arXiv:1311.3687v1 [cs.LO] 14 Nov 2013

Calculating risk in functional programming

Daniel Murté'1, José Nuno Olivei

@HASLAB - High Assurance Software Laboratory
INESC TEC / Univ. Minho, Braga, Portugal

Abstract

In the trend towards tolerating hardware unreliabil#ggcuracyis exchanged focost
savings Running on less reliable machines, “functionally cortectde becomes risky
and one needs to know how risk propagates so as to mitigate it.

Risk estimation, however, seems to live outside the aveyezgrammer’s technical
competence and core practice.

In this paper we propose that risk be constructively hanéteflinctional pro-
grammingby (a) writing programs which may choose betwexpectedand faulty
behaviour, and by (b) reasoning about them in a linear afgektension to standard,
la Bird-Moor algebra of programming.

In particular, the propagation of faults across standasgam transformation tech-
nigues known atupling andfusionis calculated, enabling tHault of the wholgo be
expressed in terms of tHaults of its parts

1. Introduction

With software so invasive in every-day’s life as it is todgyy don’t need to be staff
of a space agency to place the questiohat risks do we run day-to-day by relying on
so much software3ackson (2009) writes:

(...) adependable system is one (..) in which you can plagengtiance
or trust. A rational person or organization only does thighwevidence
that the system’s benefits outweigh its risks.

Over the years, NASA has defineg@babilistic risk assessme(®RA) methodology
to enhance the safety decision process. Quoting (Start@elad Dezfuli, 2011):

PRA characterizes risk in terms of three basic questionsW(tiat cango
wrong? (2) Howlikely is it? and (3) What are theonsequenc@s The
PRA process answers these questions by systematicgllydentifying,
modeling, andquantifyingscenarios that can lead to undesired conse-
guences.

*Corresponding author.
LPartially supported bfFundag&o para a Ciéncia e a TecnologRortugal, under grant number
BI1-2012 _PTDC/EIA-CCO/122240/2010 _UMINHO.

Preprint submitted to Elsevier November 18, 2013

http://arxiv.org/abs/1311.3687v1

This may leave one with the feeling that PRA takes plaqeosteriorj that is, once
the system is built. Even if a wrong understanding of PRAthtions of current
programming practice are apparent concerning timely assest of the risks involved

in the future use of computer progranhings that can go wrongan be guessed; but,
how is thelikelihood of such bad behaviour expressed? and how does one quasitify it
consequencg$ault propagation)?

This paper addresses these questions and issues in thetaafrfienctional pro-
gramming(FP) overunreliable hardware. Note that such unreliability can be inten-
tional, as is the case inexact circuit desigiiLingamneni et al., 2013), where accuracy
of the circuit is exchanged for cost savings (eg. energwydsilicon).

We will show that FP is well prepared for smoothly incorpargtrisk analysis in
the design of programs. This is because the stanglaatitativesemantics of FPs can
evolve towards guantitativeone simply by upgrading its underlyimglationalalgebra
of programs “a la Bird-Moor” (1997) into Bnear algebra of programming (Oliveira,
2012a).

The basic idea is simple: suppose one writes funcgien! for the intended be-
haviour of a program and there is evidence that, with prdibahi, such behaviour can
turn into abad function. Using theprobabilistic choicecombinator(- .< -) of Mclver
and Morgan (2005); Oliveira (2012a), one may write term

bad ,o good

to express the complete (ie. with risk incorporated) behawwof what one is program-
ming.

What is needed, then, is a method for evaluating the projmagaitrisk, for instance
across recursion schemes. This is whatlihear algebra of programming (LAoP) is
intended for. This paper investigates, in particular, tharditative extension of the
so-calledmutual recursionand banana-splittaws (Bird and de Moor, 1997) which
underpin the refinement of primitive recursive function®itinear implementations
and checks under what conditions are such implementat®gsed as their original
definitions with respect to fault propagation.

The approach will be illustrated in two ways: either by rurgiprograms as prob-
abilistic (monadic) functions written in Haskell using tR&P library of Erwig and
Kollmansberger (2006), or by running finite approximationthem directly as matri-
ces in MATLAB 2.

Contribution. Inthe trend towards tolerating hardware unreliabibtgguracyis exchang-
ed for cost savings Running on less reliable machines, functionally “correctde
becomes risky and one needs to know how risk propagates sangitigate it. In this
context, this paper presents the following contributions:

e It shows how the standawmlgebra of functional programdear to the so-called
program transformatiorschool of software design extends and incorporates risk

2MaTLAB ™ is a trademark of The MathWorkB).

simply by switching front'sharp” functions toprobabilisticfunctions handled
as matrices in linear algebfa.

e The laws of such dinear algebra of programming are shown to capture the
notion of probabilistic indistinguishability, essenttaldecide whetheprogram
transformatiorrules can be safely applied or not.

e The approach is shown to be readily applicabledoursive programsvhich
handle possibly interfering threads of computation.

e In particular, mutually recursive computations are adskedshowing under what
conditions mutual recursion slicing holds in the probafiii setting.

e Finally, the paper shows that a well-knotuplingtechnigue known as theanana-
split” functional program transformation is still valid in preserof faults.

Paper outline. The following section presents two motivating programsahhwill be
subject to fault-injection as an illustration of risk siratibn and calculation. Section
3 addresses the derivation of such programs via mutuatsiecutransformation, an
exercise which is extended in section 4 to the probabilsgiting. A basis for this is
given in section 5, where the LAOP is put in context, leadmthe approach to proba-
bilistic mutual recursion given in section 6. This in turadks to an asymmetry (section
7) which explains the different fault propagation pattefmsnd in the two motivat-
ing examples (section 8). The topic of fault propagatioruinctional programming is
further delved in section 9 by moving to more elaborate dgtas and showing how
therisk of the wholecan be calculated combining thisk of the parts The two last
sections conclude, review related work and give prospectiiture work. Proofs of
auxiliary results are deferred to appendix Appendix A.

2. Motivation

Let us start from two programs written in C, one which supplbseomputes the
square of a non-negative integer

int sq(int n) {
int s=0; int o=1;
int i;
for (i=1;i<n+1;i++) {s+=0; o+=2;}
return s;
b

and the other

int fib(int n) {
int x=0; int y=1; int i
for (i=1;i<=n;i++) {int a=y; y=y+x; x=a;}
return X;

k

3This extends to deterministic imperative programs via ghilistic functional semantics denotation.

which supposedly computes theth entry in the Fibonacci series, farpositive.

Both programs aréor-loops whose bodies rely on the same operation: addition of
natural numbers. Suppose one knows that, in the machinesvglieh programs will
run, there is the risk of addition misbehaving in some knovay with probabilityp,

z + y may evaluate tg, in which casdz+) = id, the identity function. Or one might
know that, in some unfriendly environment, the processanithmetic-logic unit may
reset addition output t0, with probability q.

The question is: what is the impact of such faults in the d/behaviour of each
for-loop? Can wemeasuresuch an impact? Can wwedictit? Are there versions of
the same programs which mitigate such faults better thaortke given?

The standard approach to these questions relies on sionlatie performs a large
number of experiments in which the programs run with the mieilts injectedac-
cording to the given probabilities and then performs diatenalysis of the outcome
of such simulations. Softwarault injection(Voas and McGraw, 1997) is a more and
more widespread technique for quality assurance which uneashe propagation of
faults through paths that might otherwise rarely be folldwetesting. The G-SWFIT
technique, for instance, emulates the software fault elas®st frequently observed in
the field through a library of fault emulation operators, amjdcts such faults directly
in the target executable code (Duraes and Madeira, 2006).

In this paper we adopt a different strategy: instead of sitind risky behavioua
posteriori this is taken into accoumt priori by moving from imperative to functional
code whereby faulty behaviour is encoded in terms of prdiséibifunctions (Erwig
and Kollmansberger, 2006). Take the two versions of fauliition given above as
examples: the first can be expressed by turiinginto the probabilistic function

fadd, = id ,o (z+)

(fadd. for “faulty addition”) which misbehaves as the identity fition id with proba-
bility p and exhibits the correct behaviour with probability p; similarly, the second
version is expressed by probabilistic choice

fadd, =0 40 (z+)

whereQ _ = 0 is the everywher@-constant function. Of course, we might think of
more elaborate fault patterns, for instance

fadd, = (0 40 id) po (z+)

in which the probability ofadd . resetting td) is ¢gp and(1—q) p is that of degenerating
into the identity; or even thinking of normal distributionsntered upon the expected
outputz + y, and so on.

