocks — thus the four-block notation on the right.

Remarks concerning notation. Outfix notation such as that used in splits and juncs provides for un-
ambiguous parsing of matrix algebra expressions. Concerning infix operators (such as eg. composition, +)
and unary ones (eg. converse, and others to appear) the following conventions will be adopted for saving
parentheses: (a) unary and prefix operators bind tighter than binary; (b) multiplicative binary operators
bind tighter than additive ones; (c) matrix multiplication (composition) binds tighter than any other multi-
plicative operator (eg. Kronecker product, to appear later).

Type generalization. Matrix types (the end points of arrows) can be generalized to arbitrary, denumerable
sets thanks to addition and multiplication being commutative and associative. This ensures unambiguous
definition of matrix composition because the summation inside the inner product of any row/column vector
pair can be calculated in any order.

In fact, and as is standard in relational mathematics [Sch10], objects in categories of matrices can be
generalized from numeric dimensions (n, m ∈ N0) to arbitrary denumerable types (A, B), taking disjoint
union A + B for m + n, Cartesian product A × B for mn, unit type 1 for number 1, the empty set ∅ for
0, etc. Conversely, dimension n corresponds to the type made of the initial segment of the natural numbers

6 Note however that neither of these matrices is a coreflexive, for both i1 + i2 and π1 + π2 are ill-typed.
7 The interested reader is referred to [MO10] for the details omitted.

Towards a Linear Algebra of Programming 7

up to n. Our convention is that lowercase letters (eg. n, m) denote the traditional dimension types (natural
numbers), letting uppercase letters denote arbitrary other types.

In this paper we will focus on matrices taking elements from R+
0 , the non-negative reals. The interval

[0, 1] will be particularly at target in the case of probabilistic functions.
Type generalization enables us to establish the embedding of the allegory of binary relations [FS90] into

categories of matrices in a more precise way: every relation A
R // B has a matrix transform [[R]] which

is the unique (Boolean) matrix M of type A // B such that:

M = [[R]] ≡ 〈∀ y, x :: M(y, x) = (y R x)〉 (29)

under the aforementioned {0, 1} encoding of the Booleans. Relation inclusion corresponds to matrix less-
or-equal, [[R ⊆ S]] = [[R]] ≤ [[S]]. Intersection is the Hadamard product, [[R ∩ S]] = [[R]] × [[S]] and union is
[[R ∪ S]] = [[R]] + [[S]]− [[R]]× [[S]], recall (18).

As functions are special cases of relations, transform (29) also applies to them. This explains why we use

notation ! to denote any row vector of 1s: it is the transform of the homonym function 1 A
!oo which,

in the category of sets, is the unique morphism which maps any type A to the singleton type 1, a terminal
object in the category [BdM97].

Handling relations and functions as matrices enables a nice mix of qualitative and quantitative analysis,
as the following way to classify Boolean matrices according to the terminology of [FS90, BdM97] shows: a
Boolean matrix M is said to be

• simple — iff ! ·M ≤ !

• injective — iff M◦ is simple, that is, M · !◦ ≤ !◦

• entire — iff ! ·M ≥ !

• surjective — iff M◦ is entire, that is, M · !◦ ≥ !◦.

This is so because the sum of all entries of column vector m 1
voo is given by

1 m
!oo 1

voo

!·v

ff

and therefore, ! ·M yields the row vector which contains the sums of all columns of M . Since f being a
function is being both simple and entire, one has that

! · [[f]] = ! (30)

always holds for functions — the matrix transpose of fact ! · f = !, the free theorem of polymorphic function

!. It turns out that (30) extends to any probabilistic function A
f // DB , as already anticipated in (5).

But there is a difference: [[f]] is not Boolean in the case of f probabilistic.
The interplay between matrices and relations enables a concise way to express statistical operations. For

instance, the normalization of column vector A 1
voo > ⊥ into a distribution µ is a vector of the same

type as v,

µ =
v

> · v
where > is of type A Aoo and M

N denotes pointwise division on the same type.

Likewise, any matrix B A
Moo > ⊥ filled with natural numbers counting experiments can be normal-

ized into a function f of the same type such that f(a) is the corresponding probabilistic (mass) function on
B:

[[f]] =
M

> ·M

That any probabilistic function is already normalized, that is, [[f]]
>·[[f]] = [[f]] is easy to show: > = !◦ · ! and

therefore >· [[f]] = >, thanks to (30); then [[f]]
> = [[f]] since M

> = M , for any M . To complete this illustration,

8 J.N. Oliveira

suppose that B B
≥oo is a total ordering on B. Then Q = ≥ · [[f]] is a matrix which gives, for each input

a ∈ A, the (discrete) cumulative mass function associated to (discrete) distribution f(a). Note the nice mix
among matrices and relations such as ≥,>, used in matrix expressions as the Boolean matrices “they are”.

3. Doing elementary probability theory with linear algebra

Clearly, any Boolean vector of type 1 A
!oo (16) represents a subset of A, corresponding to the right-

condition encoding of subsets in relation algebra [Hoo97]. Let us use [[X]] to denote such a vectorial rep-
resentation of a given X ⊆ A. Clearly, [[∅]] = ⊥ and [[A]] = !. This representation 8 makes set-theoretical
definitions and reasoning surprisingly simple in many situations.

Take for instance the statement that {X,Y } form a partition of A: X ∪ Y = A and X ∩ Y = ∅. In the
vectorial encoding above, writing

[[X]] + [[Y]] = ! (31)

(which could also be written [[X]] + [[Y]] = >, recall (16)), is enough.
LA based set-theory reasoning is nicely calculational, as the following evidence that X and Y are neces-

sarily disjoint shows, where [[X]] and [[Y]] are unambiguously abbreviated to X and Y , respectively, to spruce
up the formulæ. The fact that the Hadamard product on Boolean matrices models intersection should be
recalled:

X + Y = !

=⇒ { Leibniz }

X × (X + Y) = X × !

≡ { Hadamard: linearity, X ×X = X ∩X = X and unit ! }

X +X × Y = X

≡ { subtract X from both sides of the equation }

X × Y = X −X
≡ { cancellation of inverses }

X × Y = ⊥
≡ { X × Y = X ∩ Y as Hadamard on Boolean matrices is intersection }

X and Y are disjoint

Basic probability theory may also be handled in the same way. Let, for instance, S be some sample space

[MM05] and function S
µ // [0, 1] be a discrete probability distribution over the sample space, giving for

each event X ⊆ S the probability of its occurrence. As we have already seen, function µ can be encoded as a

column vector of type 1
[[µ]] // S such that ! · [[µ]] = !. In the same vectorial notation, the probability P (X)

of event X ⊆ S under µ will be given by 9

P (X) = 1 S
[[X]]oo 1

[[µ]]oo

[[X]]·[[µ]]

jj
(32)

A random variable S
v // T on probability space (S, µ) induces a new probability distribution on T by

8 Which extends from vectors to other Boolean matrices encoding subsets of Cartesian products.
9 This corresponds to function (??) :: Event a -> Dist a -> Probability in the PFP library [EK06]. Note how the encoding
of distributions as column vectors and sets as row vectors save us from the need to adopt Dirac’s “bra-ket” notation, P (X) =
〈[[X]]|[[µ]]〉, required in case both [[X]] and [[µ]] were row vectors.

