
ar
X

iv
:1

31
1.

36
87

v1
  [

cs
.L

O
]  

14
 N

ov
 2

01
3

Calculating risk in functional programming
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Abstract

In the trend towards tolerating hardware unreliability,accuracyis exchanged forcost
savings. Running on less reliable machines, “functionally correct” code becomes risky
and one needs to know how risk propagates so as to mitigate it.

Risk estimation, however, seems to live outside the averageprogrammer’s technical
competence and core practice.

In this paper we propose that risk be constructively handledin functional pro-
grammingby (a) writing programs which may choose betweenexpectedand faulty
behaviour, and by (b) reasoning about them in a linear algebra extension to standard,à
la Bird-Moor algebra of programming.

In particular, the propagation of faults across standard program transformation tech-
niques known astupling andfusionis calculated, enabling thefault of the wholeto be
expressed in terms of thefaults of its parts.

1. Introduction

With software so invasive in every-day’s life as it is today,you don’t need to be staff
of a space agency to place the question:what risks do we run day-to-day by relying on
so much software?Jackson (2009) writes:

(...) a dependable system is one (..) in which you can place your reliance
or trust. A rational person or organization only does this with evidence
that the system’s benefits outweigh its risks.

Over the years, NASA has defined aprobabilistic risk assessment(PRA) methodology
to enhance the safety decision process. Quoting (Stamatelatos and Dezfuli, 2011):

PRA characterizes risk in terms of three basic questions: (1) What cango
wrong? (2) How likely is it? and (3) What are theconsequences? The
PRA process answers these questions by systematically (...) identifying,
modeling, andquantifyingscenarios that can lead to undesired conse-
quences.
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This may leave one with the feeling that PRA takes placea posteriori, that is, once
the system is built. Even if a wrong understanding of PRA, limitations of current
programming practice are apparent concerning timely assessment of the risks involved
in the future use of computer programs.Things that can go wrongcan be guessed; but,
how is thelikelihoodof such bad behaviour expressed? and how does one quantify its
consequences(fault propagation)?

This paper addresses these questions and issues in the context of functional pro-
gramming(FP) overunreliablehardware. Note that such unreliability can be inten-
tional, as is the case ininexact circuit design(Lingamneni et al., 2013), where accuracy
of the circuit is exchanged for cost savings (eg. energy, delay, silicon).

We will show that FP is well prepared for smoothly incorporating risk analysis in
the design of programs. This is because the standardqualitativesemantics of FPs can
evolve towards aquantitativeone simply by upgrading its underlyingrelationalalgebra
of programs “à la Bird-Moor” (1997) into alinear algebra of programming (Oliveira,
2012a).

The basic idea is simple: suppose one writes functiongood for the intended be-
haviour of a program and there is evidence that, with probability p, such behaviour can
turn into abad function. Using theprobabilistic choicecombinator(· ·⋄ ·) of McIver
and Morgan (2005); Oliveira (2012a), one may write term

bad p⋄ good

to express the complete (ie. with risk incorporated) behaviour of what one is program-
ming.

What is needed, then, is a method for evaluating the propagation of risk, for instance
across recursion schemes. This is what thelinear algebra of programming (LAoP) is
intended for. This paper investigates, in particular, the quantitative extension of the
so-calledmutual recursionand banana-splitlaws (Bird and de Moor, 1997) which
underpin the refinement of primitive recursive functions into linear implementations
and checks under what conditions are such implementations as good as their original
definitions with respect to fault propagation.

The approach will be illustrated in two ways: either by running programs as prob-
abilistic (monadic) functions written in Haskell using thePFP library of Erwig and
Kollmansberger (2006), or by running finite approximationsof them directly as matri-
ces in MATLAB 2.

Contribution. In the trend towards tolerating hardware unreliability,accuracyis exchang-
ed for cost savings. Running on less reliable machines, functionally “correct” code
becomes risky and one needs to know how risk propagates so as to mitigate it. In this
context, this paper presents the following contributions:

• It shows how the standardalgebra of functional programsdear to the so-called
program transformationschool of software design extends and incorporates risk

2MATLAB TM is a trademark of The MathWorksR©.
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simply by switching from“sharp” functions toprobabilistic functions handled
as matrices in linear algebra.3

• The laws of such alinear algebra of programming are shown to capture the
notion of probabilistic indistinguishability, essentialto decide whetherprogram
transformationrules can be safely applied or not.

• The approach is shown to be readily applicable torecursive programswhich
handle possibly interfering threads of computation.

• In particular, mutually recursive computations are addressed showing under what
conditions mutual recursion slicing holds in the probabilistic setting.

• Finally, the paper shows that a well-knowntuplingtechnique known as the“banana-
split” functional program transformation is still valid in presence of faults.

Paper outline. The following section presents two motivating programs which will be
subject to fault-injection as an illustration of risk simulation and calculation. Section
3 addresses the derivation of such programs via mutual-recursion transformation, an
exercise which is extended in section 4 to the probabilisticsetting. A basis for this is
given in section 5, where the LAoP is put in context, leading to the approach to proba-
bilistic mutual recursion given in section 6. This in turn leads to an asymmetry (section
7) which explains the different fault propagation patternsfound in the two motivat-
ing examples (section 8). The topic of fault propagation in functional programming is
further delved in section 9 by moving to more elaborate data types and showing how
the risk of the wholecan be calculated combining therisk of the parts. The two last
sections conclude, review related work and give prospects for future work. Proofs of
auxiliary results are deferred to appendix Appendix A.