Probabilistic functions are distribution-valued functsonvhich can be written in the
monadic style over thdistribution monad This is termedDist in the PFP library of
Erwig and Kollmansberger (2006), which we shall be usindiasngequet. Moreover,

4All distributions in our approach are generated by finitelimafion of thechoice operator and therefore
have finite support.

probabilistic functions can be reasoned about using the Ewnonads, explicitly as
advocated by Gibbons and Hinze (2011) or implicitly as inphebabilistic notation
proposed by Morgan (2012) as extension to the standard &udiquantifier calculus
(Backhouse and Michaelis, 2006).

There is yet another alternative: every probabilistic tiorcf : « — Dist b isin
one-to-one correspondence with a matrix whose columngdexéd by, whose rows
are indexed by and whose multiplication corresponds to composition inKhegsli
category induced byist (Oliveira, 2012a,b). This offers the possibility of usirget
rich field of linear algebrato calculate with probabilistic functions, in the same way
relation algebra is advocated by Bird and de Moor (1997)dasponing about standard
(sharp) functions.

One of the advantages of suclireear algebra of programming (LAoP) is the way
recursive probabilistic functions are handled — simply bing the same combinators
(eg. maps, folds) — of the standard algebra of programmiirg @d de Moor, 1997).
The shift from a qualitative to a quantitative semantichééfore rather smooth — the
game is the same, the move ensured just by change of undgclgiagory. Following
this approach, Oliveira (2012a) already gives an exampiehait might be referred to
asfault-fusion the risk of the whole misbehaving can be expressed in teftieaisk
of the parts misbehaving wherever a particular fusion laapiglicable.

Note, however, that not every law of the algebra of prograngneixtends quanti-
tatively. In this paper we address the linear algebra eidarsf one such law which
is particularly relevant to program calculation: timeitual recursiorlaw enabling sys-
tems of mutually recursive functions to be merged into alsingore efficient function
(Bird and de Moor, 1997). Both C programs given above can biatefrom their
specifications using such a law. Below we show how they camuirestl into prob-
abilistic functions expressing safe and risky behavioua imatural and calculational
way.

3. Mutual recursion

Let us take the standard definition of the Fibonacci funcgtientten in Haskell
syntax:

fib0=0

fibl=1

fib(n+2)=fibn—+fib(n+1)
The linear version encoded in the C program given above igitvdd by pairingfib
with its derivative f n = fib (n +1): °

fib0=0

fib(n+1)=fn

fo=1

fn+)=fibn+fn

SSincef 0= fib1=1landf (n+1)=fib (n+2)=fibn+fib (n+1) =fibn+f n.

The pairing of the two functions,

(fib, f) n = (fib n, f n)

can be expressed primitive-recursively by

(fib,f) 0= (fib 0,f 0) = (0,1)
(fibs f) (n+1) = (f n, fib n + f n)

or by the equivalent

(fib,f) 0 =(0,1)
(fib,f) (n+1) = (y,z + y) where (z,y) = (fib,f) n

itself the same as

(fib, f) = for loop (0,1)
where loop (z,y) = (y,z + y)

by introduction of theor loop combinator,

forbi0=1
forbi(n+1)=>b (for bin)

whereb is the loop body and provides for initialization. This is the natural-number
equivalent to combinatdbldr over finite lists in Haskell, ie. theatamorphisn(Bird
and de Moor, 1997)f the natural numbersTherefore, we can define

fibl n =
let (z,y) = for loop (0,1) n
loop (z,y) = (y,z +y)
inz

as the linear version gfb obtained by pairingib with its derivative — compare with
the C program given above.

The other program computing squares can be derived in the say from the
specificationsg n = n?: the two mutually recursive functions

sg0=0
sq(n+1)=sqgn+oddn
odd 0 =1
odd (n+1) =2+ odd n

arise from the binomian + 1)? = n? + 2n + 1 and introduction of functiomdd n =
2 n + 1, thus named becau8en + 1 is then-th odd number. (That is, the square of a
natural number always is a sum of odd numbers.) Pairing themta (sq, odd) = =
(sq z,0dd =z) and proceeding in the same way as above we oltainodd) =

for loop (0,1) whereloop (s,0) = (s + o, 0 + 2) and thereupon the following func-
tional version of the given C prograrh:

sqglm =
let (s, 0) = for loop (0,1) n
loop (s,0) = (s+0,0+2)
in s
Clearly, each recursive function above and its linear werare, extensionally, the same

function. Let us now see what happens once we start injeaskyg (faulty) behaviour
in each of them.

4. Going probabilistic

Probabilistic extensions of any of the functions above cawltained by writing
them monadically and then instantiating them with the ttigtron monad (Erwig and
Kollmansberger, 2006). Take the recursive versiorfibfgiven in the beginning of
section 3 and “monadify it” into:

mfib 0 = return 0
mfib 1 = return 1
mfib (n +2) =
do {z + mfib n;y + mfib (n+ 1); return (z + y) }

Runningmfib n inside theDist monad one getfb n with 100% probability, since
return yields theone-point Dirac distribution of its argument.

Now let us inject one of the faults mentioned in section 2 faay , = = id,o(z+)
with p = 0.1, for instance. For this we just replaceurn (z + y) (perfect addition)
by fadd, , = y and run test cases, €g.

Main> mfib 4
3 81.0%
2 18.0%
1 1.0%

We see that the correct behavioufi(% chance of gettingib 4 = 3) is no longer
ensured — with chanci&% one may ge® as result and evehis a possible output,
with probability1%.

Similar experiments can be carried out with the linear werbiy defining its monadic
evolution

mfibl n =
do {(z,y) < mfor loop (0,1) n; return x }
where loop (z,y) = return (y,z + y)

6Notice how the syntaz+=0; 0+=2; in C nicely tallies with(s + o, o + 2) in Haskell.

"The probabilities in this example and others to follow aresem with no criterion at all apart from
leading to distributions visible to the naked eye. By all mga.1 would be extremely high risk in realistic
PRA (Stamatelatos and Dezfuli, 2011), where only figuresveisas1.0E-7 are “acceptable” risks.

relying on the monadic extension of the combinator:

mfor b i 0 = return i
mfor bi (n+1)=do {z + mfor bin;ba}

To inject intomfibl the same fault injected before intafib amounts to replacing, in
the loop bodygoodaddition by thebad one:

loop (z,y) =do {z « fadd,, = y;return (y,2)}

Running the same experiment as above we stilliggbl 4 = mfib 4. However,
behavioural equality between the two (one recursive, therolinear) fault-injected
versions offib is no longer true for arguments> 4, see for instance

n mfib n mfibl n

5 65.6% 5 72.9%
4 21.9% 3 16.2%
5 3 10.5% 4 81%
2 1.9% 2 2.7%
1 0.1% 1 0.1%

0,

8 AT | s o

6 11'80/" 6 14.6%
O 5 14.6%

5 9.8% .
6| 2 70| 3 24%
s 110 | 4 24%
5 0'20/2 2 0.4%
T oo | L 00%

the linear version performing better than the recursiveiartbe sense of hitting the
correct answer with higher probability.

Finally, let us now carry out similar experiments concegiihe injection of the
same fault (in the addition function) in suitably extendetbfiadic) versions of the
square function, the recursive one

msq 0 = return 0
msq (n+ 1) = do {m < msq n; faddy, m (2xn+1)}

and the linear one:

msql n =
do { (s, 0) < mfor loop (0,1) n; return s}
where loop (s,0) =
do {z «+ fadd, s o;return (z,0+2)}

In this case — as much as we can test — both versions exhitsatine behaviour, that
is, they are probabilistically indistinguishable, seeif@mtance:

n msq n msql n

0 0 100.0% 0 100.0%

1 1 100.0% 1 100.0%

2 4 90.0% 4 90.0%
3 10.0% 3 10.0%
9 81.0% 9 81.0%

3 5 10.0% 5 10.0%
8 9.0% 8 9.0%
36 59.0% 36 59.0%
11 10.0% 11 10.0%

6 20 9.0% 20 9.0%
27 8.1% 27 8.1%
32 7.3% 32 7.3%
35 6.6% 35 6.6%

Summing up, we are in presence of two examples in which tk@fisad behaviour
propagates differently across the mutual recursion fonetiprogram transformation.

In the remainder of this paper we will resort to linear algetwr explain this dis-
crepancy. We will show that, even if the transformation doeshold in general for
probabilistic functions, there are side conditions sudfitifor it to hold, explaining the
different behaviour witnessed in the examples above.

5. Probabilistic for-loops in the LAoP

Consider the probabilistic Boolean functigh= False ¢ ¢5¢ (—) which is such
thatf True = False (100%) andf Fulse is either True (95%) or False (5%) — an
instance ofaulty negation |t is easy to represeiftin the form of a matrixi/,

False True
M= False (0.05 1.00 (1)

True \0.95 0.00

where the inputs spread across columns and the outputsaoms. Because columns
represent distributions, all figures in the same column hswm up tol.