Towards a Linear Algebra of Programming 9

composition,

µ′ = [[v]] · [[µ]] (33)

generating a new probability space (T, µ′). That µ′ is indeed a distribution can be easily calculated:

! · [[µ′]]

= { (33) }

! · ([[v]] · [[µ]])

= { v is a function (30) }

! · [[µ]]

= { µ is a distribution }

!

In the same setting, the independence of two events A,B ⊆ S in probability space (S, µ),

A indep. B ≡ P (A ∩B) = P (A)P (B)

takes the form of a distributive property:

A indep. B ≡ ([[A]]× [[B]]) · [[µ]] = [[A]] · [[µ]]× [[B]] · [[µ]] (34)

Likewise, the addition law of probability

P (A ∪B) = P (A) + P (B)− P (A ∩B)

comes out as an easy-to-check consequence of matrix union (18) and linearity (13). The calculation of the
law of total probability

P (A) = P (A ∩B1) + P (A ∩B2)

for {B1, B2} a partition (31) of the sample space S, is another school exercise in LA (again sprucing up the
layout by unambiguously dropping parentheses [[]]):

P (A ∩B1) + P (A ∩B2)

= { (32) twice }

(A×B1) · µ+ (A×B2) · µ

= { composition and Hadamard product are bilinear }

(A× (B1 +B2)) · µ

= { partition B1, B2 (31) }

(A× !) · µ

= { ! = > is the unit of Hadamard ×; definition (32) }

P (A)

Finally, conditional probability is defined as expected,

P (A|B) =
([[A]]× [[B]]) · [[µ]]

[[B]] · [[µ]]

whereby Bayes theorem is obtained by simple multiplicative inverse cancellation:

P (B|A) = P (A|B)
P (B)

P (A)

10 J.N. Oliveira

4. Probabilistic functions in the pointfree style

As we have seen, the matrix transform of a probabilistic function A
f // DB is a left stochastic (LS)

matrix of type A // B taking values in the interval [0, 1]. Isomorphism (4) unambiguously maps any
such function f to its LS-matrix transpose [[f]] and vice versa. However, handling f directly as a function
(in the category of sets) or its transform [[f]] in the category of LS-matrices makes a lot of difference, since
f is monadic on its output [EK06], leading to unnecessarily complex reasoning.

That LS-matrices form a (sub)category of matrices is easy to show: the identity matrix id is LS-stochastic
and the composition of two LS-matrices S,R is an LS-matrix:

! · (S ·R)

= { composition is associative }

(! · S) ·R

= { (5) twice, as S and R are assumed LS }

!

We also observe that the LS-matrix (sub)category has coproducts, cf.

! · [R |S]

= { fusion (23) }

[! ·R | ! · S]

= { R and S are assumed probabilistic }

[! | !]

= { ! is unique, so [! | !] = ! }

!

LS-matrices offer support for pointfree reasoning about probabilistic functions much in the same way
relations do for standard functions in the AoP, leading to what one may term a linear algebra of programming
(LAoP). Let us see examples of how this works.

On probabilistic function application. As warming up exercise, let us see how to handle binary (n-ary
in general) probabilistic function application, f(a, b), in the LS-setting. We consider the unary case first,

f(a) denoting the application of an arbitrary function A
f // B to some point a ∈ A. Note that the same

can be written by composing f · a, where A 1
aoo is a point in the categorial sense [LS97]:

B A
foo 1

aoo

Let us see what happens if we interpret the same diagram in the category of LS-matrices: f becomes
probabilistic and, as LS-vectors are distributions, a becomes the “Dirac distribution” of point a 10. So, in
general, what makes sense is to apply probabilistic functions to distributions, writing [[f]] · [[µ]] for what
might be written, in monad-speak, [[µ >>= f]] in sets. One may even define probabilistic function (Kleisli)
composition simply as

[[f • g]] = [[f]] · [[g]] (35)

since the [[]] transpose is an isomorphism (4).
In order to save notation and add to readability, we will henceforth omit the [[]] parentheses wherever

the formulæ and diagrams we write are unambiguously interpreted in the LS-matrix category. That is to say,

10 That is, return a in the D monad [EK06].

Towards a Linear Algebra of Programming 11

writing A
f // B will mean the LS-matrix which represents probabilistic function A

f // DB . (Recall

that the Boolean matrices which represent standard functions are LS.) Thus drawing B A
foo 1

µoo
will mean [[f]] · [[µ]].

Example: Monty-Hall. We provide a very simple illustration of matrix-transposed probabilistic functional
application by taking the well-known Monty-Hall probabilistic puzzle as example. For an account of this
brain teaser and the controversy it caused see eg. [Ros09]. For its mathematical treatment, references [MM05,
EK06, Heh11, GH11] are recommended. The problem has been handled in a myriad of ways, ours following
those which explore the puzzle symmetry: the contestant having just chosen one of the three doors and the
host opened another one, the former has 1

3 probability of having won the game, since there are three doors.
The question is: is it worthwhile keeping the choice or betting on the one door left?

[[µ]] =

1

W

L

 1
3

2
3


The starting state is a column vector of type {W,L} 1

µoo , where W (resp.

L) stands for win (resp. lose) — the distribution shown on the right where, in the
style of [Sch10], labels are added to enhance type perception. Keeping the bet means
opting for the identity function on states (nothing changes); by contrast, changing
bet means changing state according to the function

swap W = L

swap L = W

since if a closed door is the winning one the other is the losing one.

[[swap]] =

W L
W

L

(
0 1

1 0

)The matrix transpose of this function is the matrix on the right, the
“twisted identity” of its type. The change of state is captured by the ap-
plication [[swap]] · [[µ]] and the probability of winning after such a change of
state is obtained by the first projection (P (W) = π1 = (1 0)):

π1 · [[swap]] · [[µ]] =
2

3
>

1

3
= π1 · id · [[µ]]

So, swapping is worthwhile.