2. Motivation

Let us start from two programs written in C, one which supposedly computes the
square of a non-negative integern,

int sq(int n) {
int s=0; int o=1;
int i;
for (i=1;i<n+1;i++) {s+=o; o+=2;}
return s;

};

and the other

int fib(int n) {
int x=0; int y=1; int i;
for (i=1;i<=n;i++) {int a=y; y=y+x; x=a;}
return x;

};

3This extends to deterministic imperative programs via probabilistic functional semantics denotation.

3



which supposedly computes then-th entry in the Fibonacci series, forn positive.
Both programs arefor-loops whose bodies rely on the same operation: addition of

natural numbers. Suppose one knows that, in the machine where such programs will
run, there is the risk of addition misbehaving in some known way: with probabilityp,
x + y may evaluate toy, in which case(x+) = id , the identity function. Or one might
know that, in some unfriendly environment, the processor’sarithmetic-logic unit may
reset addition output to0, with probabilityq.

The question is: what is the impact of such faults in the overall behaviour of each
for-loop? Can wemeasuresuch an impact? Can wepredict it? Are there versions of
the same programs which mitigate such faults better than theones given?

The standard approach to these questions relies on simulation: one performs a large
number of experiments in which the programs run with the given faults injectedac-
cording to the given probabilities and then performs statistic analysis of the outcome
of such simulations. Softwarefault injection(Voas and McGraw, 1997) is a more and
more widespread technique for quality assurance which measures the propagation of
faults through paths that might otherwise rarely be followed in testing. The G-SWFIT
technique, for instance, emulates the software fault classes most frequently observed in
the field through a library of fault emulation operators, andinjects such faults directly
in the target executable code (Durães and Madeira, 2006).

In this paper we adopt a different strategy: instead of simulating risky behavioura
posteriori, this is taken into accounta priori by moving from imperative to functional
code whereby faulty behaviour is encoded in terms of probabilistic functions (Erwig
and Kollmansberger, 2006). Take the two versions of faulty addition given above as
examples: the first can be expressed by turning(+) into the probabilistic function

fadd x = id p⋄ (x+)

(fadd · for “faulty addition”) which misbehaves as the identity function id with proba-
bility p and exhibits the correct behaviour with probability1− p; similarly, the second
version is expressed by probabilistic choice

fadd x = 0 q⋄ (x+)

where0 = 0 is the everywhere-0 constant function. Of course, we might think of
more elaborate fault patterns, for instance

fadd x = (0 q⋄ id) p⋄ (x+)

in which the probability offadd · resetting to0 is qp and(1−q) p is that of degenerating
into the identity; or even thinking of normal distributionscentered upon the expected
outputx + y, and so on.

Probabilistic functions are distribution-valued functions which can be written in the
monadic style over thedistribution monad. This is termedDist in the PFP library of
Erwig and Kollmansberger (2006), which we shall be using in the sequel.4 Moreover,

4All distributions in our approach are generated by finite application of thechoice operator and therefore
have finite support.
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probabilistic functions can be reasoned about using the laws of monads, explicitly as
advocated by Gibbons and Hinze (2011) or implicitly as in theprobabilistic notation
proposed by Morgan (2012) as extension to the standard Eindhoven quantifier calculus
(Backhouse and Michaelis, 2006).

There is yet another alternative: every probabilistic function f : a → Dist b is in
one-to-one correspondence with a matrix whose columns are indexed bya, whose rows
are indexed byb and whose multiplication corresponds to composition in theKleisli
category induced byDist (Oliveira, 2012a,b). This offers the possibility of using the
rich field of linear algebrato calculate with probabilistic functions, in the same way
relation algebra is advocated by Bird and de Moor (1997) for reasoning about standard
(sharp) functions.

One of the advantages of such alinear algebra of programming (LAoP) is the way
recursive probabilistic functions are handled — simply by using the same combinators
(eg. maps, folds) — of the standard algebra of programming (Bird and de Moor, 1997).
The shift from a qualitative to a quantitative semantics is therefore rather smooth — the
game is the same, the move ensured just by change of underlying category. Following
this approach, Oliveira (2012a) already gives an example ofwhat might be referred to
asfault-fusion: the risk of the whole misbehaving can be expressed in terms of the risk
of the parts misbehaving wherever a particular fusion law isapplicable.

Note, however, that not every law of the algebra of programming extends quanti-
tatively. In this paper we address the linear algebra extension of one such law which
is particularly relevant to program calculation: themutual recursionlaw enabling sys-
tems of mutually recursive functions to be merged into a single, more efficient function
(Bird and de Moor, 1997). Both C programs given above can be derived from their
specifications using such a law. Below we show how they can be turned into prob-
abilistic functions expressing safe and risky behaviour ina natural and calculational
way.

