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Abstract: This paper sketches a reverse engineering discipline which combines formal and
semi-formal methods. Central to the former is denotational semantics, expressed in the ISO/IEC
13817-1 standard specification language (VDM-SL). This is strengthened with algebra of pro-
gramming, which is applied in “reverse order” so as to reconstruct formal specifications from
legacy code. The latter include code slicing, a “shortcut” which trims down the complexity of
handling the formal semantics of all program variables at the same time.

A key point of the approach is its constructive style. Reverse calculations go as far as absorbing
auxiliary variables, introducing mutual recursion (if applicable) and reversing semantic denota-
tions into standard generic programming schemata such as cata/paramorphisms.

The approach is illustrated for a small piece of code already studied in the code-slicing literature:
Kernighan and Richtie’s word count C programming “bagatelle”.
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1 Introduction

The development of computer software has always been a contradictory activity. Four

decades ago, a “software crisis” was identified which drew attention to the poor tech-

nical sophistication of the (then emerging) software technology. Many years passed,

the advent of home computing and world-wide network facilities has brought com-

puter software unprecedented relevance in everybody’s life. However, the theoretical

advances in programming science — which has become a stable discipline meanwhile

— are still by and large ignored by the ever growing community of programmers.

The situation is no better in education: software design remains among the very few

topics which many engineering departments still accept to address with little (if any)

scientific basis.

Time-to-market is among the main factors enforcing ad hoc programming practice.

However, a quick market entails indirect costs such as permanent risk, poor quality and

low reliability of the produced code, and hard maintenance.

In a situation in which the only quality certificate of the running software artifact

still is life-cycle endurance, customers and software producers are little prepared to

change, modify or improve running code. So there is little opportunity for brand new,

technically sound code to replace the old one. (One is never sure about the implications

of a software update.) However, faced with so risky a dependence on legacy software,
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managers are more and more prepared to spend resources to increase confidence on —

ie. the level of understanding of — their (untouchable) code.

2 Program understanding

Program understanding affiliates to reverse engineering, understood as the analysis of

a system in order to identify components and intended behaviour in order to create

higher level abstractions of the system [CI90]. Reverse engineering includes reverse

specification— the analytical process of inferring the original specification (which may

have never been written) of some running piece of software.

If (on statistical grounds) forward software engineering can today be regarded as

a lost opportunity for formal methods 1, its converse still looks a promising area for

their application. This is due to the complexity of reverse engineering problems. So it

is likely that the formal techniques developed by academics for the production of fresh,

high quality software will eventually see the light of (industrial) success in their reverse

application to pre-existing code. Even if, for this purpose, they have to merge with

other, informal program maintenance and debugging techniques.

3 About this paper

This paper is a modest contribution in the spirit of the last paragraph above. It reports

work in progress on the development of a discipline for reverse engineering which com-

bines formal and semi-formal methods. The formal basis of the approach enriches stan-

dard denotational semantics techniques with the algebra of programming [BdM97],

which is applied in “reverse order” so as to reconstruct the formal specifications of

legacy code. Because of the complexity inherent in handling formal semantic descrip-

tions of algorithmic code, reverse algebraic calculation is preceded by code slicing

[Wei81].

This work is the follow up of a project which has addressed data reverse engineer-

ing (DRE) in a similar way [NSO99]: data are reversed by calculation according to

an algebra of data-representation laws which include the transformation of relational

database meta-data into abstract ISO/IEC 13817-1 standard (VDM-SL) formal descrip-

tions [FL98].

Code reversal is, in general, harder than DRE and this paper will not present a

general solution to the problems involved. Instead, a small example is worked out which

triggers some intuitions about the strategy to follow in real situations. This example is

the “word count” programming “bagatelle” 2 presented by Kernighan and Richtie’s in

their well-known introductory book to the C programming language (Fig. 1). This can

With notable exceptions in areas such as safety-critical and dependable computing.