Probabilistic binary function application. What is the probabilistic extension of a binary function f?
In the AoP, writing f(a, b) is the same as writing f · (a, b), itself the same as writing f · (a M b), where M
denotes the pairing operator

(f M g)a = (f a, g a)

Can we write, as extension of f · (aM b) in the LS-matrix category, “f · (µM µ′)” for two input distributions
µ and µ′? It turns out the the answer is affirmative, provided M is interpreted as the Khatri-Rao matrix

product [RR98]. In general, given matrices n m
Aoo and p m

Boo , the Khatri-Rao product of A and

B, denoted n× p m
AMBoo is a column-wise Kronecker product. At this point we should recall that the

Kronecker product is a bifunctor in a category of matrices, cf. diagram

n

A

��

m

B

��

n×m

A⊗B
��

k j k × j

whose fusion laws

[A |B]⊗ C = [A⊗ C |B ⊗ C] (36)[
A

B

]
⊗ C =

[
A⊗ C
B ⊗ C

]
(37)

12 J.N. Oliveira

capture its meaning block-wise. The Khatri-Rao product coincides with Kronecker for column vectors u and
v,

u M v = u⊗ v (38)

and expands column-wise as shown by the exchange law

[A1 |A2] M [B1 |B2] = [A1 MB1 |A2 MB2] (39)

where Ai, Bi are suitably typed matrices. Other properties of this product are bilinearity

A M (B + C) = (A MB) + (A M C) (40)

(B + C) MA = (B MA) + (C MA) (41)

and unit:

! MA = A = A M ! (42)

Since distributions are LS-vectors, one has µMµ′ = µ⊗µ′ (38). But, is µ⊗µ′ a distribution? We calculate:

! · (µ M µ′) = !

≡ { Khatri-Rao of vectors = Kronecker (38) }

! · (µ⊗ µ′) = !

≡ { !⊗ ! = ! }

(!⊗ !) · (µ⊗ µ′) = !

≡ { Kronecker functor }

(! · µ)⊗ (! · µ′) = !

≡ { µ and µ′ are distributions }

!⊗ ! = !

≡ { !⊗ ! = ! again }

! = !

In summary, the pairing of two distributions is a distribution and the action of pairing two inputs a and
b into (a, b) sent as input to a binary function in general corresponds, in the probabilistic setting, to having
two input distributions and pairing them (using M) before applying the binary probabilistic function. In
symbols and full detail:

[[(µ, µ′)>>= f]] = [[f]] · ([[µ]] M [[µ′]])

where the pairing of distribution functions µ, µ′ is the function obtained by “‘zipping” the two functions
with multiplication, cf. the prod operator in [EK06] 11. Let us see a very simple example.

Example: probability of the sum. We want to illustrate the probabilistic extension of adding two num-
bers n+m, using the following toy example:

One spins two fair roulette wheels with 3 sectors labelled 1,2 and 3 and wants to know the probability of the sum of their
outcome being a given number (between 1 and 6).

Each roulette being fair means that sectors 1, 2 or 3 have equal probability, that is, each wheel is cap-

tured by distribution µ such that 1 3
µ◦oo =

(
1
3

1
3

1
3

)
. Pairing two such roulettes yields distribution

3× 3 1
dMdoo which is a 9-cell column vector wholly filled with 1

9 . The sum function (restricted to inputs

11 This is written µ× µ′ in [Sok05].

Towards a Linear Algebra of Programming 13

at most 3) is LS-matrix

sum =


0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1


or, rendering types more explicit,

sum = (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0 0 0

4 0 0 1 0 1 0 1 0 0

5 0 0 0 0 0 1 0 1 0

6 0 0 0 0 0 0 0 0 1

Then, composition

6 3× 3
sumoo 1

dMdoo =


0

1/9

2/9

1/3

2/9

1/9


yields the distribution of the sum of the two roulette outcomes (1 impossible, 4 more likely than any other,
3 and 5 equally likely, etc).

Choice. In their programming language pGCL, McIver and Morgan [MM05] introduce notation

prog p⊕ prog′

as a form of probabilistic choice between two branches of a program, the left hand side one being chosen
with probability p and the other side with probability 1 − p. In our setting, this corresponds to the static
choice between two probabilistic functions f and g of the same type defined by

[[f p� g]] = p⊗ [[f]] + (1− p)⊗ [[g]] (43)

(we prefer notation p� to p⊕ in order not to collide with the matrix-sum operator usually denoted by ⊕,

see below) where ⊗ is the Kronecker product and p and 1− p are scalars of type 1 1oo . That f p� g is
probabilistic is easy to check:

! · [[f p� g]]

= { definition (43) ; bilinearity ; parentheses [[]] assumed }

! · (p⊗ f) + ! · ((1− p)⊗ g)

= { p is a scalar }

p⊗ (! · f) + (1− p)⊗ (! · g)

= { f and g are probabilistic }

p⊗ ! + (1− p)⊗ !

= { bilinearity }

(p+ 1− p)⊗ !

14 J.N. Oliveira

= { cancellation }

!

As an example of choice, consider the Monty-Hall contestant who will choose to swap door with probability

90%. The overall outcome of her/his decision will be captured by choice swap 0.9� id =

(
0.1 0.9
0.9 0.1

)
.

Choice has a number of properties which are easy to derive from (43) by linear algebra, for instance:

f p� f = f (44)

f 0� g = g (45)

f 1� g = f (46)

f p� g = g 1−p� f (47)

f p� (g q� h) = (f p� g) q� (f p� h) (48)

(Property (44) will help in checking (48) by starting to expand the leftmost f into f q�f .) The two fusion-laws
of choice

(f p� g) • h = (f • h) p� (g • h) (49)

h • (f p� g) = (h • f) p� (h • g) (50)

emerge from bilinearity (12,13) and take a bit longer. We prove (49), the proof of (50) being similar:

[[(f p� g) • h]]

= { (35) }

[[f p� g]] · [[h]]

= { (43) ; temporarily removing the parentheses }

((p⊗ f) + ((1− p)⊗ g)) · h

= { bilinearity }

(p⊗ f) · h+ ((1− p)⊗ g) · h

= { 1 1
idoo = 1 (a scalar) and 1⊗M = M }

(p⊗ f) · (id⊗ h) + ((1− p)⊗ g) · (id⊗ h)

= { Kronecker product is a functor (51) }

(p⊗ (f · h)) + ((1− p)⊗ (g · h))

= { (43) and (35) }

[[(f • h) p� (g • h)]]

Mind the functorial property of the Kronecker product referred to above:

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D) (51)

Choice also distributes over junc,

[f, g] p� [h, k] = [f p� h, g p� k] (52)

for f (resp. g) and h (resp. k) of the same type, where [,] denotes the junction of two functions in the
standard way [BdM97]. This combinator translates to the matrix-junc combinator which puts matrices side

Towards a Linear Algebra of Programming 15

by side 12:

[[[f, g]]] = [[[f]] | [[g]]] (53)

Concerning (52), we reason:

[[[f, g] p� [h, k]]]

= { (43) }

p⊗ [[[f, g]]] + (1− p)⊗ [[[h, k]]]

= { (53) twice ; p and 1− p are scalars }

[p⊗ [[f]] |p⊗ [[g]]] + [(1− p)⊗ [[h]] |(1− p)⊗ [[k]]]

= { f (resp. g) and h (resp. k) are of the same type }

[p⊗ [[f]] + (1− p)⊗ [[h]] |p⊗ [[g]] + (1− p)⊗ [[k]]]