3. Mutual recursion

Let us take the standard definition of the Fibonacci function, written in Haskell
syntax:

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

The linear version encoded in the C program given above is obtained by pairingfib
with its derivative, f n = fib (n + 1): 5

fib 0 = 0
fib (n + 1) = f n

f 0 = 1
f (n + 1) = fib n + f n

5Sincef 0 = fib 1 = 1 andf (n + 1) = fib (n + 2) = fib n + fib (n + 1) = fib n + f n.
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The pairing of the two functions,

(fib, f ) n = (fib n, f n)

can be expressed primitive-recursively by

(fib, f ) 0 = (fib 0, f 0) = (0, 1)
(fib, f ) (n + 1) = (f n, fib n + f n)

or by the equivalent

(fib, f ) 0 = (0, 1)
(fib, f ) (n + 1) = (y, x + y) where (x , y) = (fib, f ) n

itself the same as

(fib, f ) = for loop (0, 1)
where loop (x , y) = (y, x + y)

by introduction of thefor loop combinator,

for b i 0 = i

for b i (n + 1) = b (for b i n)

whereb is the loop body andi provides for initialization. This is the natural-number
equivalent to combinatorfoldr over finite lists in Haskell, ie. thecatamorphism(Bird
and de Moor, 1997)of the natural numbers. Therefore, we can define

fibl n =
let (x , y) = for loop (0, 1) n
loop (x , y) = (y, x + y)

in x

as the linear version offib obtained by pairingfib with its derivative — compare with
the C program given above.

The other program computing squares can be derived in the same way from the
specificationsq n = n2: the two mutually recursive functions

sq 0 = 0
sq (n + 1) = sq n + odd n

odd 0 = 1
odd (n + 1) = 2 + odd n

arise from the binomial(n+1)2 = n2 +2n+1 and introduction of functionodd n =
2 n + 1, thus named because2 n + 1 is then-th odd number. (That is, the square of a
natural number always is a sum of odd numbers.) Pairing them up into (sq , odd) x =
(sq x , odd x ) and proceeding in the same way as above we obtain(sq , odd) =
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for loop (0, 1) whereloop (s , o) = (s + o, o + 2) and thereupon the following func-
tional version of the given C program:6

sql n =
let (s , o) = for loop (0, 1) n
loop (s , o) = (s + o, o + 2)
in s

Clearly, each recursive function above and its linear version are, extensionally, the same
function. Let us now see what happens once we start injectingrisky (faulty) behaviour
in each of them.

4. Going probabilistic

Probabilistic extensions of any of the functions above can be obtained by writing
them monadically and then instantiating them with the distribution monad (Erwig and
Kollmansberger, 2006). Take the recursive version offib given in the beginning of
section 3 and “monadify it” into:

mfib 0 = return 0
mfib 1 = return 1
mfib (n + 2) =
do {x ← mfib n; y ← mfib (n + 1); return (x + y)}

Runningmfib n inside theDist monad one getsfib n with 100% probability, since
return yields theone-point, Dirac distribution of its argument.

Now let us inject one of the faults mentioned in section 2, sayfadd p x = id p⋄(x+)
with p = 0.1, for instance. For this we just replacereturn (x + y) (perfect addition)
by fadd0.1 x y and run test cases, eg.7

Main> mfib 4
3 81.0%
2 18.0%
1 1.0%

We see that the correct behaviour (100% chance of gettingfib 4 = 3) is no longer
ensured — with chance18% one may get2 as result and even1 is a possible output,
with probability1%.

Similar experiments can be carried out with the linear version by defining its monadic
evolution

mfibl n =
do {(x , y)← mfor loop (0, 1) n; return x }
where loop (x , y) = return (y, x + y)

6Notice how the syntaxs+=o; o+=2; in C nicely tallies with(s + o, o + 2) in Haskell.
7The probabilities in this example and others to follow are chosen with no criterion at all apart from

leading to distributions visible to the naked eye. By all means,0.1 would be extremely high risk in realistic
PRA (Stamatelatos and Dezfuli, 2011), where only figures as small as1.0E-7 are “acceptable” risks.
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relying on the monadic extension of thefor combinator:

mfor b i 0 = return i

mfor b i (n + 1) = do {x ← mfor b i n; b x }

To inject intomfibl the same fault injected before intomfib amounts to replacing, in
the loop body,goodaddition by thebadone:

loop (x , y) = do {z ← fadd0.1 x y; return (y, z )}

Running the same experiment as above we still getmfibl 4 = mfib 4. However,
behavioural equality between the two (one recursive, the other linear) fault-injected
versions offib is no longer true for argumentsn > 4, see for instance

n mfib n mfibl n

5

5 65.6%
4 21.9%
3 10.5%
2 1.9%
1 0.1%

5 72.9%
3 16.2%
4 8.1%
2 2.7%
1 0.1%

6

8 47.8%
7 26.6%
6 11.8%
5 9.8%
4 2.7%
3 1.1%
2 0.2%
1 0.0%

8 65.6%
6 14.6%
5 14.6%
3 2.4%
4 2.4%
2 0.4%
1 0.0%

the linear version performing better than the recursive onein the sense of hitting the
correct answer with higher probability.

Finally, let us now carry out similar experiments concerning the injection of the
same fault (in the addition function) in suitably extended (monadic) versions of the
square function, the recursive one

msq 0 = return 0
msq (n + 1) = do {m ← msq n; fadd0.1 m (2 ∗ n + 1)}

and the linear one:

msql n =
do {(s , o)← mfor loop (0, 1) n; return s }
where loop (s , o) =
do {z ← fadd0.1 s o; return (z , o + 2)}

In this case — as much as we can test — both versions exhibit thesame behaviour, that
is, they are probabilistically indistinguishable, see forinstance:
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n msq n msql n

0 0 100.0% 0 100.0%
1 1 100.0% 1 100.0%

2
4 90.0%
3 10.0%

4 90.0%
3 10.0%

3
9 81.0%
5 10.0%
8 9.0%

9 81.0%
5 10.0%
8 9.0%

...
...