In the musical terminology, a bagatelle (“musical trifle”) is a short light or whimsical piece,
usually written for piano.
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1 #define YES 1
2 #define NO 0
3 main()
4 {
5 int c, nl, nw, nc, inword ;
6 inword = NO ;
7 nl = 0;
8 nw = 0;
9 nc = 0;
10 c = getchar();
11 while ( c != EOF ) {
12 nc = nc + 1;
13 if ( c == ’\n’)
14 nl = nl + 1;
15 if ( c == ’ ’ || c == ’\n’ || c == ’\t’)
16 inword = NO;
17 else if (inword == NO) {
18 inword = YES ;
19 nw = nw + 1;
20 }
21 c = getchar();
22 }
23 printf("%d",nl);
24 printf("%d",nw);
25 printf("%d",nc);
26 }

Figure 1: The word count program [KR78].

be recognized as the core of the Unix wc command, which prints the number of bytes,

words, and lines in files.

However simple, this example is expressive enough to illustrate our main point:

that, in practice, denotational techniques alone are insufficient for code reversal, and

that they benefit from combining with other — either formal or informal — methods.

The remainder of this paper is structured as follows: in the following section we

introduce our (light-weight) approach to denotational semantics, which is illustrated in

section 5 for the word count example, using VDM-SL notation. In sections 6 and 7 we

motivate the application of slicing to formal semantics. This is illustrated in section 8.

Section 9 motivates the need for a posteriori algebraic calculations, to be applied to

each particular slice. The algebra of programming is briefly presented in sections 10

and 11, and finally applied to one of the slices of the word-count example (section 12).

The paper ends with some conclusions and review of related work.
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4 Denotational semantics for program synthesis / analysis

Let be a piece of algorithmic code and denote its denotational semantics, ie, the

input/output relation which captures the behaviour of . In forward engineering one

starts from a specification and rewrites it over and over again,

(1)

until the semantics of some piece of code is found. Structured programming

makes it possible to take advantage of the compositional properties of the available

program combinators, for instance sequential composition

where “ ” denotes relational composition. So, if specification is written down

and one finds and such that and hold, then is a

valid refinement step in program synthesis.

By contrast, it seems natural that program analysis should go the other way round:

try and identify chunks of code such that their semantics can be inferred and abstracted

upon. There is a fact to retain, though: in going backwards along the direction in

(1) one can add arbitrary nondeterminism and end up in a specification which is too

vague.

For a deterministic program, relation specializes to a function which maps

the state of (ie. the set of all variables which has access to) before execution takes

place, to the state after such an execution. This retraction to a functional semantics, al-

beit restrictive in general, is acceptable in face of simple programs (“bagatelles”) such

as word count (Fig. 1). The theory gets simpler and more intuitive and this helps the

(informal) reader to appreciate the power of formal reasoning. This explains our de-

cision in this paper to reverse specify main in the word-count example only in terms

of its functional specification 3. So we shall be dealing with functions and functional

equality, rather than relations and the subset ordering.

5 Starting denotational semantics for word count

The VDM-SL specification language [FL98] will be adopted to express the formal se-

mantics of (deterministic) code such as word count. One starts by inferring the program

state from the program variables:

Later on we will address shortcomings of this decision, acceptable only in face of determin-
istic, terminating programs. The trade-off between the relational and functional foundations
for program calculation is apparent in [BdM97]. The power of the relational approach can be
appreciated in [BH93, Bac00], among a vast literature on this subject.
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: : char

For notation convenience, each selector in is named after the corresponding pro-

gram variable. Note the char and abstractions of in variables and , respec-

tively. Next, the input stream is made explicit in a way such that EOF is modelled by

nil ,

: : char

char

cf. the following semantics for :

mk-

if

then mk- nil

else mk- tl hd

Let be the function which captures the semantics of the whole program, that is

main()