Matrices with this property will be referred to aslumn-stochasti¢CS). The mul-
tiplication of two CS-matrices is a CS-matrix, as is the iitgrmatrix id (square,
diagonal matrix withls in the diagonal) which is the unit of such multiplication:
M.id = M = id - M, where matrix multiplication is denoted by an infix det

We will write M : n — m, or draw the arrown —2= m , to indicate thetype
of a CS-matrix)M, meaning that it has columns andm rows. This view enables
us to regard all CS-matrices as morphisms of a category wbbjgets are matrix
dimensions, each dimension having its identity morphigm If one extends such
objects to arbitrary types (with Cartesian product andodisjunion for addition and

multiplication of matrix dimensions), this category of megs turns out to represent
the Kleisli category induced by the (finite) distribution naal. In the example above,
f : Bool — Dist Bool is represented by a matrix of tygé : Bool — Bool (1) on the
Kleisli-category side.

Let notation[f] mean the matrix which represents probabilistic funcjian such
a CS-matrix category. Fgrof type A — Dist B, [f] will be a matrix of typed — B,
that is, cellb [f] a in the matrix® records the probability of in distributiond = f a.
Then probabilistic function (monadic) composition,

(feg)a=do{b«ga;fb}

becomes matrix multiplication,

[fegl=1/]"[d] 2
and probabilistic function choice is given by
[fpogl = plf1+Q1-p)ld] ®3)

where+ denotes addition of two matrices of the same type and/ denotes the
multiplication of every cell inM by probabilityp.

Clearly, [return] = id. Any conventional functiorf : A — B can be turned into
a “sharp” probabilistic one through the compositi@turn - f which, represented as a
CS-matrix, is the matrid¥/ = [return - f] suchthath M « = 1if b = f a and isO
otherwise? We will write [f] as shorthand fofreturn - f] and therefore will rely on
fact(f a) [f] a = 1, all other cells being.

The fact that sharp functions are representable by mataicedhat function com-
position corresponds to chaining the corresponding matriows makes it easy to pic-
ture probabilistic functional programs in the form of diagrs in the matrix (Kleisli)
category. Take, for instance, the for-loop combinatorgiabove,

forbi0=1
forbi(n+1)=>b (for bin)

and re-write it as follows,

(forbi)-0=i
((for b i) -succ) n=(b- (for bi)) n

wheresucc n = n + 1 and (recall) the under-bar notation denotes constantifumet
This is the same as writing the matrix equalities,

8Following the infix notation usually adopted for relationshich are Boolean matrices), for instance
y < z, we writey M z to denote the contents of the cell in matriX addressed by row and column
z. This and other notational conventions of the linear algedfrprogramming are explained in detail in
(Oliveira, 2012b).

9A probabilistic functionf : A — Dist B is said to besharpif, for all a € A, f a is a Dirac
distribution. A Dirac distribution is one whose support isiagleton set, the unique element of which is
offered with100% probability.

10

[for b] - [0] = [4]
[for b @] - [succ] = [b] - [for b 7]

which can be reduced to a single equality,

[for & 4] - [[0] [suce]} = [[Z][([0] - [for b 4])] (4)

by resorting to thg M |N] combinator which glues two matriced : A — C and
N : B — C side-by-side, yieldingM |N]: A+ B — C. As explained by Macedo and
Oliveira (2013), this combinator — which corresponds toréational “junc” operator
of Bird and de Moor (1997) — is a universal construction in aajegory of matrices,
therefore satisfying (among others) the fusion law

P-[M|N] = [P-M|P-N] (5)
and (for suitably typed matrices) the equality law,
[MIN}]=[PIQ] = M=PAN=Q (6)

both silently used in the derivation above.

Our matrix semantics for théor-loop combinator can still be simplified in two
ways: first, the[-] parentheses in (4) can be dropped, since we may assume they ar
implicitly surrounding functions everywhere:

(for b 1) - [O|succ] = [&|(b - (for b i))]

Second|i|(b - (for b 4))] can be factored into compositi¢i}b] - (id & (for b)), since
absorption law

[M|N]-(P®Q) = [M-PIN-Q] (7
holds, where & - is the matrix direct sum (block) operatiodd & N = [J\(;[](\)]]
Altogether, we get an equality of matrix compositions,

(for b 4) - [O|succ] = [i|b] - (id @ (for b 7))

which corresponds to the typed matrix diagram which follows

. o_ [0°
me= {succO }

/\.
No =~ 1+ Np
_/

for b zl in=[0]succ] Lid@(for b i)
B \/1 +B
[3[]
where symboF* indicates that functionn = [0|succ] is a bijection, and therefore
its conversen® is also a function. By theonverseM° of a matrix M we mean its

11

transpose, thatis; M° y = y M x holds: the effect is that of swapping rows with
columns. The diagram also uses #dit combinator[;] which is the converse dual of

[]]:

- ®)

vy = |52
Why does this diagram matter? First, it can be recognizedhassiance of a
catamorphisndiagram (Bird and de Moor, 1997), here interpreted in thegaty of
CS-matrices rather than in that of total functions or binafgations — thegualitative
to quantitativeshift promised in the introduction of the paper. In fact, déese com-
position is closed for CS-matrices and these include shargtions,b and: can vary
inside the CS-matrix space and the diagram will still makesse For instance, the
base case, which is represented by constant funétion — Ny — a column vec-
tor — corresponds to the Dirac distribution énwhich can be changed to any other
distribution.
Moreover, becausm is a bijection, not only the diagram tells thiat o i is a

solution to the equation
k-in=[i|b]- (id ® k)
but it turns out that this is the unique solutigh:
k=forbi = k-in=1[ib] (id®k) 9)
This unique solution can be computed as the fixpoirit of equation
k=1i-0°+1b-Fk-succ® (10)

which is obtained from (9) above by use of the so-called tivand-conquer’ law:

[M|N] - [g} — M-P4N-Q (11)

Equation (10) tells how the matrik = for b ¢ is recursively filled up: first the
outer-product - 0°, that is, the everywhere-matrix apart from the in cell (i,0)),
which is added td - i - 0° - succ®, and so on. For sharf this is(b i) - 1°, the n-th
entry being(b™ 7) - n°. Note that each contribution of the fixpoint ascending cligin
a matrix which “fills an empty column”, thus ensuring that rauzmn ever adds up to
more thanl.

Equation (10) also serves to emulate the construction ofixpeint using matrix
algebra packages such as, for instancarMB. In this case we build finite approxi-
mations of the fixpoint helped by the corresponding diagrppr@ximation, for inputs

10The argument is the same as in (Bird and de Moor, 1997) juseplacing the powerset monad by the
distribution monad.

12

at mostn and at mostin possible outputs:

[0]succ]®

+n
kl lid@k
+m

: 1
[i]]

As MATLAB is not typed, tracing matrix dimensions without the help iafgdams of
this kind would be a nightmare.

Let us see an example: suppose we want to emulate a fault indthéunction,
odd = (14) - (2%), in which (2x) = for (24) 0 is disturbed by the propagation of the
same fault of addition we have seen before:

ftwice,, = mfor fadd, 20
For instanceftwice, ; 4 is the distribution

8 65.6%
6 29.2%
4 4.9%
2 0.4%
0 0.0%

In MATLAB, we will first draw the corresponding diagram,

[0]suce]®

1+n
ftwice,, l l idDftwice,
m<=————14+m
[0l (idpo(2+))]

parametric on probability and then andm dimensions, which nevertheless have to
be passed explicitly when encoding each arrow of the diagrsuia MATLAB matrix.
The probabilistic choice in the corresponding instancel 6§ (

k= 0-0°+ (id po (24)) - k - succ® (12)
is captured by MTLAB function

function C = faddk(p,k,n,m)

M = eye(m,n);

N = addk(k,n,m);

C = choice(p,M,N);
end

(note the types, ie. dimensionsandm, passed as parameters) where

function C = choice(p,M,N)
if size(M) "= size(N)

13

error('Dimensions must agree’);
else
C = p*M+(1-p) *N
end
end

(note the need for explicit type error checking). The rightid side of the equation
(12) is captured by

function Y = twiceF(p,n,m,X)
if size(X) "= [m n]
error('Dimensions must agree’);
else
Y = zero(m) *zero(n) +
faddk(p,2,m,m) *Xxsucc(n,n)’
end
end

Forn, m = 5,8 andp = 0.1, the fixpoint of equation (12) is the matrix

1 0.1 0.01 0.001 0.0001

0 0 0 0 0

0 0.9 0.18 0.027 0.0036

0 0 0 0 0

0 0 0.81 0.243 0.0486
0 0 0 0 0

0 0 0 0.729 0.2916
0 0 0 0 0

0 0 0 0 0.6561

whose leftmost column (resp. top row) corresponds to inpasgp. output). The five
columns of the matrix correspond to the distributions otiggithe monadigtwice, ; n,
forn=0..4.