= { (43) twice }

[[[f p� h]] | [[g p� k]]]

= { (53) }

[[[f p� h, g p� k]]]

Sums of probabilistic functions. In linear algebra, the junc/split combinators give rise to a (bi)functor
known as sum,

M ⊕N = [i1 ·M |i2 ·N] =

[
M · π1

N · π2

]
=

[
M 0
0 N

]
(54)

which has type:

A

M

��

B

N

��

A+B

M⊕N
��

C D C +D

Direct sum is a standard linear algebra operator enjoying many useful properties. The following equation,
termed the absorption law,

[M |N] · (P ⊕Q) = [M · P |N ·Q] (55)

specifies how block operator [|] absorbs direct sum ⊕, for suitably typed matrices M , N , P , Q. Mind also
property:

(M +N)⊕ (P +Q) = (M ⊕ P) + (N ⊕Q) (56)

As it is easy to show that matrix [[f]] ⊕ [[g]] is LS for f and g probabilistic, it makes sense to invent
the combinator f ⊕ g 13 such that [[f ⊕ g]] = [[f]] ⊕ [[g]]. One of the useful properties of such a combinator
establishes distribution over choice on both sides. We prove this for the right hand side,

h⊕ (f p� g) = (h⊕ f) p� (h⊕ g) (57)

12 This equality arises from the universality of coproducts in the two categories, sets and matrices.
13 Note the innocent overloading. Coproduct notation f+g cannot be used, since the target type of this is a sum of distributions
while that of f ⊕ g is a distribution of sums.

16 J.N. Oliveira

the other proof being similar:

[[h⊕ (f p� g)]]

= { definition of f ⊕ g ; (44) }

[[h p� h]]⊕ [[f p� g]]

= { (43) twice }

(p⊗ h+ (1− p)⊗ h)⊕ (p⊗ f + (1− p)⊗ g)

= { (56) }

(p⊗ h⊕ p⊗ f) + ((1− p)⊗ h⊕ (1− p)⊗ g)

= { p and 1− p are scalars }

p⊗ (h⊕ f) + (1− p)⊗ (h⊕ g)

= { (43) }

[[(h⊕ f) p� (h⊕ g)]]

Probabilistic McCarthy conditional. As an extension of static choice, the probabilistic version of if-
then-else can be introduced very much like in the AoP [BdM97], as a combinator denoted p → f, g and
relying on coproducts, that is, on the junc combinator (19), and on so-called guards.

Given a predicate Bool A
poo , the corresponding guard, denoted p? and holding type A+A Aoo

is defined in the following way. Let A
[[p]] // 1 be the row-vector representation of the set where p holds

true, as before. Coreflexive matrices A A
Φp,Φ¬poo defined by

Φp = [[p]] M id (58)

Φ¬p = [[¬p]] M id (59)

provide diagonal representations of the corresponding vectors. The guard p? associated to p is then defined
by

A+A A
p?oo =

[
Φp
Φ¬p

]
(60)

A
f

rr
i1 ��

B A+A[f |g]oo A
p?oo

A
i2
OO

g

ll

Finally, we rely on (60) to define the probabilistic Mc-
Carthy conditional

[[p→ f, g]] = [[[f]] | [[g]]] · p? (61)

where types are depicted aside. By divide-and-conquer (25)
one has the alternative definition:

[[p→ f, g]] = [[f]] · Φp + [[g]] · Φ¬p (62)

Before proceeding, we first need to check that p→ f, g is probabilistic (≡ [[p→ f, g]] is LS) wherever f and
g are so. For this we need to check that Φp and Φ¬p are complementary:

Φp + Φ¬p

= { (58,59) }

([[p]] M id) + ([[¬p]] M id)

= { bilinearity (41) }

([[p]] + [[¬p]]) M id

Towards a Linear Algebra of Programming 17

= { vectors [[p]] and [[¬p]] form a partition }

! M id

= { ! is the unit of Khatri-Rao (42) }

id

The above is enough to show properties such as eg. p → f, f = id, just by applying (62), factoring [[f]] to
the left by linearity (12) and simplifying the rest to Φp + Φ¬p = id. Rule (62) also makes the check that
conditionals of probabilistic functions are probabilistic (5) almost immediate:

! · [[p→ f, g]]

= { (62) ; linearity }

! · [[f]] · Φ◦p + ! · [[g]] · Φ◦¬p
= { (5) twice ; linearity }

! · (Φp + Φ¬p)

= { Φp + Φ¬p = id }

!

It is easy to provide linear algebra calculations for the laws of guards and conditions found in eg. [Gib97].
For instance, the proof that the swap matrix of section 4 negates a guard, that is (¬p)? = swap · (p?),
becomes considerably simpler than in [Gib97]:

swap · (p?)

= { swap = [i2 |i1] ; (60) }

[i2 |i1] ·
[

Φp
Φ¬p

]
= { divide and conquer (25) }

i2 · Φp + i1 · Φ¬p
= { + is commutative }

i1 · Φ¬p + i2 · Φp
= { divide and conquer again }

[i1 |i2] ·
[

Φ¬p
Φp

]
= { reflexion (21) ; (60) again }

(¬p)?
Probabilistic extensions of the McCarthy conditional fusion laws of [BdM97, Gib97] arise from (61), for
instance

f • (p→ g, h) = p→ f • g, f • h (63)

which follows from junc-fusion (23). However, the other fusion-law, (p → g, h) · f = p · f → g · f, h · f uses
composite predicate p · f which, in the category of sets, satisfies property

p? · f = (f + f) · (p · f)? (64)

18 J.N. Oliveira

The extension of this to probabilistic functions requires f to be sharp, that is, [[f]] should be a Boolean
matrix. That (64) does not extend beyond functions has already been pointed out in [Gib97].

Splitting and pairing. Recall that the two functions in choice f p� g have to be of the same type. Is there

an extension of choice for probabilistic functions A
f // B and A

g // C differing on the output type?

Note that, using splits (20), one can build matrix A
[[[f]]
[[g]]] // B + C but its columns will add up to 2 and so

this matrix won’t represent a probabilistic function: one has to control the choice of output between B and
C. Similarly to choice, one may define a new combinator,

[[f p∇ g]] =

[
p⊗ [[f]]

(1− p)⊗ [[g]]

]
(65)

which combines f and g in a way which ensures a probabilistic outcome:

! · [[f p∇ g]]

= { definition }

! ·
[

p⊗ [[f]]

(1− p)⊗ [[g]]

]
= { [! | !] = ! ; dropping parentheses }

[! | !] ·
[

p⊗ f
(1− p)⊗ g

]
= { divide and conquer (25) }

! · (p⊗ f) + ! · ((1− p)⊗ g)

= { as calculated with choice }

!