In VDM-SL notation one has:

char

let mk- nil false in

mk-

The while-loop in main() is modelled by auxiliary function , which updates the

state, of type . The loop initialization is captured by record

mk- nil false

passed as parameter to :
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let in

if nil

then

else let

if

then

else

if

then

else if

then

else

if

then false

else if

then true

else in

mk-

State model can be made simpler by filtering the redundancy of entries and

. This means to data-abstract to

: : char

under abstraction (retrieve [Jon86]) function

mk-

if nil

then mk-

else mk-

Then reduces to hd tl -manipulation, leading to a simpler version of :
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mk-

if

then mk-

else let if hd

then

else if

then

else

if hd

then false

else if

then true

else in

mk- tl

if hd

then

else

where an auxiliary function was introduced

char

abstracting the test for a separator character. Finally, is redefined accordingly

and renamed to :

char

let mk- false in

mk-

6 Loop inter-combination and code fusion

When writing code such as word count, programmers tend to combine into a single

programming construct (eg. a loop) two or more logically independent computations.

This saves auxiliary (eg. intermediate) data-structuring and the programming “tricks” to
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achieve efficiency in this way can be framed into two broad categories, one “sequential”

and one “parallel”. The former can be expressed informally as follows,

preferred to (2)

as illustrated in a diagram:

!!

!!

!!

!!

!!

In other situations the idea in the programmer’s mind is to perform the computation

of several (possibly independent) output variables in the same loop, all sharing the same

visit to the input data structure. This is depicted (for two such variables) in the following

drawing,

!!

!!
!! !!

that is,

preferred to (3)

where the angle brackets in denote the “parallel” execution of computations

and on the same input.

The word count program of Fig. 1 is an instance of situation (3): the computations

of nc, nl and nw (resp. the number of characters, number of lines and number of words

in the input stream) proceed in parallel, ie. in the same while-loop access to the input

stream.
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7 Code slicing

As happens with word count, the loop-intercombination strategy suggested in (3) may

involve computations on the right which are independent of each other. The loop-body

on the left can become really inscrutable if the programmer doesn’t bother to interleave

the statements of with the statements of in an arbitrary, not obvious way.

This is where code slicing proves useful in debugging practice. Program slicingwas

introduced byWeiser [Wei81] as a means to help programmers in understanding foreign

code and in debugging. It is a technique for restricting the behaviour of a program

to some fragment of interest. The (decomposition) slice on variable

yields that portion of the program which contributes to the computation of . Slices

are executable (sub)programs which can be extracted automatically from the source

code by data flow and control flow analysis. Gallagher and Lyle [GL91] show how such

slices, ordered by set inclusion, form a semi-lattice where meet corresponds to code

sharing.

The lesson learned from the code slicing community points to a clear direction in

program understanding: instead of working with a monolithic state vector involving

state variables , for and each of type , and ex-

pressing semantics in terms of state-vector transformations "" , one “splits”

the effect on the state vector in terms of independent computations "" .

Each individual is self-sufficient and smaller than the original code, therefore easier

to understand (or reverse calculate).

The idea of using slicing is that of “short-cutting” the work of understanding a large

program via the syntactic separation of the program in its constituent slices. However,

how sound is this strategy? On a denotational semantics basis, how do we guarantee

that, altogether, the slices’ semantics “re-constitute” the whole program semantics? We

will rely on the following conjecture:

Let be a program exhibiting output variables, and let be the

corresponding slices. Then the semantics of can be recovered by combining

these and only these slices, ie.

(4)

In other words, slicing is a semantically sound code-decomposition technique.

The angle-bracket combinator of (4) will be formalized in section 11. Although the

equality does not hold for all programs (see section 15), it does hold for a broad class

of deterministic programs which includes wc.

8 The slices of wc and their formal semantics

In general, the semantics of a program block involvingwhile, for or do statements

and/or recursion will have to be inductively defined over some input type , eg. a finite
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list, an array, a tree. So this type should be singled out from the space vector:

""

Slicing will supply a collection of slices such that

"" (5)

which we may want to abstract into inductive functions with shape

"" (6)

The transformation from (6) to (5) is a well-known technique for improving the effi-

ciency of functional programs called accumulation parameter introduction [BdM97].