So much for an illustration of the correspondence betweenauiic probabilistic
programming (in Haskell) and column stochastic matrix ¢amtion (in MATLAB). In
the following section we will go back to analytical methodfying solely on universal
property (9) and its corollaries.

6. Probabilistic mutual recursion in the LAoP

As we have seen above, mutual recursion arises fronp#iing — tupling, in
general (Hu et al., 1997) — of two (sharp) functighandg, defined by

(f,g)(IJ:(f(IJ,g(IJ)

where(f,g):A — Bx Cforf:A — Bandg:A — C. This tupling operator is known
assplit in the functional setting (Bird and de Moor, 1997) orfagk in the relational
one (Frias et al., 1997; Schmidt, 2010). Macedo (2012) shbatsthese operators
generalize to the so-called Khatri-Rao prodiict N of two arbitrary matriced/ and
N, defined index-wise by

(bye)(M>N)a = (bMa)x(cN a) (13)

14

Thus the Khatri-Rao product is a “column-wise” version df thell-known Kronecker
product ® -, defined by

(y.2) (M@ N) (b,a) = (yMb)x(z N a) (14)
Khatri-Rao coincides with Kronecker for column vectarsl — B, v:1 — C,
ULV=UuQRQV (15)
and commutes with matrix junc’ing via tlexchange lawMacedo, 2012):
[MI|N]« [P|Q] = [(M + P)|(N « Q)] (16)

for suitably typed matrices/, N, P and Q.
For sharpfunctionsf and g, pairing is an universal construct ensuring that any
functionk producing pairs is uniquely factored to the left and to tigét;

k=fog = fst-k=fAsnd-k=g (a7)

wherefst (b, ¢) = b andsnd (b, ¢) = c¢. (Note how liberally we keep omitting thg]
parentheses around the occurrence of functions insidéxeafressions.)

From (17) a number of useful corollaries arise, namely (keepind thatf andg
should be sharp functions for the time beifigdion

(feg)-h=(f h)>(g-h) (18)
reconstructiont!
k= (fst- k) (snd - k) (19)
and pairwisesquality.
keh=fsg = k=fAh=g (20)

This makes it easy to prove the mutual recursion law, belstairtiated tdfor-
loops, wherdr f abbreviatesd @ f: 12

feg=for (hsk) (ij)
{ universal property (10)}
(feg)-in=[05)|(hek)]-F(f2g)
{ fusion (18) ; constant function$

(f-in)e(g-in)=[(z2 jI(h2 k)] -F(f9)

11Cf. loss-less decompositiq@liveira, 2011).
1275 is well-known, for sharp functions this law extends toestinductive types, eg. lists, trees etc (Bird
and de Moor, 1997; Hu et al., 1997).

15

{ exchange law (16)}

(f -in) 2 (g -in) = ([é|] » [j|%]) - F (f » g)
{ fusion (18) again}

(f-in) 2 (g-in) = ([i[h] - F (f = g)) = ([j|k] - F (f 2 9))
{ equality (20) }

{f-in—[zlh]F(ng)
g-in=[j|k]-F(f*g)

Read in reverse direction, this reasoning explains how geansive, mutually depen-
dent functiong’ andg (regarded as matrices) combine with each other into onéesing
functionf » g, from which one can extract bofhandg by projecting according to the
cancellationrule,

fst-(feg)=f ANsnd-(feg)=g (21)

yet another corollary of (17).

The law just derived can be identified as the underpinning@{pointwise) deriva-
tions of fibl (resp.sql) from fib (resp.sq) back to section 2. But note thAtandg have
been regarded aharpfunctions thus far, and therefore what we have written isgus
rephrasing of what can be found already in the literaturipling, see eg. references
(Bird and de Moor, 1997; Hu et al., 1997) among several others

We are now interested in checking the probabilistic extam&if (17). Let two
probabilistic functiong andg and their producf » ¢ be depicted as the CS-matrices
of the following diagram:

fst=[t 1 1 0 0 o0
=lo o o 1 1 1

2 2x3

4
We can handle this in Haskell by running the following moredinctions

(feg)a=do{b<«+ fa;c+ ga;return (b,c)}

16

mfst d = do {(b, ¢) « d;return b}
msnd d = do {(b, ¢) + d; return ¢}

inside the distribution monat¥ist, thereby implementing the Khatri-Rao product and
its projections. For instancef » g) 2 will yield

(2,1) 28.0%
(2,3) 28.0%
(22) 14.0%
(1,1) 12.0%
(1,3) 12.0%
(1.2) 6.0%

as in the second column of the corresponding matrix giveweabMoreover, both in
Haskell and M\TLAB we can observe the cancellatiofis- (f = g) = f andsnd - (f »
9)=9.

However reconstruction(19) does not extend probabilistically. This is because not
every CS-matrixt : A — B x C outputting pairs is the Khatri-Rao product of two
CS-matrices, as the following counter-example shows: imatr

k:3—2x3
0 04 02
02 0 017
0.2 01 0.13
0.6 04 0.2
0 0 0.17
0 01 0.13

k:

cannot be recovered from its projections, cf. the first calum

[0.24 04 0.27
0.08 0 0.17
0.08 0.1 0.13
0.36 0.4 0.2
012 0 0.17
10.12 0.1 0.13]

(fst- k) (snd - k) =

This happens because probabilistic Khatri-Rao weeakproduct — the expected
equivalence (17) is only an implication,

k=feog = fst-k=fAsnd-k=g (22)

ensuring existence but not uniqueness. The proof of (22wl equivalent to can-
cellation (21) — substituté and simplify — can be found in appendix Appendix A.
This proof relies on properties (15) and (16) of the KhataieRroduct.

Weak product (22) also grants pairwise equality (20) — stilistk by £ » h and
simplify — but the converse substitution ¢fand g, in the <= direction, leading to
reconstructior(19) is of course invalid. In turn, this invalidates fusid8] for arbitrary

17

probabilistic functionsf, ¢ and 4, although the property will still hold in cask is
sharp!?, as the straightforward proof in appendix Appendix A shows.

Altogether, the mutual recursion law will not hold in gerdaa probabilistic func-
tions, as its calculation (above) relies on fusion (18).sTikiconsistent with what we
have observed in section 4 concerning the two versions atri@bci,mfib before the
application of mutual recursion andfibl after, which differ substantially for inputs
larger thand. However, the corresponding pair of probabilistic funosmf the other
example —msq and msql — seemed to be the same (ie. probabilistically indistin-
guishable), as much as could be tested.

In the following section we explain the difference obserirethe two experiments
by investigating sufficient conditions for the mutual resian law to hold for proba-
bilistic functions (CS-matrices).

7. Asymmetric Khatri-Rao product

To re-establish the equivalence in (17) given (22) we juseha find conditions
for the converse implication

k=feog < fst-k=fAsnd-k=g

to hold, which is equivalent to (19) under the substitutioiinéroduction of variables
f andg. For this we may seek inspiration in relation algebra, where knows that if
one of the projections of a binary relatidhoutputting pairs is functional (ie., deter-
ministic), then(b,c¢) R a = b (fst - R) a A ¢ (snd - R) a holds. That s, by forking
fst - R andsnd - R one rebuildsR.

Back to probabilistic functions (ie. CS-matrices), thiggests the conjecture:

If either fst - k or snd - k are sharp functions then (19) holds.

Some intuitions first, before checking this. let A —+ B x C be a CS-matrix. The

factthatf = fst - k: A — B is sharp means that, fdr = f «, the corresponding

C-block in matrixk adds up to 1 and all the other entries in theolumn ofk are0.

Projectionsnd - k: A — C yields such a blockgfst - k, snd - k) puts it back in place.
The proof of this conjecture, whereby (19) grants for frexrdilection law

(fst,snd) = id (23)

(takef, g, k := fst, snd, id and note that all functions involved are sharp), will resort
to the definition of (typed) matrix composition, f&f : B — C andN : A — B,

e(M-Nya = (O b (cMb)x(bN a) (24)

13The same happens witbrksin relation algebra (Bird and de Moor, 1997).

18

and to two rules which interface index-free and index-wisgrim notation, whereVv
is an arbitrary matrix and, g are functional (ie. sharp) matrice’s:

y(f-N)x = (Zz cy=fz: zNz) (25)
yg°> - N-flz= = (9y) N (f =) (26)

Let us supposgst - k in (19) is sharp. We denote bfyy A — B the proper function
which fst - k is, by hypothesis. Thug = fst - k. Regarded as a matriX,is such that
bfa=1if b=f a,otherwiseb f a = 0. Itis easy to check that facts

O cx(facka=1 (27)
O (be) : (b#fa): ((be)ka)=0 (28)
hold — see below. Define, = (fst - k, snd - k), that is,
(b,¢) ma=(b(fst-k) a) x(c(snd- k) a)
the same as
(bye)ma=(bfa)x (D b = ¢) k a) (29)
sincef = fst - k ansnd is sharp (25). Our aim is to prove that = k.