To check the difference between this combinator and choice compare swap 0.9� id given earlier on with

swap 0.9∇ id =

 0 0.9
0.9 0
0.1 0
0 0.1


Note that the outputs of f and g are combined in f p∇ g in alternation, either B or C. The effect of

actually pairing the outputs of both functions has already been considered for vectors, recall (38). It can
be easily extended column-wise to probabilistic functions sharing the same input type: given probabilistic

A
f // B and A

g // C , we define their pairing A
fMg // B × C by:

[[f M g]] = [[f]] M [[g]] (66)

Again note the intentional overloading, this time over the symbol for Khatri-Rao product. The proof that
the outcome of (66) is probabilistic has already been given for A = 1, that is, for f and g distributions. This
can be regarded the base case of an inductive proof whose inductive step consists of splitting [[f]] = [f1 |f2]
and [[g]] = [g1 |g2] where f1, g1 (ibid. f2, g2) are of the same type:

! · [[f M g]]

= { (66) }

! · ([[f]] M [[g]])

= { split matrices column-wise; temporarily remove [[]] brackets }

Towards a Linear Algebra of Programming 19

! · ([f1 |f2] M [g1 |g2])

= { exchange law (39) }

! · [f1 M g1 |f2 M g2]

= { (23) }

[! · (f1 M g1) | ! · (f2 M g2)]

= { induction step: ! · (fi M gi) = ! (i = 1, 2) }

[! | !]

= { [! | !] = ! }

!

In general, the matrix transform of the pairing combinator inherits the properties of the Khatri-Rao
product. This is, however, not a categorial product. Restricted to Boolean matrices, ie. relations, this is
known as the “fork” operator [Fri02] of fork (relation) algebra. Its generalization to arbitrary matrices is
discussed in [Mac12].

5. Probabilistic folds

Having defined the probabilistic extension of the AoP-standard combinators for alternation, pairing, sum-
ming, etc. we are in position to address the construction of recursive probabilistic functions of a particular
kind: they process inductive structures such as natural numbers or finite lists by replacing the standard
constructors of these data types by probabilistic functions.

These constructs are known as folds, or catamorphisms [BdM97, GHA01]. The algorithm which multiplies
two natural numbers a and b, for instance,

a ∗ 0 = 0

a ∗ (n+ 1) = a ∗ n+ a

is an example of such a fold, defined by induction on the second argument. This can be seen by expressing
the section (a∗) in the following way, where k denotes the constant function which delivers k irrespectively
of its actual input (a polymorphic function) and succ n = n+ 1:

(a∗) · 0 = 0

(a∗) · succ = (a+) · (a∗)

The symbol · denotes standard function composition. Note how constructors 0 and succ (which form the
Peano algebra of the natural numbers) are replaced by 0 (itself) and (a+). For a = 1, (a∗) = id because
(1+) = succ. Following the notation of [BdM97], one writes

(a∗) = (|[0, (a+)]|) (67)

where the catamorphism parentheses (| |) denote the combinator which emerges from such constructor substi-
tution. This is because the two equations above can be merged into a single one, (a∗)·[0, succ] = [0, (a+)·(a∗)],
by resorting to junction of functions (53), whose right hand side may be split into the argument of the com-
binator and the recursive call,

(a∗) · [0, succ] = [0, (a+)] · (id+ (a∗)) (68)

where the sum of two functions is the bifunctor which transforms into matrix sum:

[[f + g]] = [[f]]⊕ [[g]] (69)

20 J.N. Oliveira

N0

in◦=
[

[[0]]◦
[[succ]]◦

]
**

[[(a∗)]]
��

∼= 1 + N0

in=[[[0]] | [[succ]]]

hh

id⊕[[(a∗)]]
��

N0 1 + N0

[[[0]] | [[(a+)]]]

hh

Since all functions in the equation are sharp and the matrix
transform preserves sharp functions (! · [[f]] = !), one may draw the
diagram aside which depicts equation (68) expressed in terms of
matrices. Note that in◦ is a function because in is an isomorphism.
(The matrix which represents an isomorphism f is both left and
right stochastic, that is, !·[[f]] = ! and [[f]]·!◦ = !◦.) Also note column
vector [[0]] with as many rows as natural numbers, all filled with 0s
but the first. (Recall that the matrix-transform of a function f is
such that cells with coordinates (f x, x) are filled with 1s and all
the others with 0s.)

Reading the diagram, one has:

[[(a∗)]] = [[[0]] | [[(a+)]]] · (id⊕ [[(a∗)]] ·
[

[[0]]
◦

[[succ]]
◦

]
= { absorption (55) ; dropping parentheses for better parsing }

(a∗) = [0 |(a+) · (a∗)] ·
[

0◦

succ◦

]
= { divide and conquer (25) }

(a∗) = 0 · 0◦ + (a+) · (a∗) · succ◦

This tells how the matrix for (a∗) is recursively filled up: first the outer-product of 0 by itself (0 · 0◦, that is
the everywhere-0 matrix apart from the 1 in cell (0, 0)), which is added to (a+) · 0 · 0◦ · succ◦ = a · 1◦ (matrix
with a 1 in cell labeled (a, 1) and 0 otherwise), and so on. Note that each contribution of the fixpoint is a
matrix which “fills an empty column”, thus ensuring that no column ever adds up to more than 1.

Let us now inject a fault into (a∗), as we did in Section 1 for the factorial function:

a ∗ 0 =p 0

a ∗ 0 =1−p a

a ∗ (n+ 1) = a ∗ n+ a

That is, with probability 1 − p the base case erroneously yields a as output instead of 0. Can we measure
the impact of this base-case fault onto the whole algorithm? Intuitively, one may guess that, with the same
probability 1 − p, the function will compute a ∗ (b + 1) rather than a ∗ b. That is, the base case’s fault
propagates to the whole algorithm in the same (quantitative) manner.

Is this intuition checkable? Below we will confirm the guess by calculation. For this purpose, we define
three versions of the algorithm, the one which calculates a ∗ b as before (named good), the erroneous one
(named bad) and the faulty one (named faulty) where the fault is expressed using choice (43):

good = (|[0 |(a+)]|)
bad = (|[a |(a+)]|)

faulty = (|[0 p� a |(a+)]|)

The assertion we want to check is faulty = good p� bad. We reason:

faulty = good p� bad

≡ { definition }

(|[0 p� a |(a+)]|) = good p� bad

≡ { universal property of catamorphisms, for FX = id⊕X }

(good p� bad) · in = [0 p� a |(a+)] · F(good p� bad)

Towards a Linear Algebra of Programming 21

The calculation of this equality resorts to standard properties of catamorphisms [BdM97]:

(good p� bad) · in

= { fusion (49) }

(good · in) p� (bad · in)

= { catamorphism cancellation (twice) }

([0 |(a+)] · Fgood) p� ([a |(a+)] · Fbad)

= { absorption (55) over FX = id⊕X }

[0 |(a+) · good] p� [a |(a+) · bad]

= { distribution (52) }

[0 p� a |((a+) · good) p� ((a+) · bad)]

= { fusion (50) }

[0 p� a |(a+) · (good p� bad)]

= { absorption (55), in the reverse direction }

[0 p� a |(a+)] · F(good p� bad)

Note how (52) plays the central role above, thanks to bilinearity on the background. The example is
simple but illustrative of the way matrix calculations proceed, handling matrices with no further effort as
compared to handling relations as in standard AoP. This is so because of the sheer amount of structure
which categories of matrices and relations have in common.