Below we shall be interested in the reverse application of this rule, that is, we want to

remove accumulations.

Let us instantiate this process for word count (Fig. 1). For this piece of code, Gal-

lagher and Lyle [GL91] identify the following slice decomposition semi-lattice:

!!!!
"
"
"
""

"
"
"
" !!!!

Clearly, there are 3 maximal slices to be extracted

number of characters

number of lines

number of words

which match with the triple output of the program. Let us analyse each of these. The
character count slice is

3 main()
4 {
5 int c, nc ;
9 nc = 0;
10 c = getchar();
11 while ( c != EOF ) {
12 ++nc;
20 }
21 c = getchar();
22 }
25 printf("%d",nc);
26 }

with semantics captured by function

char

mk-
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which calls

mk-

if

then mk-

else mk- tl

defined over the -projection of :

: : char

Entry of is clearly an accumulation parameter in function , whose re-

moval is the inverse of a standard program transformation (exercise 3.45 in [BdM97]).

We thus “get rid of the state” and obtain

char

if

then

else tl

easily recognizable as VDM-SL’s primitive “length” function. So we are done,

len

and can proceed to the line-count slice :

3 main()
4 {
5 int c, nl ;
7 nl = 0;
10 c = getchar();
11 while ( c != EOF ) {
13 if ( c == ’\n’)
14 ++nl;
21 c = getchar();
22 }
23 printf("%d",nl);
26 }

This corresponds to sliced state

: : char
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and exhibits semantics

char

mk-

mk-

if

then mk-

else mk- tl hd

for auxiliary function

char

if

then

else

Again the same standard transformation will lead to a state-free denotation:

char

if

then

else if hd

then tl

else tl

Finally, we have to cope with word counting slice :

1 #define YES 1
2 #define NO 0
3 main()
4 {
5 int c, nw, inword ;
6 inword = NO ;
8 nw = 0;
10 c = getchar();
11 while ( c != EOF ) {
15 if ( c == ’ ’ || c == ’\n’ || c == ’\t’)
16 inword = NO;
17 else if (inword == NO) {
18 inword = YES ;
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19 ++nw;
20 }
21 c = getchar();
22 }
24 printf("%d",nw);
26 }

Fact is apparent from the projection of

: : char

which includes , and from , which is function

char

mk- false

mk-

if

then mk-

else let if hd

then

else if

then

else

if hd

then false

else if

then true

else in

mk- tl

Clearly, is less obvious than what we have been seen above for the other

slices. Firstly, because there are two state variables ( and ) instead of one. So

our first step is to package them together,

: : char

: :
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and redefine accordingly

mk-

if

then mk-

else mk- tl hd

where is introduced to capture the state accumulation process:

char

mk-

if

then mk- false

else if

then mk- true

else mk-

(7)

Secondly, because the removal of the accumulator will not bring — unlike the

preceding examples — a denotation as clean as we would like:

char

char

if

then mk- false

else hd tl

(8)

The fact that an auxiliary function ( ) is still needed brings about some ques-

tions: shouldn’t Boolean entry in have already disappeared? how do we

proceed? is there a limit to the program transformations we have been applying so far?

9 Need for a notation transformation

Certainly we could go further in conventional (ie. lambda-calculus based) transforma-

tions. However, such “bagatelle-sized” reasoning is unlikely to scale up to realistic sit-

uations. Why? Legacy code normally involves intricate collections of global variables

whose meaning is obfuscated by loop-intercombination, making it harder and harder to
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understand by others. It is no wonder that the formal semantics of code made efficient

in this way leads to voluminous mathematical expressions involving large state vectors

which resist to symbolic manipulation.

However, the programming intuitions implicit in (2) and (3) make sense and actually

validated by algebraic laws [BdM97] which programmers (as a rule) ignore but feel

obvious about the semantics of the underlying programming language 4.