Caseb # f a:. Inthiscase f a = 0and (29) yieldgb, ¢) m a = 0. From (28) we
also get(d, ¢) k a = 0 and som = k for this case.

Caseb = f a:. we have

(f a,c) ma

{ (9:(bfa)=1forb=fa}
O = (Vo) ka)
= {v=favid#fa}
v :bv=favi£fa: (¥, c)ka)
{ split summation ; one-point ovéf = f a }
(fa,)ka)+ (O b b #fa: (V,c)ka)
{ 28) }
(f a,¢) k a

14These rules are derived by Oliveira (2012b) adopting thelliren notation (Backhouse and Michaelis,
2006; Morgan, 2012) for summations, €3 = : R : S) whereR is the range (a predicate) which binds
the dummyz and .S is the summand{> = :: S) corresponds taR true for all z, the convention being
omit R in this case.

19

Thusm andk are extensionally the same for all cells addresse by, ¢), completing
the proof.
O

The proof assumingnd - k sharp instead ofst - £ being so will be essentially the
same. The remaining assumptions (27) and (28) are easiwgio the appendix.

8. Probabilistic mutual recursion resumed

Back to the case studies of section 4, we now capitalize orethdt of the previous
section granting that, if one of the projections of a prolsiig pair-valued functiork
is a sharp function, then property (17) holds and all its Baries. 1> This means that,
under the same assumption, the mutual recursion law widl tom.

Put in other words, the probabilistic behaviour of a paiued recursive function,
for instance dor-loop k = for b 4, will be the same as the prodyct g of its mutually
recursive projectiong andg, provided eitheyf is sharp oty is sharp.

This enables us to spot a difference between the two exaropsestion 4 just by
looking at the corresponding call graphs:

D) @)
We see thatq depends on itself and anld but odd only depends on itself. Probabilis-
tic msq was obtained fromq by injecting a fault in the addition operation but this did
not interfere withodd, which remained a sharp function. Thusgl andmsq exhibit
the same probabilistic behaviour.

Comparativelymfib was obtained fronfib by injecting a similar fault but this time
the fault propagates to its derivatifeand then back tenfib. Thus bothmfib andf are
genuinely probabilistic and the derived linear versiefib/ is not granted to exhibit the
same behaviour.

This can be confirmed by further querying our experimentsmways. First, we

check that thedd projection ofmsgl remains sharp in spite of the probabilistic process
it runs inside of: we defineusqlo as the same assql but returningo instead ofs,

msqlo n =
do { (s, 0) « mfor loop (0,1) n; return o}
where loop (s,0) =
do {z «+ fadd, s o;return (z,0+2)}

and run egmsgqlo 5, for instance

Main> msqlo 5
11 100.0%

15This includes, of course, the standard case in which pathd g are sharp functions.

20

to observe that it yields the Dirac distribution am, the fifth odd number, while its
companion projection yields

Main> msql 5

25 65.6%

9 10.0%
16 9.0%
21 8.1%
24 7.3%

Second, we disturb this situation by injecting anothertfalis time in thendd function
itself,

odd' 0 = return 1
odd" (n +1) = do {z < odd’ n; fadd,; 2z}

and check that suitably adaptedq, mutually dependent oodd’,

msq’ 0 = return 0
msq’ (n+1) =do {m < msq’ n;z < odd' n;faddy, m z}

and its linear version,

msql’ n =
do { (s, 0) < mfor loop (0,1) n; return s} where
loop (s,0) =do {
z 4+ faddy s 0;x < faddy 2 o;
return (z,z)}

now exhibit different probabilistic behaviours, for instz,

n msq’ n msql’ n
9 59.0% 9 65.6%
7 19.7% 5 15.4%
5 10.3% 7 7.3%
8 6.6% 8 7.3%

3 6 2.2% 3 2.6%
3 1.9% 4 0.8%
4 0.2% 6 0.8%
1 0.1% 1 0.1%
2 0.0% 2 0.1%

where linear scores better than mutually recursive, still.

9. Generalizing to other fault propagation patterns

Besides mutual recursion, other fault propagation paterdunctional programs
arise from calculations in the LAoP. These extend to oth&atgpes, afor-loops gen-
eralize to folds over lists, and more generally to catamisrpk over other inductive
data types (Bird and de Moor, 1997).

21

Below we give examples of this generalization. The first epianstill dealing
with for-loops, shows that faults in the base case propagate hniadugh the choice
operator — the law obase case fault distribution

for f (apob) = (for f a) po (for f b) (30)

The need for a generalization can be seen already in writingo*b”, an abuse of
notation since the choice operator chooses between funsctiwot arbitrary values.
Thus construcfor f i has to give room td|[%|f]]), where standard catamorphism
notation (Bird and de Moor, 1997) is adopted to give freedorthe base case to be
any probabilistic functiork of its type. Thus (9) becomes, férf = id @ f,

k=(hlf) = k-in=[lf]-(FF) (31)
Clearly,

for fa = (lalf] (32)

holds. In (30), abbreviatiofor f (a ,o b) replacing([(a ,¢ b)|f]) is welcome as it
enhances readability.

The proof of (30) is given in appendix Appendix A. It relies properties of
probabilistic choice already given by Oliveira (2012a)yady choice-fusion

(fpog)-h = (f-h)po(g-h) (33)
h-(fpog) = (h-f)po(h-f) (34)

and theexchange law

[Flgl po [RIE] = [(f po R)I(g po k)] (35)

Other interesting patterns of fault propagation arisgipelining, that is, composi-
tions of probabilistic functiong = f - ¢ whereby one is able to obtain tfeult of the
whole(probabilistick) expressed in terms of tHaults of its partgprobabilisticf and
g) by “fault fusion”.

The example of fault fusion given below involvesquencesather than natural
numbers, which means evolving from tfee combinator to the corresponding combi-
nator at sequence processing le\el

k=foldfd = k-in=I[d|f] (Fk) (36)

whereF k = id @ (id ® k) andin = [nil|cons] is the initial algebra of sequences,
for (in Haskell notationyil _ = [] andcons (h,t) = h: t. Besides the direct sum
(id @ -) splitting base from recursive case, as with, recursive patterfr % involves
the Kronecker productd ® k£ which delivers tof the head of the current sequence
and the outcome of the recursive céll The base case is captured by veaiora

16Both are instances of the genecdatamorphisntonstruct, as already mentioned.

22

distribution. For sharp functiongold f u means the same &sldr (curry f) w in
standard Haskell. (This difference is not a very significamt, as we shall see in the
examples below.) Substitution éfwill yield a closed formula for probabilistiéold
(cancellation property):

cons®

fold fd = [d|f - (id® (fold f d))] - { nil”]

{ divide-and-conquer (11}
d-nil® + f - (id ® (fold f d)) - cons® (37)

As examples, considepunt = fold (succ - snd) 0, the function that counts how
many items can be found in the input sequence, @d= fold cons nil, that which
copies the input sequence to the output (thats= id). Suppose there is some risk
that cat might fail passing items from input to output, with probdtilp, as captured

by
feat,, = fold (lose ,o send) nil

where lose = snd and send = cons. For instance, fop = 0.1, distribution
featy 1 "abc" will range from perfect copyn2.9%) to complete loss((1%):

"abc" 72.9%
"ab" 8.1%
"ac" 8.1%
"bc" 8.1%

"a' 0.9%
"b" 0.9%
"¢t 0.9%

"™ 0.1%

Now suppose thatount too may be faulty in the sense of skipping elements with
probability ¢:

feount , = fold ((id 4o succ) - snd) 0

For instance, fog = 0.15, distributionfcount ;5 "abc" will be:

3 61.4%
2 32.5%
1 57%
0 0.3%

What can we tell about the risk of faults in the pipelifeeunt , - fcat.? We could
try specific runs, eg.fcount , - feat,) "abc" yielding distribution

3 44.8%
2 41.3%
1 12.7%
0 1.3%

23

whose figures combin@) some waythose given earlier for the individual runs.