Probabilistic fold fusion. As a second example, consider the following situation: we want to compute the
expression 1 + a ∗ b knowing that (1+) is performed by a faulty successor function which, with probability
q, fails to increment its input,

fsucc = id q� succ

and another version of faulty multiplication,

fmul = (|[0 |0 p� (a+)]|) (70)

which fails to perform the addition (yielding unit 0) with probability p. (Value a is assumed fixed to avoid
extra parameters which add nothing to the problem.)

N0

in◦

++

fmul

��

∼= 1 + N0

in

kk

id⊕fmul

��
N0

fsucc

��

1 + N0

[0 |0p�(a+)]

kk

id⊕fsucc
��

N0 1 + N0

[stop |step]

kk

Unlike the previous example, this time the fault disturbs the in-
ductive step and the exercise consists in predicting the behaviour of
program

fprog = fsucc · fmul (71)

The diagram aside illustrates this situation. Parentheses [[]] are omit-
ted altogether this time, assuming the reader’s familiarity with the
previous diagram at this point (in is the same isomorphism in both
diagrams). Thus all probabilistic functions are assumed implicitly
represented by their matrix transform.

The diagram helps to understand the strategy to follow: we will
try and fuse fsucc with fmul (71) using fold (catamorphism) fusion
[BdM97]. The outcome will be fprog = (|[stop |step]|) provided the
lower rectangle commutes:

fsucc · [0 |0 p� (a+)] = [stop |step] · (id⊕ fsucc)

Solving this equality for the unknowns stop and step yields stop = fsucc · 0 = (id q� succ) · 0, that is

stop = 0 q� 1

22 J.N. Oliveira

thanks to choice-fusion (49). Concerning step:

fsucc · (0 p� (a+)) = step · fsucc

≡ { choice-fusion (50) ; fsucc · 0 = stop }

stop p� (fsucc · (a+)) = step · fsucc

≡ { fsucc commutes with (a+) since succ commutes with (a+) }

stop p� ((a+) · fsucc) = step · fsucc

≡ { stop is (probabilistically) constant, thus stop · f = stop for any f ; (49) }

(stop p� (a+)) · fsucc = step · fsucc

⇐ { Leibniz }

step = stop p� (a+)

In summary, equality (71) can be rewritten into

fsucc · fmul = (|[stop |stop p� (a+)]|) , for stop = 0 q� 1

expressing the combined impact of the faults of the two functions: fsucc disturbs both the base case and
the inductive step of fmul through stop, which can be regarded as a faulty constant (0 with probability q, 1
otherwise).

0 1 2 3 4 5 6 7

0

20

40

60

The encoding of both sides of the equal-
ity above in Haskell, relying on the distribution
monad available from the PFP library, yields two
programs which are input-output equivalent, as
expected. The figure aside shows two distributions
for the evaluation of expression 1 + 2× 3, that is,
for a = 2 and input 3. The two distributions (con-
sistently produced by both programs) correspond
to different probabilities in the faults injected:
p = 20%, q = 10% in the plot marked with bullets
and p = 10%, q = 20% in the other. The probabil-
ity of yielding the correct output (1 + 2 × 3 = 7)
is 46% in the first case and 58% in the second.

6. Related work

There is a trend towards quantitative formal methods. Quoting the Preface of [AMD+09]:
Quantitative Formal Methods deals with systems whose behaviour of interest is more than the traditional Boolean “correct” or
“incorrect” judgment. (...) The aim of the workshop was to create a new forum where current and novel theories and application
areas of quantitative methods could be discussed, together with the verification techniques that might apply to them.

Among such methods, probabilistic techniques are becoming more and more widespread. McIver and
Morgan [MM05] develop a method for rigorous reasoning about probabilistic programs that includes a
probabilistic calculus which, in the Hoare style, operates at the level of the program text. At programming
level, reference [EK06] describes an approach to express probabilistic programs in Haskell and give a collection
of modules that make up a probabilistic functional programming library based on the (finite) distribution
monad. A similar monadic flavor can be found in the approach to quantum (functional) programming given
in [MB01]. More recently, Gibbons and Hinze [GH11] have shown how to perform equational reasoning about
programs that exploit both nondeterministic and probabilistic choice as part of a more ambitious plan to
reason about effectful computations in general.

Sokolova [Sok05] develops a coalgebraic analysis of probabilistic systems in a way that connects two main-
stream research areas: coalgebraic reasoning and probabilistic modeling and verification. This work builds
upon foundational work on probabilistic bisimulation [LS91] and relates to quantitative Kleene coalgebra

Towards a Linear Algebra of Programming 23

[SBBR11]. Reference [MCM06] describes pKA, a probabilistic Kleene-style algebra based on a well known
model of probabilistic/demonic computation.

Focusing on quantum programming and quantitative denotational semantics of probabilistic programs,
the authors of [SRM08] adopt linear algebra techniques by regarding probabilistic programs as linear trans-
formations over suitable vector spaces. This can be framed into another trend, that of using linear algebra
techniques in computer science. In this trend, Trčka [Trc09] presents a unifying matrix approach to the no-
tions of strong, weak and branching bisimulation ranging from labeled transition systems to Markov reward
chains. Transition systems are triples made of an initial vector, a transition matrix and a termination vector.
The technique developed in [DLS10] for evaluating high-availability standby redundant clusters resorts to
Kronecker sums and products. An illustration of the method is given for the 1-plus-2 HA cluster. Finally,
natural language semantics, too, is going vectorial, as nicely captured by the aphorism nouns are vectors,
adjectives are matrices [BZ10]. In this field of “quantum linguistics”, a compositional model of meaning
is given in [CSC10] in which the grammatical structure of sentences is expressed in the category of finite
dimensional vector spaces.

Categories of matrices can be traced back to [Mac98, MB99] with focus on either illustrating additive
categories or establishing a relationship between linear transformations and matrices. In the area of process
semantics, Bloom et al [BSW96] have developed a categorical, machines as matrices theory of concurrency.
Work in this vein can be traced much earlier, back to Conway’s work on regular algebras [Con71] and
regular algebras of matrices, so elegantly addressed in [Bac04]. On the footsteps of this work, reference
[MO11b] suggests a linear algebra approach to software components, be these weighted automata [SBBR11]
or machines in the sense of [BSW96], using the “‘matrices as arrows” typed approach. As illustration of this
categorial approach to linear algebra, but in a different domain, reference [MO11a] shows how to implement
data mining operations solely based on linear algebra operations. The Khatri-Rao product and its unit !
(recall section 4) play a major role in data consolidation constructions such as data cubes and pivot tables.