...

6

36 59.0%
11 10.0%
20 9.0%
27 8.1%
32 7.3%
35 6.6%

36 59.0%
11 10.0%
20 9.0%
27 8.1%
32 7.3%
35 6.6%

...
...

...

Summing up, we are in presence of two examples in which the risk of bad behaviour
propagates differently across the mutual recursion functional program transformation.

In the remainder of this paper we will resort to linear algebra to explain this dis-
crepancy. We will show that, even if the transformation doesnot hold in general for
probabilistic functions, there are side conditions sufficient for it to hold, explaining the
different behaviour witnessed in the examples above.

5. Probabilistic for-loops in the LAoP

Consider the probabilistic Boolean functionf = False 0.05⋄ (¬) which is such
that f True = False (100%) andf False is eitherTrue (95%) or False (5%) — an
instance offaulty negation. It is easy to representf in the form of a matrixM ,

M =

False True

False

True





0.05 1.00

0.95 0.00





(1)

where the inputs spread across columns and the outputs across rows. Because columns
represent distributions, all figures in the same column should sum up to1.

Matrices with this property will be referred to ascolumn-stochastic(CS). The mul-
tiplication of two CS-matrices is a CS-matrix, as is the identity matrix id (square,
diagonal matrix with1s in the diagonal) which is the unit of such multiplication:
M .id = M = id ·M , where matrix multiplication is denoted by an infix dot(·).

We will write M : n → m, or draw the arrown
M // m , to indicate thetype

of a CS-matrixM , meaning that it hasn columns andm rows. This view enables
us to regard all CS-matrices as morphisms of a category whoseobjects are matrix
dimensions, each dimension having its identity morphismid . If one extends such
objects to arbitrary types (with Cartesian product and disjoint union for addition and
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multiplication of matrix dimensions), this category of matrices turns out to represent
the Kleisli category induced by the (finite) distribution monad. In the example above,
f : Bool → Dist Bool is represented by a matrix of typeM : Bool → Bool (1) on the
Kleisli-category side.

Let notation[[f ]] mean the matrix which represents probabilistic functionf in such
a CS-matrix category. Forf of typeA→ Dist B , [[f ]] will be a matrix of typeA→ B ,
that is, cellb [[f ]] a in the matrix8 records the probability ofb in distributionδ = f a.
Then probabilistic function (monadic) composition,

(f • g) a = do {b ← g a; f b}

becomes matrix multiplication,

[[f • g]] = [[f ]] · [[g]] (2)

and probabilistic function choice is given by

[[f p⋄ g]] = p[[f ]] + (1− p)[[g]] (3)

where+ denotes addition of two matrices of the same type andp M denotes the
multiplication of every cell inM by probabilityp.

Clearly, [[return]] = id . Any conventional functionf : A → B can be turned into
a “sharp” probabilistic one through the compositionreturn · f which, represented as a
CS-matrix, is the matrixM = [[return · f ]] such thatb M a = 1 if b = f a and is0
otherwise.9 We will write [[f ]] as shorthand for[[return · f ]] and therefore will rely on
fact (f a) [[f ]] a = 1, all other cells being0.

The fact that sharp functions are representable by matricesand that function com-
position corresponds to chaining the corresponding matrixarrows makes it easy to pic-
ture probabilistic functional programs in the form of diagrams in the matrix (Kleisli)
category. Take, for instance, the for-loop combinator given above,

for b i 0 = i

for b i (n + 1) = b (for b i n)

and re-write it as follows,

(for b i) · 0 = i

((for b i) · succ) n = (b · (for b i)) n

wheresucc n = n + 1 and (recall) the under-bar notation denotes constant functions.
This is the same as writing the matrix equalities,

8Following the infix notation usually adopted for relations (which are Boolean matrices), for instance
y 6 x , we writey M x to denote the contents of the cell in matrixM addressed by rowy and column
x . This and other notational conventions of the linear algebra of programming are explained in detail in
(Oliveira, 2012b).

9A probabilistic functionf : A → Dist B is said to besharp if, for all a ∈ A, f a is a Dirac
distribution. A Dirac distribution is one whose support is asingleton set, the unique element of which is
offered with100% probability.
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[[for b i ]] · [[0]] = [[i ]]
[[for b i ]] · [[succ]] = [[b]] · [[for b i ]]

which can be reduced to a single equality,

[[for b i ]] · [[[0]]|[[succ]]] = [[[i ]]|([[b]] · [[for b i ]])] (4)

by resorting to the[M |N ] combinator which glues two matricesM : A → C and
N :B → C side-by-side, yielding[M |N ] :A+B → C . As explained by Macedo and
Oliveira (2013), this combinator — which corresponds to therelational “junc” operator
of Bird and de Moor (1997) — is a universal construction in anycategory of matrices,
therefore satisfying (among others) the fusion law

P · [M |N ] = [P ·M |P ·N ] (5)

and (for suitably typed matrices) the equality law,

[M |N ] = [P |Q] ≡ M = P ∧N = Q (6)

both silently used in the derivation above.
Our matrix semantics for thefor-loop combinator can still be simplified in two

ways: first, the[[·]] parentheses in (4) can be dropped, since we may assume they are
implicitly surrounding functions everywhere:

(for b i) · [0|succ] = [i |(b · (for b i))]

Second,[i |(b · (for b i))] can be factored into composition[i |b] · (id ⊕ (for b i)), since
absorption law

[M |N ] · (P ⊕Q) = [M · P |N ·Q] (7)

holds, where· ⊕ · is the matrix direct sum (block) operation:M ⊕ N =

[

M 0
0 N

]

.