What we would like to know is thgeneralformula which combines such figures
and expresses the overall risk of failure. For this we retothe fusion lawwhich
emerges from (36) in the standard way (Bird and de Moor, 186d)also in the prob-
abilistic setting:

k-(foldge)=foldfd <« k-l[e|lg]=][d|f] (Fk) (38)

In our case, this enables us to solve the equafionnt, - fcat, = fold z y for
unknownse andy:

feount , - feat,, = fold x y
= { fold fusion (38) ; definition offcat, }

feount , - [nil|(lose po send)] = [z|y] - (F feount)

{ (5) ; definition ofF; (7) ; (6) }

feount , - nil =z
feount , - (lose o send) = y - (id @ feount ;)

{ feount, -nil=0}

z=0
{ feount , - (snd po cons) = y - (id ® feount)
Second, we solve the second equality just above for

feount,, - (snd po cons) = y - (id ® feount)

{ choice fusion (34)}

(feount,, - snd) o (feount,, - cons) = y - (id @ feount ;)

{ unfolding fecount, - cons }
(feount , - snd) po ((id 4o succ) - snd - (id ® feount ,))
=y (id ® feount ;)

{ free theorem ofnd }

(feount,, - snd) ,o ((id 4o succ) - feount,, - snd)
=y (id ® feount ;)
{ choice fusion (33)}

(id po (id 4o succ)) - feount ;- snd = y - (id @ fecount)

{ free theorem ofnd again }
(id po (id 4o succ)) - snd - (id @ feount) = y - (id ® feount)
= { Leibniz (id ® feount. cancelled from both sideg)

y = (id po (id 4o succ)) - snd

24

Summing up, we have been able to consolidate the risk of freipefcount , - feat ,,
obtaining the overall behavior

feount , - feat,, =
fold y 0 where
y=(p+q—pg) id+(1-p)(1—q)succ): snd

in which the probabilistic definition of combines the choices according to (3). It can
be checked that this behaviour (which corresponds to theeoEn more riskycount.
reading from a perfectat) matches up with the distributions obtained for the specific
runs given earlier.

10. Probabilistic “banana-split”

Our final result has to do with a program transformation tépiknown adanana-
split (Bird and de Moor, 1997). Suppose you want to compute theageeof a non-
empty list of integers:

avgl = sum 1 (39)

count |

Clearly, you need to visit the input listwice, one for computing the sum of all integers
and the other for knowing how many there aBanana-spliis known as a corollary of
the mutual recursion law which enables one to mérgih visits into a single one by
keeping both values (current sum and current count) in a pair

From the results of section 8 one cannot thk@ana-splifor granted in presence
of faults, as mutual-recursion does not hold in general.usestart with an example:
we inject faults in (39) by defining

favg,, , = fsum,, » fcount,
for fcount , as before and
fsum,, = fold (uncurry fadd,) 0

a (faulty) list sum functiort! For instance, we have the outcome:

Main> favg 0.15 0.1 [2,3]
(5,2) 58.5%
(5,1) 13.0%
(2,2) 10.3%
(3,2) 10.3%

1) 2.3%
(31 2.3%
0,2) 1.8%

I"We focus on computing the pair of values of (39), leaving el final division and the problem of the
divisions by zero which arise from faulty counting (to be tiked by raising exceptions).

25

(50) 0.7%

(©,1) 0.4%
(20) 0.1%
(30) 0.1%
(0,00 0.0%

which will lead to the correct average5 = % with 58.5% probability, the wrong
average ob with 13.0% probability and so on and so forth.

By application ofbanana split(details below) we transfornfuug, , into a single
fold on total/count pairst, ¢),

favgbs,, , = fold body (0,0) where
body (a, (t,c)) =do {
t' « fadd, a t;
¢’ « (id 4o succ) c;
return (t',¢') }

which happens to yield the same output for the same arguments

Perhaps the run above is not a good choice after all for slppgame possible
discrepancy between the two versions of the code, beforeatiadbanana split—
one would say. It turns out that further experiments wonttcaed in finding a run
discriminating both solutions, as these will remain pralistically indistinguishable.

We show below that this happens becausétmana splipprogram transformation
law doeshold probabilistically, independently of mutual recursioTo give a single
proof covering both for-loops and folds on lists, we gerieegboth (9) and (36) to

k=(f) = k-in=f-(Fk) (40)

wheref is a suitably typed probabilistic function covering botle ihductive and the
base cases of (9,36), and the custonimyanabrackets|_|) are used to denote such a
generic fold, orcatamorphism® Cancellation

(f)-in=f-F(fD (41)
follows trivially from (40).
Theorem 1 (Probabilistic ‘banana-split’). Transformation
(D=9 = ((f ®g)-unzipg) (42)
where
unzipg = (F fst) » (F snd) (43)
holds forf and g probabilistic and for all functorg over whichunzipg is natural:

(Ff®Fg)-unzipg = unzipp-F(f®yg) (44)

18FunctorsF X = id @ X andF X = id @ (id ® X) give us bacKor-loops and list folds, respectively.

26

Proof: Relying orabsorption law
(M-N)»(P-Q)=(M®®P)-(N-*Q) (45)

valid for any (suitably typed) matrice®/, N, P, Q) (Macedo, 2012), we proceed by
cata-universality, by solving fof the right hand side equation of (40), onkss in-
stantiated tat = (f]) + (g):

((£D = (gD) - in

= { asin is a proper function, pair-fusion holds (A.1)

(D -in)« ((g) -in)

= { two cancellations (41)}

(f-F(fD) > (g-F(gD)
= { pairing-absorption (45)}

(f@g)-((F(fD) = (F lgD))
= { (46) below}

(f @ g) -unzipg - F ((f) = (9))
O

Thus (42) holds, by (40). As shown in the appendix, fact

unzipe - F (f2g) = (Ff)=(Fg) (46)

used in the proof is an immediate corollary of the natural#g) ofunzip.
O

In the appendix we show that functors which support foldsfandoops are such
that (44) holds, thus granting “banana-split” (42) for symegramming schemes.
Moreover, this property is structurally preserved by fancomposition, sum etc.

In retrospect, note how law (42) was proved not as a corobi&ngutual recursion
but as arindependentesult. Also note the major role of functiamzip, (43) in each
inductive step: it separates that part of the output whidb ke fed tof from that to be
fed tog. Itis this separation which granten-interferencéetween both computations,
as happened in thejuareexample but not ifibonacciexample, as we have seen.

For completeness, we state the (conditioned) mutual recutaw in a similar
generic setting:

Theorem 2 (Probabilistic mutual-recursion). Transformation

fin=hF(Geg) L
{g-in=k-F(ng) = fro=(rH) #7)

holdsprovided one of probabilisticf or ¢ is sharp.
Proof: generalize the rationale of section 6 frdior-loops toF-catamorphisms. Typ-
ically, for one such function, saf; to be sharp, it has to be independent of the other

27

(sayg), assumed truly probabilistic. This means thatF (f = g) = b’ - (G f), for
someh’ andG.
O

11. Conclusions

The production ofafety criticalsoftware is bound to a number of certification stan-
dards in which estimating thask of failure plays a central role. NASA's procedures
guide forprobabilistic risk assessme(®RA) reviews the historical background of risk
analysis, evolving from a qualitative to a quantitativegperctive of risk (Stamatelatos
and Dezfuli, 2011). The UK MoD Defence Standard 00-56 (Mo@) 2 enforces that
all (...) calculations underpinning the risk estimatibe recorded in so-calleshfety
caseqdocuments supporting the claim that some given softwasafis)such that the
risk estimates can be reviewed and reconstructed.

Risk estimation seems to live outside programmers’ coretjpe either the soft-
ware system once completed is subject (by others) to interséinulation over faults
injected into safety-critical parts, or the estimationg@eds by analysis of worse case
scenarios on a large-scale view of the system'’s operation.

Software development and risk analysis are performed aggpabecause program-
ming language semantics are (in genegallitativeand risk estimation calls fauan-
titative semantic models such as those already prominent in se¢Midtyer and Mor-
gan, 2005). Quantitative methods face another problemgndised by Morgan (2012):
probability theory is too descriptive and not fit enough falcalation as this is under-
stood in today’s research in program correctness.

In this paper we propose that risk calculation be constraltihandled in the pro-
gramming process since the early stages, rather than beiagpasterioriconcern.
This means that risk is taken into account as the “normalasion, absence of risk be-
ing an ideal case. In particular, operations are modell@i@sabilistic choice between
expected behaviour and faulty behaviour.

Functional programmingppears to be particularly apt for this purpose because
of its strong mathematical basis. The obstacles mentiobedeaare circumvented
by adopting a linear algebra approach to probability caliboih (Oliveira, 2012a), a
strategy which fits into the calculational style of functibprogram development based
on its algebra of programming (Bird and de Moor, 1997).

This puts functional programming in the forefront of riskiemtion simply by
exploring the adjunction between distribution-valueddiions and matrices of proba-
bilities. One side of the adjunction is “good for programgiinthe monadicone, as
we have shown by our experiments in Haskell; the other sidedt algebra) is “good
for calculation”.