7. Conclusions and future work

It is a commonplace in mathematics to regard functions as special cases of relations (the deterministic, total
ones) and relations as special cases of matrices (the Boolean ones, provided addition is trimmed to 1). Yet the
three classes of object are treated in disparate ways, unrelatedly and with incompatible (if not contradictory)
notation.

For instance, one writes y = f(x) to define a function and (x, y) ∈ Graph(f) — note how x and y swap
position — to express the input/output pairs of the graph of function f , which is a relation. As far as typing
is concerned, most people accept notation f : A → B for defining the signature of a function but only
reluctantly will accept the same notation R : A → B to define the type of relation R, writing R ⊆ A × B
instead. As far as matrices are concerned, writing M : m → n to declare the type of a matrix will come as
surprise to many people — textbooks simply tell that M is of order m×n (or is it n×m?), with loose typing
rules. As for type checking, results are stated as “valid only for matrices of the same order” [AM05] and the
like. Polymorphic functions are well-accepted. But telling that the identity matrix is as polymorphic as the
identity function will sound odd to many people.

Relational mathematics [Sch10] is a big step forward towards conceptual unification between relations and
matrices. But it is first and foremost category theory which provides for successful unification, by regarding
functions, relations and matrices as morphisms (arrows) of suitable categories. The category of functions is
well known, that of relations less known and those of matrices by and large ignored.

The category of relations, extended to an allegory in [FS90] and including that of functions as a sub-
category, is the basis of the algebra of programming (AoP) which has reached the programming community
through textbook [BdM97]. It shares a lot in common with any category of matrices (one cannot say “the”
category of matrices because there are many, one per cell-type), namely self-duality and the existence of
biproducts [Mac98] which explain how the cell-level algebra lifts to “blocks”, scaling up notation in a very
successful way.

The research question which motivates the work reported in the current paper splits in two other ques-
tions, in fact two sides of the same coin: (a) can the AoP be extended quantitatively in some useful way?
(b) what happens to the discipline once we generalize from relations to matrices?

The answer leads us into linear algebra, which eventually provides a surprisingly simple framework for
calculating with set-theory, probabilities, functions and relations, provided it is typed — as shown in [MO10]

24 J.N. Oliveira

— in the same way as the AoP. (Bi)Linearity, which is after all what elsewhere (eg. in Kleene algebra) is
known as distribution of sequencing over branching, is central to the reasoning. So the acronym LAoP, for
“linear algebra of programming” makes sense. Interestingly enough, it has been put forward already, albeit
in a somewhat different setting, by Sernadas et al [SRM08], the key idea being “to adopt linear algebra as
the lingua franca of software verification” [SG11].

Restricting to discrete probabilities spaces, the current paper applies the emerging LAoP to probabilistic
functions, which are half way between relations and functions: they express the propensity, or likelihood of
ambiguous, multiple outputs. The approach is based on the matrix transform which establishes an isomor-
phism between the sub-category of such functions and that of left-stochastic matrices. The reasoning in such
transformed space is carried out in the same style as in the AoP, saving the practitioner from the intricacies
of the distribution monad. Our examples of typed LA calculation range from elementary probability the-
ory to calculations about recursive functions injected with random faults. However not very elaborate, these
examples show the potential of LAoP for reasoning about quantitative aspects of probabilistic programming.

Future work. The application of linear algebra techniques to quantitative reasoning about recursive pro-
grams appears to be a promising area of research which can benefit much from that immense body of
knowledge which linear algebra is. It will be interesting, for instance, to prove facts about programs written
in the PFP library of [EK06] and to relate LAoP calculation to the techniques of [GH11].

Probabilistic functions can be regarded as refinements of relations. The abstraction of a probabilistic

function f into a relation is given by [[f]]
↑
, where ↑ is the operator which converts all non-zero entries in

[[f]] to 1s, thus mapping [[f]] into a Boolean matrix (relation) 14. Probabilistic refinement should be studied
in this setting.

Take as example the definition of the less-or-equal ordering on the natural numbers as a relational fold:
(≤) = (|[0, 0 ∪ succ]|). Read algorithmically, (≤) yields (in a non-deterministic way) any number at most a
given number. A refinement step could replace union by choice, leading into the probabilistic implementation
f such that [[f]] = (|[0, 0 p� succ]|), for some p. For p = 0, f n = n; for p = 1, f n = 0. For all other values of
p, f n will generate (randomly) a number between 0 and n. What can one say about such a random number
generator? What contribution can the LAoP give in this respect? Broadening scope, one should check the
applicability of the algebra to recursion schemes more general and powerful than probabilistic folds, eg.
unfolds (anamorphisms) and hylomorphisms [BdM97].

Note that probabilistic anamorphisms have been implicitly studied in the field of probabilistic coalgebras
[Sok05], but not from a LAoP perspective. Work in this direction, in particular in extending the distribution
functor to relations, has been drafted in [Oli11]. This should eventually link to the bisimulations for Markov
reward chains of [Trc09].

Finally, knowing that relations can be generalised to semirings and Kleene algebra, it would be interesting
to identify which similar algebraic structures generalize probabilistic functions. Such structures are likely to
be related to pKA [MCM06] and to the tree Kleene algebras studied in [TF06].

Summing up, this paper opens a research direction which calls for a feasibility study, in one direction,
and for further theoretical developments in another. This will keep researchers interested in the LAoP busy
for a while.

Acknowledgements

The author is indebted to the anonymous referees for detailed and useful comments and suggestions which
helped to improve this paper. In particular, the suggestion of axiom (15) to characterize the Boolean matrices
of MatR is gratefully acknowledged. This research was carried out in the context of the Mondrian project
funded by the ERDF through the Programme COMPETE and by the Portuguese Government through FCT
(Foundation for Science and Technology) contract PTDC/EIA-CCO/108302/2008.

14 See [Win09]. In a sense, the columns of [[f]]↑ are the vectors which capture the support of each output distribution of f .
Operator R↑ and its adjoint R↓ (which converts non-zero entries into 0s) are proposed in [Win09] where defining so-called
Goguen categories, which relate to Zadeh categories formed by fuzzy relations [KFM99].

Towards a Linear Algebra of Programming 25

References

[AM05] K.M. Abadir and J.R. Magnus. Matrix algebra. Econometric exercises 1. Cambridge University Press, 2005.
[AMD+09] S. Andova, A. McIver, P. R. D’Argenio, P. J. L. Cuijpers, J. Markovski, C. Morgan, and M. Núñez, editors.

Proceedings First Workshop on Quantitative Formal Methods: Theory and Applications, volume 13 of EPTCS,
2009.