Altogether, we get an equality of matrix compositions,

(for b i) · [0|succ] = [i |b] · (id ⊕ (for b i))

which corresponds to the typed matrix diagram which follows,

N0

in◦=
[

0
◦

succ◦

]

**

for b i

��

∼= 1+ N0

in=[0|succ]

hh

id⊕(for b i)

��
B 1 +B

[i|b]

hh

where symbol∼= indicates that functionin = [0|succ] is a bijection, and therefore
its conversein◦ is also a function. By theconverseM ◦ of a matrixM we mean its

11



transpose, that is,x M ◦ y = y M x holds: the effect is that of swapping rows with
columns. The diagram also uses thesplit combinator

[

·
·

]

which is the converse dual of
[·|·]:

[M |N ]◦ =

[

M ◦

N ◦

]

(8)

Why does this diagram matter? First, it can be recognized as an instance of a
catamorphismdiagram (Bird and de Moor, 1997), here interpreted in the category of
CS-matrices rather than in that of total functions or binaryrelations — thequalitative
to quantitativeshift promised in the introduction of the paper. In fact, because com-
position is closed for CS-matrices and these include sharp functions,b andi can vary
inside the CS-matrix space and the diagram will still make sense. For instance, the
base case, which is represented by constant functioni : 1 → N0 — a column vec-
tor — corresponds to the Dirac distribution oni , which can be changed to any other
distribution.

Moreover, becausein is a bijection, not only the diagram tells thatfor b i is a
solution to the equation

k · in = [i |b] · (id ⊕ k)

but it turns out that this is the unique solution:10

k = for b i ≡ k · in = [i |b] · (id ⊕ k) (9)

This unique solution can be computed as the fixpoint ink of equation

k = i · 0◦ + b · k · succ◦ (10)

which is obtained from (9) above by use of the so-called ‘divide-and-conquer’ law:

[M |N ] ·

[

P

Q

]

= M · P +N ·Q (11)

Equation (10) tells how the matrixk = for b i is recursively filled up: first the
outer-producti · 0◦, that is, the everywhere-0 matrix apart from the1 in cell (i, 0)),
which is added tob · i · 0◦ · succ◦, and so on. For sharpb, this is(b i) · 1◦, then-th
entry being(bn i) · n◦. Note that each contribution of the fixpoint ascending chainis
a matrix which “fills an empty column”, thus ensuring that no column ever adds up to
more than1.

Equation (10) also serves to emulate the construction of thefixpoint using matrix
algebra packages such as, for instance, MATLAB . In this case we build finite approxi-
mations of the fixpoint helped by the corresponding diagram approximation, for inputs

10The argument is the same as in (Bird and de Moor, 1997) just by replacing the powerset monad by the
distribution monad.
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at mostn and at mostm possible outputs:

n
[0|succ]◦ //

k

��

1 + n

id⊕k

��
m 1 +m

[i|b]
oo

As MATLAB is not typed, tracing matrix dimensions without the help of diagrams of
this kind would be a nightmare.

Let us see an example: suppose we want to emulate a fault in theodd function,
odd = (1+) · (2∗), in which (2∗) = for (2+) 0 is disturbed by the propagation of the
same fault of addition we have seen before:

ftwicep = mfor fadd p 2 0

For instance,ftwice0.1 4 is the distribution

8 65.6%
6 29.2%
4 4.9%
2 0.4%
0 0.0%

In MATLAB , we will first draw the corresponding diagram,

n
[0|succ]◦ //

ftwicep

��

1 + n

id⊕ftwicep

��
m 1 +m

[0|(idp⋄(2+))]
oo

parametric on probabilityp and then andm dimensions, which nevertheless have to
be passed explicitly when encoding each arrow of the diagramas a MATLAB matrix.
The probabilistic choice in the corresponding instance of (10),

k = 0 · 0◦ + (id p⋄ (2+)) · k · succ◦ (12)

is captured by MATLAB function

function C = faddk(p,k,n,m)
M = eye(m,n);
N = addk(k,n,m);
C = choice(p,M,N);

end

(note the types, ie. dimensionsn andm, passed as parameters) where

function C = choice(p,M,N)
if size(M) ˜= size(N)
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error(’Dimensions must agree’);
else

C = p* M+(1-p) * N
end

end

(note the need for explicit type error checking). The right-hand side of the equation
(12) is captured by

function Y = twiceF(p,n,m,X)
if size(X) ˜= [m n]

error(’Dimensions must agree’);
else

Y = zero(m) * zero(n)’ +
faddk(p,2,m,m) * X* succ(n,n)’

end
end

Forn,m = 5, 8 andp = 0.1, the fixpoint of equation (12) is the matrix

1 0.1 0.01 0.001 0.0001
0 0 0 0 0
0 0.9 0.18 0.027 0.0036
0 0 0 0 0
0 0 0.81 0.243 0.0486
0 0 0 0 0
0 0 0 0.729 0.2916
0 0 0 0 0
0 0 0 0 0.6561

whose leftmost column (resp. top row) corresponds to input (resp. output)0. The five
columns of the matrix correspond to the distributions output by the monadicftwice0.1 n,
for n = 0 . . 4.