Notation seems to be a factor against the explicit use of such laws in denotational

semantics. Pointwise notation involving operators as well as variable symbols, logical

connectives, quantifiers, etc. is not abstract enough. It also entails a loss in genericity

which conventional engineering mathematics has learned to solve elsewhere by chang-

ing the “mathematical space”, for instance by moving (temporarily) from the

to the in the Laplace transformation [Kre88]:

-space -space

Given problem

##

Subsidiary equation

!!
Solution of given problem Solution of subsidiary equation

""

Quoting [Kre88], p.242:

The Laplace transformation is a method for solving differential equations (...)

The process of solution consists of three main steps:

1st step. The given “hard” problem is transformed into a “simple”

equation (subsidiary equation).

2nd step. The subsidiary equation is solved by purely algebraic ma-

nipulations.

Side comment: what becomes far less obvious (to others) is their use in an in-discriminated
and undocumented way!
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3rd step. The solution of the subsidiary equation is transformed back

to obtain the solution of the given problem.

In this way the Laplace transformation reduces the problem of solving a differ-

ential equation to an algebraic problem.

This is precisely what we would like to do in reverse denotational semantics: obtain

the pointwise denotation of a program, transform it into a subsidiary pointfree denota-

tion, obtain the solution using the pointfree algebra of programs, and return back to the

pointwise level where formal method practitioners are used to express their thoughts.

10 Algebra of programming

In a more respected than loved paper, John Backus [Bac78] was among the first to

alert computer programmers that computer languages alone are insufficient, and that

only languages which exhibit an algebra for reasoning about the objects they purport

to describe will be useful in the long run. This line of thought has witnessed significant

advances over the last decade, based on the so-called functorial approach to datatypes

which, originating from [MA86], has reached the status of a thorough program calculus

in [BdM97]. Because this style of calculation has become known as the Bird-Meertens

formalism (BMF) [Bac88], we will refer to the transformation from the “ -space to the

-space” (where stands for variable and for pointfree) as the “BMF transformation”.

11 Introducing the “BMF-transformation”

Programming “trick” (2) is an instance of a class of formal program transformations

known as fusion laws: two sequential computations of the same kind — in this case,

and — merge together (ie. “fused”) in a single computation of the same

kind — in this case.

Recall that we have decided to restrict ourselves to functional code blocks, ie.,

pieces of code whose semantics can be expressed by functions , etc. So “ ” in

denotes function composition

(9)

under typing rule

"" ""

""

On the other hand, programming trick (3) has to do with “fusing” two “parallel”

computations into a single one and affiliates to another group of laws having to do with
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mutual recursion. These involve the “angle bracket” combinator of (3), which we will

refer to as the “split” combinator:

##
(10)

cf. diagram

"" ##$$############

%% &&$$$$$$$$$$$$

involving projections and which are such that and .

This is Backus [Bac78] construction operator, which can be specified as the following

polymorphic operator in VDM-SL notation:

mk-

(11)

These combinators are rich in algebraic properties. For instance, the -cancellation

laws

, (12)

are implicit in the diagram above, and the -fusion law

(13)

expresses “left distribution” of composition of over split, a law in which two “parallel”

consumer functions and fuse with another, producer function .

Already known since Backus’ algebra of programs, law (13) is an example of an

equation “in the -space”. The compression of notation and the power of such laws is

particularly apparent in dealing with recursion, that is, with inductive datatypes. For

conciseness, we will focus on the datatype of finite lists (which is the one present in

word count) and mention only the laws which are relevant for our calculations. (For a

comprehensive account, see eg. [BdM97].)

Consider the following inductive definition (in VDM-SL) of the functionwhich com-

putes the sum of a list of integers:

if

then

else hd tl

(14)
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In general, any list processing function with signature "" can be written

according to the following recursive scheme, in VDM-SL:

if

then

else hd tl

(15)

for some and "" . For instance, and in

.