[Bac04] R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham, 2004. Draft of book in preparation.
608 pages.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall International, 1997.
[BSW96] S.L. Bloom, N. Sabadini, and R.F.C. Walters. Matrices, machines and behaviors. Applied Categorical Structures,

4(4):343–360, 1996.
[BZ10] M. Baroni and R. Zamparelli. Nouns are vectors, adjectives are matrices: representing adjective-noun constructions

in semantic space. In Proceedings, EMNLP ’10, pages 1183–1193, Morristown, NJ, USA, 2010. Association for
Computational Linguistics.

[Con71] J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.
[CSC10] B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical foundations for a compositional distributed model of mean-

ing. Linguistic Analysis, 36(1-4):345–384, 2010.
[DLS10] S. Distefano, F. Longo, and M. Scarpa. Availability assessment of HA standby redundant clusters, 2010. 29th IEEE

Int. Symp. on Reliable Distributed Systems.
[EK06] M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming in Haskell. J. Funct.

Program., 16:21–34, January 2006.
[Fri02] M.F. Frias. Fork algebras in algebra, logic and computer science, 2002. Logic and Computer Science. World Scientific

Publishing Co.
[FS90] P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathematical Library. North-Holland, 1990.
[GH11] J. Gibbons and R. Hinze. Just do it: simple monadic equational reasoning. In Proceedings of the 16th ACM

SIGPLAN international conference on Functional programming, ICFP’11, pages 2–14, New York, NY, USA, 2011.
ACM.

[GHA01] J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold or an unfold? Electronic Notes in Theoretical
Computer Science, 44(1), 2001.

[Gib97] J. Gibbons. Conditionals in distributive categories. Technical Report CMS-TR-97-01, School of Computing and
Mathematical Sciences, Oxford Brookes University, January 1997.

[Heh11] E. Hehner. A probability perspective. Formal Aspects of Computing, 23:391–419, 2011.
[Hoo97] P. Hoogendijk. A Generic Theory of Data Types. PhD thesis, Univ. of Eindhoven, The Netherlands, 1997.
[KFM99] Y. Kawahara, H. Furusawa, and M. Mori. Categorical representation theorems of fuzzy relations. Information

Sciences, 119(3–4):235–251, 1999.
[KS76] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, 1976. Originally printed by Van Nostrand,

Princeton, 1960.
[LR99] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM,

1999.
[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput., 94(1):1–28, 1991.
[LS97] B. Lawvere and S. Schanuel. Conceptual Mathematics: a First Introduction to Categories. Cambridge University

Press, 1997.
[Mac98] S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer,

September 1998.
[Mac12] H. Macedo. Matrices as Arrows — Why Categories of Matrices Matter. PhD thesis, University of Minho, 2012.

(Submitted Jan. 2012).
[Mad91] R.D. Maddux. The origin of relation algebras in the development and axiomatization of the calculus of relations.

Studia Logica, 50:421–455, 1991.
[MB99] S. MacLane and G. Birkhoff. Algebra. AMS Chelsea, 1999.
[MB01] S.C. Mu and R. Bird. Quantum functional programming, 2001. 2nd Asian Workshop on Programming Languages

and Systems , KAIST, Dajeaon, Korea, December 17-18, 2001.
[MCM06] A. McIver, E. Cohen, and C. Morgan. Using probabilistic Kleene algebra for protocol verification. In Renate

Schmidt, editor, Relations and Kleene Algebra in Computer Science, volume 4136 of LNCS, pages 296–310. Springer
Berlin / Heidelberg, 2006.

[MM05] A. McIver and C. Morgan. Abstraction, Refinement And Proof For Probabilistic Systems. Monographs in Computer
Science. Springer-Verlag, 2005.

[MO10] H.D. Macedo and J.N. Oliveira. Matrices As Arrows! A Biproduct Approach to Typed Linear Algebra. In MPC’10,
volume 6120 of LNCS, pages 271–287. Springer, 2010.

[MO11a] H.D. Macedo and J.N. Oliveira. Do the middle letters of “OLAP” stand for linear algebra (“LA”)? Technical
Report TR-HASLab:04:2011, INESC TEC and University of Minho, Gualtar Campus, Braga, 2011.

[MO11b] H.D. Macedo and J.N. Oliveira. Towards linear algebras of components. In FACS 2010, volume 6921 of LNCS,
pages 300–303. Springer, 2011.

[Mor90] C. Morgan. Programming from Specification. Series in Computer Science. Prentice-Hall International, 1990. C.A.R.
Hoare, series editor.

[Oli11] J.N. Oliveira. A look at the (linear) algebra of probabilistic functions, 2011. Contribution to the QAIS Start-up
Workshop celebrating IBM-Portugal Scientific Prize 2010, Braga, 17th October 2011.

26 J.N. Oliveira

[Pra92] V. Pratt. Origins of the calculus of binary relations. In Proc. of the 7th Annual IEEE Symp. on Logic in Computer
Science, pages 248–254, Santa Cruz, CA, 1992. IEEE Comp. Soc.

[Ros09] J. Rosenhouse. The Monty Hall Problem: The Remarkable Story of Math’s Most Contentious Brain Teaser. Oxford
University Press, 2009.

[RR98] C.R. Rao and M.B. Rao. Matrix algebra and its applications to statistics and econometrics. World Scientific Pub
Co Inc, 1998.

[SBBR11] A. Silva, F. Bonchi, M.M. Bonsangue, and J.J.M.M. Rutten. Quantitative Kleene coalgebras. Inf. Comput.,
209(5):822–849, 2011.

[Sch10] G. Schmidt. Relational Mathematics. Number 132 in Encyclopedia of Mathematics and its Applications. Cambridge
University Press, November 2010.

[SG11] SQIG-Group. LAP: Linear algebra of bounded resources programs, 2011. IT & Tech. Univ. Lisbon.
[Sok05] A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. Ph.D. dissertation, Tech. Univ. Eindhoven, Eindhoven,

The Netherlands, 2005.
[SRM08] A. Sernadas, J. Ramos, and P. Mateus. Linear algebra techniques for deciding the correctness of probabilistic

programs with bounded resources. Technical report, SQIG - IT and IST - TU Lisbon, 1049-001 Lisboa, Portugal,
2008. Short paper presented at LPAR 2008, Doha, Qatar. November 22-27.

[TF06] T. Takai and H. Furusawa. Monodic tree Kleene algebra. In Renate Schmidt, editor, Relations and Kleene Algebra in
Computer Science, volume 4136 of Lecture Notes in Computer Science, pages 402–416. Springer Berlin / Heidelberg,
2006.

[Trc09] N. Trcka. Strong, weak and branching bisimulation for transition systems and Markov reward chains: A unifying
matrix approach. Proc. First Workshop on Quantitative Formal Methods: Theory and Applications, volume 13 of
EPTCS, 2009, pages 55–65.

[VM97] J. Voas and G. McGraw. Software Fault Injection: Innoculating Programs Against Errors. John Wiley & Sons,
1997. 416 pages.

[Win09] M. Winter. Arrow categories. Fuzzy Sets and Systems, 160(20):2893–2909, 2009.