So much for an illustration of the correspondence between monadic probabilistic
programming (in Haskell) and column stochastic matrix construction (in MATLAB ). In
the following section we will go back to analytical methods relying solely on universal
property (9) and its corollaries.

6. Probabilistic mutual recursion in the LAoP

As we have seen above, mutual recursion arises from thepairing — tupling, in
general (Hu et al., 1997) — of two (sharp) functionsf andg, defined by

(f , g) x = (f x , g x )

where(f , g):A→ B×C for f :A→ B andg :A→ C . This tupling operator is known
assplit in the functional setting (Bird and de Moor, 1997) or asfork in the relational
one (Frias et al., 1997; Schmidt, 2010). Macedo (2012) showsthat these operators
generalize to the so-called Khatri-Rao productM △ N of two arbitrary matricesM and
N , defined index-wise by

(b, c) (M △ N ) a = (b M a) × (c N a) (13)
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Thus the Khatri-Rao product is a “column-wise” version of the well-known Kronecker
product· ⊗ ·, defined by

(y, x ) (M ⊗N ) (b, a) = (y M b) × (x N a) (14)

Khatri-Rao coincides with Kronecker for column vectorsu : 1→ B , v : 1→ C ,

u △ v = u ⊗ v (15)

and commutes with matrix junc’ing via theexchange law(Macedo, 2012):

[M |N ] △ [P |Q ] = [(M △ P)|(N △ Q)] (16)

for suitably typed matricesM , N , P andQ .
For sharp functionsf andg, pairing is an universal construct ensuring that any

functionk producing pairs is uniquely factored to the left and to the right,

k = f △ g ≡ fst · k = f ∧ snd · k = g (17)

wherefst (b, c) = b andsnd (b, c) = c. (Note how liberally we keep omitting the[[·]]
parentheses around the occurrence of functions inside matrix expressions.)

From (17) a number of useful corollaries arise, namely (keepin mind thatf andg
should be sharp functions for the time being)fusion,

(f △ g) · h = (f · h) △ (g · h) (18)

reconstruction,11

k = (fst · k) △ (snd · k) (19)

and pairwiseequality:

k △ h = f △ g ≡ k = f ∧ h = g (20)

This makes it easy to prove the mutual recursion law, below instantiated tofor-
loops, whereF f abbreviatesid ⊕ f : 12

f △ g = for (h △ k) (i , j )

≡ { universal property (10)}

(f △ g) · in = [(i , j )|(h △ k)] · F (f △ g)

≡ { fusion (18) ; constant functions}

(f · in) △ (g · in) = [(i △ j )|(h △ k)] · F (f △ g)

11Cf. loss-less decomposition(Oliveira, 2011).
12As is well-known, for sharp functions this law extends to other inductive types, eg. lists, trees etc (Bird

and de Moor, 1997; Hu et al., 1997).
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≡ { exchange law (16)}

(f · in) △ (g · in) = ([i |h] △ [j |k ]) · F (f △ g)

≡ { fusion (18) again}

(f · in) △ (g · in) = ([i |h] · F (f △ g)) △ ([j |k ] · F (f △ g))

≡ { equality (20) }
{

f · in = [i |h] · F (f △ g)
g · in = [j |k ] · F (f △ g)

Read in reverse direction, this reasoning explains how two recursive, mutually depen-
dent functionsf andg (regarded as matrices) combine with each other into one single
functionf △ g, from which one can extract bothf andg by projecting according to the
cancellationrule,

fst · (f △ g) = f ∧ snd · (f △ g) = g (21)

yet another corollary of (17).
The law just derived can be identified as the underpinning of the (pointwise) deriva-

tions offibl (resp.sql ) from fib (resp.sq) back to section 2. But note thatf andg have
been regarded assharpfunctions thus far, and therefore what we have written is just a
rephrasing of what can be found already in the literature oftupling, see eg. references
(Bird and de Moor, 1997; Hu et al., 1997) among several others.

We are now interested in checking the probabilistic extension of (17). Let two
probabilistic functionsf andg and their productf △ g be depicted as the CS-matrices
of the following diagram:

2 2× 3
fst=

[

1 1 1 0 0 0

0 0 0 1 1 1

]

oo
snd=

[

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

]

// 3

4

f △ g =





0.15 0.12 0 0

0.35 0.06 0 0.75

0 0.12 0 0

0.15 0.28 0.1 0

0.35 0.14 0.2 0.25

0 0.28 0.7 0





OO

g=

[

0.3 0.4 0.1 0

0.7 0.2 0.2 1

0 0.4 0.7 0

]

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

f=
[

0.5 0.3 0 0.75

0.5 0.7 1 0.25

]

``❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆

We can handle this in Haskell by running the following monadic functions

(f △ g) a = do {b ← f a; c ← g a; return (b, c)}
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mfst d = do {(b, c)← d ; return b}

msnd d = do {(b, c)← d ; return c}

inside the distribution monadDist , thereby implementing the Khatri-Rao product and
its projections. For instance,(f △ g) 2 will yield

(2,1) 28.0%
(2,3) 28.0%
(2,2) 14.0%
(1,1) 12.0%
(1,3) 12.0%
(1,2) 6.0%

as in the second column of the corresponding matrix given above. Moreover, both in
Haskell and MATLAB we can observe the cancellationsfst · (f △ g) = f andsnd · (f △

g) = g.
However,reconstruction(19) does not extend probabilistically. This is because not

every CS-matrixk : A → B × C outputting pairs is the Khatri-Rao product of two
CS-matrices, as the following counter-example shows: matrix

k : 3→ 2× 3

k =

















0 0.4 0.2
0.2 0 0.17
0.2 0.1 0.13
0.6 0.4 0.2
0 0 0.17
0 0.1 0.13

















cannot be recovered from its projections, cf. the first column in:

(fst · k) △ (snd · k) =

















0.24 0.4 0.2
0.08 0 0.17
0.08 0.1 0.13
0.36 0.4 0.2
0.12 0 0.17
0.12 0.1 0.13

















This happens because probabilistic Khatri-Rao is aweakproduct — the expected
equivalence (17) is only an implication,

k = f △ g ⇒ fst · k = f ∧ snd · k = g (22)

ensuring existence but not uniqueness. The proof of (22), which is equivalent to can-
cellation (21) — substitutek and simplify — can be found in appendix Appendix A.
This proof relies on properties (15) and (16) of the Khatri-Rao product.

Weak product (22) also grants pairwise equality (20) — substitute k by k △ h and
simplify — but the converse substitution off andg, in the⇐ direction, leading to
reconstruction(19) is of course invalid. In turn, this invalidates fusion (18) for arbitrary
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probabilistic functionsf , g andh, although the property will still hold in caseh is
sharp13, as the straightforward proof in appendix Appendix A shows.

Altogether, the mutual recursion law will not hold in general for probabilistic func-
tions, as its calculation (above) relies on fusion (18). This is consistent with what we
have observed in section 4 concerning the two versions of Fibonacci,mfib before the
application of mutual recursion andmfibl after, which differ substantially for inputs
larger than4. However, the corresponding pair of probabilistic functions of the other
example —msq andmsql — seemed to be the same (ie. probabilistically indistin-
guishable), as much as could be tested.

In the following section we explain the difference observedin the two experiments
by investigating sufficient conditions for the mutual recursion law to hold for proba-
bilistic functions (CS-matrices).

7. Asymmetric Khatri-Rao product

To re-establish the equivalence in (17) given (22) we just have to find conditions
for the converse implication

k = f △ g ⇐ fst · k = f ∧ snd · k = g

to hold, which is equivalent to (19) under the substitution or introduction of variables
f andg. For this we may seek inspiration in relation algebra, whereone knows that if
one of the projections of a binary relationR outputting pairs is functional (ie., deter-
ministic), then(b, c) R a ≡ b (fst · R) a ∧ c (snd · R) a holds. That is, by forking
fst · R andsnd ·R one rebuildsR.

Back to probabilistic functions (ie. CS-matrices), this suggests the conjecture:

If either fst · k or snd · k are sharp functions then (19) holds.

Some intuitions first, before checking this. Letk : A → B × C be a CS-matrix. The
fact thatf = fst · k : A → B is sharp means that, forb = f a, the corresponding
C -block in matrixk adds up to 1 and all the other entries in thea-column ofk are0.
Projectionsnd · k :A→ C yields such a block;〈fst · k , snd · k〉 puts it back in place.

The proof of this conjecture, whereby (19) grants for free the reflection law

〈fst , snd〉 = id (23)

(takef , g, k := fst , snd , id and note that all functions involved are sharp), will resort
to the definition of (typed) matrix composition, forM : B → C andN :A→ B ,

c(M ·N)a = 〈
∑

b :: (c M b)× (b N a)〉 (24)

13The same happens withforks in relation algebra (Bird and de Moor, 1997).
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and to two rules which interface index-free and index-wise matrix notation, whereN
is an arbitrary matrix andf , g are functional (ie. sharp) matrices:14

y(f ·N)x = 〈
∑

z : y = f z : zNx〉 (25)

y(g◦ ·N · f)x = (g y) N (f x ) (26)

Let us supposefst · k in (19) is sharp. We denote byf :A→ B the proper function
which fst · k is, by hypothesis. Thusf = fst · k . Regarded as a matrix,f is such that
b f a = 1 if b = f a, otherwiseb f a = 0. It is easy to check that facts

〈
∑

c :: (f a, c) k a〉 = 1 (27)

〈
∑

(b, c) : (b 6= f a) : ((b, c) k a)〉 = 0 (28)

hold — see below. Definem = 〈fst · k , snd · k〉, that is,

(b, c) m a = (b (fst · k) a)× (c (snd · k) a)

the same as

(b, c) m a = (b f a) × 〈
∑

b′ :: (b′, c) k a〉 (29)

sincef = fst · k ansnd is sharp (25). Our aim is to prove thatm = k .

Caseb 6= f a:. In this caseb f a = 0 and (29) yields(b, c) m a = 0. From (28) we
also get(b, c) k a = 0 and som = k for this case.