A standard result in inductive datatype theory tells us that each instance of is

uniquely determined by the pair . Pairs of this kind are called algebras (= collec-

tions of functions and constants) which will be described in a compact way by resorting

to a combinator which dualizes split (10):

##

(16)

cf. diagram

##

''%%%%%%%%%%%%

!!

""

((&&&&&&&&&&&&
(17)

where denotes the disjoint union of and .

Split and its dual are related to each other by the following exchange law, which

makes it possible to express every function of type "" in two alter-

native ways

(18)

for "" , "" , "" and "" .

Thanks to the combinator, one can record the whole information about algebra

above into a single arrow

"" (19)

where denotes an arbitrary (but fixed) singleton type — eg.
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in VDM-SL— and denotes the “everywhere ” constant function such that

(20)

Going further in the same direction, we can let arrow (19) participate in a larger diagram

which records the whole “algorithmic” information about (15):

!! !!

""

""

(21)

In this diagram: is the VDM-SL type of finite lists (whose elements belong to );

is algebra which builds -lists 5; is the identity function such that

for every ; the “recursive call” involves the “product”

combinator,

(22)

and its dual, the “sum” combinator:

(23)

Diagram (21) expresses an equation about

which we re-write into

(24)

by introducing and .

Equation (24) is all we need to know to define — provided we instantiate , ie.

and . To express this uniqueness of , dependent on , we write — read “ -

catamorphism”— instead of :

(25)

For instance, catamorphism is the “BMF-transformation” of the equivalent,

four line VDM-SL (pointwise) definition of (14). As an exercise, the reader can

Operator is defined in VDM-SL by
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recover this definition of — or in general that of (15) — from (25) by applying

standard laws of the algebra of programming known as -fusion,

(26)

and -absorption

(27)

among others.

Catamorphisms extend to any polynomial and possess a number of remarkable

properties, among which we select the mutual-recursion law, also called “Fokkinga

law”:

(28)

cf. diagrams

!! !!

""

""
!! !!

""

""

and

!! !!

""

""

This law is a formal basis for “parallel loop” inter-combination (or unravelling). It will

play the major rôle in the calculations which remain to be done about .

12 Back to — introduction of mutual recursion

Recall functions and in (8). We will now focus our attention on function

which, in the -space,

char
""

is list catamorphism

false

By delivering a pair of outputs, (7) will split into

where
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char

mk-

if

then

else

char

that is (in the -space):

where , double projection abbreviates , and resorts

toMcCarthy’s conditional combinator defined by

(29)

where

(30)

Function can be reshaped

false

exchange law (18)

false

in a way so that it can be handled by themutual-recursion law (28), for

and false . From this we infer , as follows:

– Unknown :

false

instantiations

false

-absorption (27)

false

-natural law (31) below

false
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One of the -natural laws

(31)

(32)

was used in this calculation. Back to the -space, one obtains

false

– Unknown : its diagram is

char

!!

char char

!!

""

char""

Calculation:

instantiation of

-absorption (27)

McCarthy conditional and -cancellation (12)

Back to the -space:

if

then

else

Finally,

recall

mutual recursion introduced above

-cancellation (12)
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So we adopt as in our final VDM-SL, which goes back into the -space. For a

more suggestive reading, we negate condition and abstract into a

“look ahead for word separator” predicate 6:

char

if

then

else if hd tl

then tl

else tl

char

hd

This specification adds to our understanding of word counting mechanism:

counts the number of transitions from a non-separator to a separator character, or the

end of the input stream. As anticipated earlier on, variable has disappeared

throughout this calculation. In fact, it can be regarded as a state “flag” implementing

the “separator/non-separator” state automaton which is implicit in the original code:

!! !"#$%&'(
""

!!

%!" #($
!!

!"#$%&'(
""

!!

'($%!&
##

)*+,-./012345678

Function is now a proper inductive function: it belongs to the class of so-called

paramorphisms [Mee92], which are very common in formal specification (for instance,

the usual definition of the factorial function is a paramorphism). Depicted in a dia-

gram, will look as follows

char

!!

char char

!!