This does not prevent one from actually running case studiasnatrix-speaking
language such as eg.AILAB. Interestingly, we have observed that, although using
MATLAB for the purposes of this paper may seem a “tour de force” €sinis poorly
typed and not polymorphic, calling for explicit type errdrecking in the old style),
MATLAB tends to perform faster than Haskell when the probabilietinadic calcula-
tions involve distributions of wider support.

28

The core of this paper shows how to calculate the propagatidaults across
standard program transformation techniques knowtupbng (Hu et al., 1997) and
fusion (Harper, 2011). This enables one to find conditions forfthat of the whole
to be expressed in terms of tfeults of its parts— a compositionabpproach to risk
calculation.

12. Related and future work

Program analysis techniques based on languages such aslggCRrbin et al.,
2013) evaluate quantitative reliability of computationsming on unreliable hardware,
eg. unreliable arithmetic/logical operations (as in theent paper) or unreliable physi-
cal memories. Rely’s analysis generatdmbility pre-conditionsvhich are handled by
reliability transformers bridging to current work on probabilistic Hoare logic (Baer
etal., 2012).

The work by Pierro et al. (2010) is closer to ours in its admptf (untyped) linear
algebra in the compositional construction of a so-calledar operator semantics
leading to probabilistic program analysis inspired by sileal abstract interpretation
As in our setting, the key element in the construction is tbe of tensor products to
capture different aspects of a program.

On the foundations side, probabilisti@aktupling has been addressed in the more
wide setting ofmonoidalcategories adopted in eg. categorial quantum physics (Co-
ecke, 2011). These include not orliyi Hilb, the category of finite dimensional Hilbert
spaces, but alsBel, the category of binary relations. Thus the remarks by Ceack
Paquette, in thei€ategories for the Practising Physici&oecke, 2011):

Rel [the category of relations] possesses more 'quantum fegittiman the cate-
gory Set of sets and functions [...] The categoriégH:lb and Rel moreover admit
a categorical matrix calculus.

We hope to exploit this connection in the future, in partieidoncerning partial orders
defined for quantum states which could be used to support@amoftrefinement.

On a more practical register, we would like to find side-ctinds for probabilistic
mutual-recursion (Theorem 2) weaker than that imposingfanetion to be sharp.
Interestingly, this seems to link to work by Wong and Butz@@pPon another topic:
Bayesian embedded multivalued dependencies as necesshsyféicient conditions
for lossless decomposition of probabilistic relations.r fias we hope to be able to
generalize previous work in this field (Oliveira, 2011).

Our experiments in probabilistic mutual recursion shovt linear versions consis-
tently score better than the recursive. This conforms tation, as program optimiza-
tion leads to less computations and therefore to lesseagadjpn of faults. We would
like to quantifysuch a difference in probabilistic behaviour. In generag may think
of ordering fault-injected functions with respect to sompexted, sharp function. Let
f: A — Bbesucha functionang, h : A — B be probabilistic approximations to it,
all represented as CS-matrices. Theandh can be compared agairfsas follows,

g<yh ff gxf<hxf

29

whereM x N denotes the Hadamard (entry-wise) product of matridesnd N . That
is, for eacha, we compare the probability which and & offer for the correct value
f a. Of courseg <; f always holds, that isf is the best approximation to itself.
The question is — how effective is it to calculate with thieprder? Is the difference
h x f — g x f a metric suitable for quantifying fault propagation acrogsrectness-
preserving program transformations?

Scaling-up, another follow-up of the strategy put forwardhis paper is its appli-
cation to fault-propagation in component-oriented sofensystems. Cortellessa and
Grassi (2007) quantify component-to-component error @gagion in terms of a ma-
trix which emulates a probabilisticall-graph We are currently working on a formal
alternative to this approach (Barbosa et al., 2013) in wiemimponents represented
by coalgebragBarbosa, 2003) extended probabilistically, by addindneodoalgebraic
matrices of (Oliveira, 2012b) laehaviourmonad inside théistributionone.

Altogether, we hope to show that the linear algebra of pnognang is a wide-range
formalism suitable to generically support quantitativemoels in the software sciences.

Acknowledgements

This research was carried out in the QAIS (Quantitativeyamisbf interacting sys-
tems) project funded by the ERDF through the Programme CONBPand by the Por-
tuguese Government through FCT (Foundation for Sciencelanldnology) contract
PTDC/EIA-CCO/122240/2010.

José Oliveira wishes to thank CSW Critical Software SA fueit invitation to
the final workshop of FP7 project CriticalStep (http://wwritical-step.eu) — WS on
Dependability and Certification — where the central ideahi$ paper was briefly
presented.

Daniel Murta holds grar11-2012_PTDC/EIA-CCO/122240/2010_UMINHO award-
ed by FCT (Portuguese Foundation for Science and Technplogy

References

R. Backhouse and D. Michaelis. Exercises in quantifier mdatn. In T. Uustalu,
editor, MPC'06, volume 4014 of. NCS pages 70-81. Springer, 2006.

L.S. Barbosa. Towards a Calculus of State-based SoftwamgpGoents.JUCS 9(8):
891-909, August 2003.

L.S. Barbosa, D.R. Murta, and J.N. Oliveira. Introducinglfgropagation in a soft-
ware component calculus, 2013. In preparation.

G. Barthe, B. Grégoire, and S.Z. Béguelin. Probabilistiational Hoare logics for
computer-aided security proofs. MPC'12, pages 1-6, 2012.

R. Bird and O. de Moor. Algebra of Programming Series in Computer Science.
Prentice-Hall International, 1997.

30

M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitze reliability for pro-
grams that execute on unreliable hardware, 2013. 28th AGBPEAN Conference
on Object-Oriented Programming, Systems, Languages amdications (OOP-
SLA/SPLASH 2013), Indianapolis, IN, USA, October 2013.

B. Coecke, editor. New Structures for PhysicsNumber 831 in Lecture Notes in
Physics. Springer, 2011. doi: 10.1007/978-3-642-12821-9

V. Cortellessa and V. Grassi. A modeling approach to anaglygémpact of error prop-
agation on reliability of component-based systemsCémponent-Based Software
Engineeringvolume 4608 oL.NCS pages 140-156. 2007.

J.A. Durades and H.S. Madeira. Emulation of software fawtfield data study and a
practical approach, 2006. IEEE Transactions on Softwaggrieering.

M. Erwig and S. Kollmansberger. Functional pearls: Proligthd functional program-
ming in Haskell.J. Funct. Program.16:21—-34, January 2006.

M.F. Frias, G. Baum, and A.M. Haeberer. Fork algebras intatgdogic and computer
science.Fundam. Inform.pages 1-25, 1997.

J. Gibbons and R. Hinze. Just do it: simple monadic equdticrasoning. In
Proceedings of the 16th ACM SIGPLAN international confeeean Functional
programming ICFP’11, pages 2-14, New York, NY, USA, 2011. ACM. doi:
10.1145/2034773.2034777.

T. Harper. A library writer's guide to shortcut fusion. Haskell Symposium 2011
September 2011.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling caktibn eliminates mul-
tiple data traversals. Im ACM SIGPLAN International Conference on Functional
Programming pages 164-175. ACM Press, 1997.

D. Jackson. A direct path to dependable softw&emmun. ACM52(4):78-88, 2009.

A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Synthesipiagimonious inexact
circuits through probabilistic design techniqu&€M Trans. Embed. Comput. Syst.
12(2s):93:1-93:26, May 2013. ISSN 1539-9087. doi: 10.124665787.2465795.
URL http://doi.acm.org/10.1145/2465787.2465795

H. Macedo. Matrices as Arrows — Why Categories of Matrices MattBhD thesis,
University of Minho, October 2012. MAPi PhD programme.

H.D. Macedo and J.N. Oliveira. Typing linear algebra: A biguct-oriented approach.
Science of Computer Programming8(11):2160 — 2191, 2013. ISSN 0167-6423.
doi: http://dx.doi.org/10.1016/j.scico.2012.07.012.

A. Mclver and C. Morgan Abstraction, Refinement And Proof For Probabilistic Sys-
tems Monographs in Computer Science. Springer-Verlag, 208BN 0387401156.

31

UK MoD. Safety management requirements for defence systdtast 1 require-
ments, 2007. UK MoD Defence Standard 00-56p://www.dstan.mod.
uk/standards/defstans/00/056/01000400.pdf

C. Morgan. Elementary probability theory in the Eindhovéries In MPC, LNCS,
pages 48-73, 2012.

J.N. Oliveira. Pointfree foundations for (generic) losslalecomposition. Techni-
cal Report TR-HASLab:3:2011, HASLab, University of MinhodaINESC TEC,
2011. available fromhttp://wiki.di.uminho.pt/twiki/bin/view/
DI/FMHAS/TechnicalReports

J.N. Oliveira. Towards a linear algebra of programmirigprmal Asp. Comput.24
(4-6):433-458, 2012a.