""

char char""

where

The version of the if-then-else relies on VDM-SL’s logic of partial functions [FL98].
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char char

mk-

if

then

else

All in all, we can write

main()

where len . In VDM-SL notation:

char

mk- len

13 Summary

As pictured in Fig. 2, we have combined a formal method — algebra of programming

[BdM97] — with a semi-formal one — code slicing [Wei81] — in order to perform

the reverse specification of a little program already studied in the code slicing literature

[GL91]: the word count program of [KR78]. We claim that we have gone deeper than

[GL91] in understanding this piece of code.

A key point of the approach is its constructive style, based on a change of notation

which leads to powerful algebraic laws of programming. This also helps in overcoming

shortcomings of the specification language. For instance, the coproduct construct

is not polymorphic in VDM-SL. For each particular and , a specific disjoint union

datatype has to be defined, eg. in:

: :

: :

So injections and instantiate to mk- and mk- , respectively, and to:

if is-

then

else
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Source code slicing

!!

- formal

Denotational semantics

!!

formal

Algebra of programing + formal

Figure 2: Formal/informal method combination.

Thanks to the change of notation, all our reasoning involving coproducts was hand-

somely carried out in the -space (pointfree notation). Pointfree reasoning went as far

as absorbing auxiliary variables and introducingmutual recursion, a specificationmech-

anism which programmers never make explicit because they fear lacking efficiency.

Last but not least, the approach adds to program understanding in “cataloguing” se-

mantic denotations into well-known classes of inductive schemata (cata/paramorphisms)

which are rich in algebraic properties and are amenable to further reasoning (eg. re-

implementation).

Slicing can be regarded as a denotational semantics “shortcut” — it trims down

the complexity of handling all program variables at the same time. In fact, the mutual-

recursion law (28) could have been applied to the whole program — rather than to its

slices — at the sacrifice of a lot more reasoning showing eventually that the three slices

are independent of each other: a result known as the banana-split law,

(33)

which is a special case of (28).

14 Related work

Venkatesh [Ven91] was among the first to address program slicing from a formal se-

mantics point of view. References [CLM95, CLM96] present approaches to recover

(functional) specifications from imperative source code using “symbolic execution”.

Specifications are expressed by pre/post-conditions. References [GC96, GC99] also

base their reverse engineering strategies on pre-/post-conditions. Similarly, [CLM98]

uses a first order logic formula to map a subset of the input program variables onto a

set of initial states. This allows one to specify any initial state of the program. So, the
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slice calculated by adding such a condition on the input variable to the slicing criterion

is called conditioned slice.

Reference [HDS95] proposes the use of program transformation techniques to con-

struct a syntactically unrestricted slice, and so to improve the simplification power of

slicing. In the same direction, [HD97] introduces the concept of amorphous slicing,

which relaxes syntactic constraints traditional in slicing, thus generating smaller slices.

In this way, the applicability of slicing to program comprehension is improved.

The repertoire of formal techniques for reverse engineering further includes “type

inference” [vDM99] and concept/cluster analysis [vDK99]. These are applicablemainly

to the detection of objects and can also be combined with techniques proposed in this

paper. Likewise, semi-formal techniques [Vil01a] for the detection of recurrent algorith-

mic structures can also contribute to the identification — and later to the formalization

— of program patterns.

15 Future work

The technique for code reversal reported in this paper is work in progress and some of

its problems are still open. At the heart of these we place the conjecture of section 7. As

anticipated in section 7 and discussed in [VO01], it needs further attention in presence

of non-termination, forcing equality to give place to in (4) and thus a move towards

the more general relational algebra of programming [Bac00, BdM97].

A forthcoming master thesis [Vil01b] is expected to present several exercises such

as word count which will let us to know more about which laws of programming are

relevant in this context and to improve the interplay between the code slicing and the

algebra of programming techniques. Even within the functional interpretation, some

program structures will require laws more powerful than those which we have been

thinking of — for instance, comonadic calculations [Par00].
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