J.N. Oliveira. Typed linear algebra for weighted (probiabit) automata. IMCIAA,
volume 7381 oLNCS pages 52-65, 2012b.

Alessandra Di Pierro, Chris Hankin, and Herbert WiklickyoFabilistic semantics and
program analysis. I8FM, pages 1-42, 2010.

G. Schmidt. Relational Mathematics Number 132 in Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, Nwoler 2010. ISBN
9780521762687.

M. Stamatelatos and H. Dezfuli. Probabilistic Risk AssemsniProcedures Guide for
NASA Managers and Practitioners, 2011. NASA/SP-2011-328d edition, Dec.

J. Voas and G. McGrawSoftware Fault Injection: Innoculating Programs Against
Errors. John Wiley & Sons, 1997. ISBN ISBN 0-471-18381-4. 416 pages

S.K.M. Wong and C.J. Butz. The implication of probabilistanditional independence
and embedded multivalued dependency.IRMUOOQ, pages 876—881, 2000. 8th
Conf. on Inf. Processing and Management of Uncertainty lBKSystems.

32

Appendix A. Proofs in appendix

Proof of cancellation (21).Base casef(andg are column vectorsy:
fst-(feg)=fnsnd-(frg)=g

{fst=tid®!andsnd = ®id }
(del)-(feg)=fr(leid) (frg)=g
= { forvectorsf » g = f ® g (15) }
(de!)-(fog=fAleid) (fewg) =g

{ functor- @ -; naturalid }
feal-g=frl-fleog=yg

{ g is probabilistic, thereforé- f = ! . g = ! (Oliveira, 2012a) }
fRlI=FfAl®g=yg

{1<——1 =1andMe1=M}
f=fNg=yg

O
Inductive stepy = [f1]f2] andg = [g1|g=]. Calculatingfst - (f = g) = f first:

fst-(frg9)=f
{ f =[filf2] andg = [g1]g2] }
fst - ([frlf2] » [g1lg2]) = [f1lf2]
{ exchange law (16)}

fst - [(f1 2 g0)l(f2 * g2)] = [f1] f2]
{ fusion (5) }

[(fst - (f1 2 g))|(fst - (f2 2 g2))] = [f1]f2]

induction hypothesisfst - (f 2 g) = f
holds forf, g := fi,9: (1 = 1,2)

[filfe] = [f1lf2]

O

Branchsnd - (f » g) = g is calculated in a similar way.

19Row vector: A — 1 corresponds to the sharp, constant function which mapy @vaut to the singleton
datatype.

33

Proof of (27). This equality arises from rule (25):

(Zc 2 (fa,e)ka)=1

{ one-point rule }

(Z be: fa=b: (b,e)ka)y=1
{ b=fst (b,c);(25) }

(F a) (st k) a=1
{f="fst-k}

(fa)fa=1
{ f is sharp}

true

]
Proof of (28). This equality arises from being probabilistic:
Y bc:b#fa: (be)ka)=0
{1+0=1}
1+ () be:b#fa: (be)ka)=1
{@n}

OS¢ (faye)kay+
O bye:b#Efa: (bye)ka)=1

{ merge quantifier$
(3" (b) = (be)ka)=1

{ kis probabilistic }

true
O

Proof of base-case fault propagation (30%learly, by (32) and universal property (31),
our target (30) re-writes to the equality

((for f a) yo (for f b)) - in =
[(a po b)If] - (F ((for f a) po (for f b)))

which holds by transforming the left-hand side into the tighnd side:

34

((for f a) po (for f b)) -in
= { choice-fusion (33)}
(for f a-in) po (for f b -in)
= { (32) and (31), twice}
(Lalf] - F (for f a)) po ([blf] - F (for f b))
= {Ff=idef;[MIN]-(P&Q)=[M -PIN-Q] }
La[(f - (for f a))] po [bI(f - (for f D))]
= { exchange law (35)}
(@ po B)I((f - for £ a) po (f - for f b))
= { choice-fusion (34)}
(@ po B)I(f - ((for f a) yo (for b)))]
= {MN-(PeQ)=[M-PIN-Q] }
[(a o b)If]- (id @ ((for f a) o (for f b))
= {Ff=idof}
(@ o b)If] - (F ((for f a) o (for £ b))
g
Proof of Khatri-Rao (conditional) fusionWe want to prove
(MsN)-h=(M.h)» (N.h) <« hissharp (A.2)
where probabilistic functiong andg are generalized to arbitrary matricksand N :
(b,c) (M 2N)-h)a
= { (26) for h a standard function}
(byc) (M +N) (ha)
= { pointwise Khatri-Rao (13)}
(b M (ha)) x(cN (ha))
= { (26) for h a standard function}
b(M-h)axc(N-h)a
= { pointwise Khatri Rao (13) — twice}
(b, ¢) (M -h) = (N-h))a

35

Proofs concerning naturality afnzipg (44). This property holds trivially for the iden-
tity functor F X = X, whereunzip; = id, and for any constant functér X = K, in
which caseunzipg = id » id.

We show next that the property is structurally preservedumctfor composition,
sayF = G H, whereby

unzipgy = unzipg - (G unzipy) (A.2)

holds by pair-fusion (A.1), cf. the sharp right term. In thisd the remaining calcula-
tions we generalize probabilistic functiofisnd g in (44) to arbitrary matriced/, N
over a semiring. We have:

unzipgy - GH (M ® N)
= { A2}
unzipg - (G unzipy) - G (H (M ® N))
= { functorG (composition) }
unzipg - G (unzipy - H (M ® N))
= { induction hypothesis: assume (44) for= H; G again}
unzipg - G ((H M) ® (H N)) - (G unzipy)
= { induction hypothesis: assume (44) fore= G }
(G (H M)) @ (G (H N))) - unzipg - G (unzipy)
(a2}
((GH M) ® (GH N)) - unzipgy

O

Next, we do the same for sums, day= G @ H. In this case we have:

unzipe = ((G fst) ® (H fst)) » ((G snd) @ (H snd)) (A.3)

Facts
unzipg - i1 = (i1 ®41) - unzipg (A.4)
unzipg - ia = (i2 ® i2) - unzipy (A.5)

are easy to prove via exchange law (16), wherandis are the injections of the direct
sum, that ifi1|i2] = id. The same law also grants equality

(i) - (O« N))(ia @ 2) - (P> Q)
- MeP)s(NeQ) (A.6)

which is valid for all suitably typed matricéd, N, P and (), and will help in the proof

36

that (44) holds for sums of functors which (inductively)isitthe same property:

unzipg - F (M @ N)
{F=GaM}
unzipg - (G (M @ N))® (H (M ® N)))
= {M@®N =[G M) N}
[(unzipg - i1 - (G (M ® N)))|(unzipg - iz - (H (M @ N)))]
= { (A4,A5)}
(i1 @ 1) - unzipg - (G (M & N)))|((i2 @ i) - unzipy - (H (M @ N))
= { induction hypothesis: assume (44) for= G andF = H }
[((ir @ 1) - (G M) ® (G N)) - unzipg)|((iz @ i2) - (H M) & (H N)) - unzipy)]
{ definitions ofunzip; andunzip,, ; absorptions
[((i2 ®@d1) - (G (M - fst)) » (G (N - snd)))[((i2 @ i2) - (H (M - fst)) @ (H (N - snd))))]
= { (a6) }
((G (M - fst)) & (H (M - fst))) » (G (N - snd)) & (H (N - snd))
{F=Go M }
(F (M - fst)) » (F (N - snd))
{ functorF ; reverse absorptior}
(FM) @ (FN))-((F fst) « (F snd))
{ definition ofunzip; }

((F M)® (F N)) - unzipg

O

Finally, we address functdr X = id ® X which participates in the recursion schema
of folds. Note that we can replaéé by id @ id since-@- is a bifunctor in any category
of matrices (Macedo, 2012). Then

FX = (idoid)@X = (ide X))o (ido X) = (FX)a (FX)

This reduces this case to the previous one(Gfdf = F X andH X = F X, where the
identities in these functors are of smaller size. Thus, iares, induction proceeds on
the size of the identity matrix which participates in furradefinitionF X = id ® X.

37

Proof of fact (46).

unzipg - F (f » g)

= { reverse pairing-absorption (4%)
unzipg - F (f ® g) - F (id id)

= { naturality (44) }
(Ff®F g)-unzipg - F (id » id)

= { functorF; unzipg (43) ; pairing-fusion (A.1), asd » id is sharp}
(Ff@Fyg)-(F(fst-(idoid)) s F(fst-(id » id)))

= { standard pairing-cancellation (21)
(Ff®Fg)-(Fid»Fid)

= { functorF; pairing-absorption (45)}
(Ff)=(Fg)

38