Caseb = f a:. we have

(f a, c) m a

= { (29) ; (b f a) = 1 for b = f a }

〈
∑

b′ :: (b′, c) k a〉

= { b′ = f a ∨ b′ 6= f a }

〈
∑

b′ : b′ = f a ∨ b′ 6= f a : (b′, c) k a〉

= { split summation ; one-point overb′ = f a }

((f a, c) k a) + 〈
∑

b′ : b′ 6= f a : (b′, c) k a〉

= { (28) }

(f a, c) k a

14These rules are derived by Oliveira (2012b) adopting the Eindhoven notation (Backhouse and Michaelis,
2006; Morgan, 2012) for summations, eg.〈

∑
x : R : S〉 whereR is the range (a predicate) which binds

the dummyx andS is the summand.〈
∑

x :: S〉 corresponds toR true for allx, the convention being
omitR in this case.
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Thusm andk are extensionally the same for all cells addressed by(f a, c), completing
the proof.
�

The proof assumingsnd · k sharp instead offst · k being so will be essentially the
same. The remaining assumptions (27) and (28) are easily proved in the appendix.

8. Probabilistic mutual recursion resumed

Back to the case studies of section 4, we now capitalize on theresult of the previous
section granting that, if one of the projections of a probabilistic pair-valued functionk
is a sharp function, then property (17) holds and all its corollaries. 15 This means that,
under the same assumption, the mutual recursion law will hold too.

Put in other words, the probabilistic behaviour of a pair-valued recursive function,
for instance afor-loopk = for b i , will be the same as the productf △ g of its mutually
recursive projectionsf andg, provided eitherf is sharp org is sharp.

This enables us to spot a difference between the two examplesof section 4 just by
looking at the corresponding call graphs:

ONMLHIJKsq

��

// WVUTPQRSodd

�� GFED@ABCfib //ONMLHIJKf

��

BCD@GA??

We see thatsq depends on itself and onodd butodd only depends on itself. Probabilis-
tic msq was obtained fromsq by injecting a fault in the addition operation but this did
not interfere withodd , which remained a sharp function. Thusmsql andmsq exhibit
the same probabilistic behaviour.

Comparatively,mfib was obtained fromfib by injecting a similar fault but this time
the fault propagates to its derivativef and then back tomfib. Thus bothmfib andf are
genuinely probabilistic and the derived linear versionmfibl is not granted to exhibit the
same behaviour.

This can be confirmed by further querying our experiments in two ways. First, we
check that theodd projection ofmsql remains sharp in spite of the probabilistic process
it runs inside of: we definemsqlo as the same asmsql but returningo instead ofs ,

msqlo n =
do {(s , o)← mfor loop (0, 1) n; return o}
where loop (s , o) =
do {z ← fadd0.1 s o; return (z , o + 2)}

and run eg.msqlo 5, for instance

Main> msqlo 5
11 100.0%

15This includes, of course, the standard case in which bothf andg are sharp functions.
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to observe that it yields the Dirac distribution on11, the fifth odd number, while its
companion projection yields

Main> msql 5
25 65.6%

9 10.0%
16 9.0%
21 8.1%
24 7.3%

Second, we disturb this situation by injecting another fault, this time in theodd function
itself,

odd ′ 0 = return 1
odd ′ (n + 1) = do {x ← odd ′ n; fadd 0.1 2 x }

and check that suitably adaptedmsq, mutually dependent onodd ′,

msq ′ 0 = return 0
msq ′ (n + 1) = do {m ← msq ′ n; x ← odd ′ n; fadd 0.1 m x }

and its linear version,

msql ′ n =
do {(s , o)← mfor loop (0, 1) n; return s } where

loop (s , o) = do {
z ← fadd0.1 s o; x ← fadd0.1 2 o;
return (z , x )}

now exhibit different probabilistic behaviours, for instance,

n msq ′ n msql ′ n

3

9 59.0%
7 19.7%
5 10.3%
8 6.6%
6 2.2%
3 1.9%
4 0.2%
1 0.1%
2 0.0%

9 65.6%
5 15.4%
7 7.3%
8 7.3%
3 2.6%
4 0.8%
6 0.8%
1 0.1%
2 0.1%

where linear scores better than mutually recursive, still.

9. Generalizing to other fault propagation patterns

Besides mutual recursion, other fault propagation patterns in functional programs
arise from calculations in the LAoP. These extend to other datatypes, asfor-loops gen-
eralize to folds over lists, and more generally to catamorphisms over other inductive
data types (Bird and de Moor, 1997).
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Below we give examples of this generalization. The first example, still dealing
with for-loops, shows that faults in the base case propagate linearly through the choice
operator — the law ofbase case fault distribution:

for f (a p⋄ b) = (for f a) p⋄ (for f b) (30)

The need for a generalization can be seen already in writing “a p⋄ b”, an abuse of
notation since the choice operator chooses between functions, not arbitrary values.
Thus constructfor f i has to give room to(|[h|f ]|), where standard catamorphism
notation (Bird and de Moor, 1997) is adopted to give freedom to the base case to be
any probabilistic functionh of its type. Thus (9) becomes, forF f = id ⊕ f ,

k = (|[h|f ]|) ≡ k · in = [h|f ] · (F k) (31)

Clearly,

for f a = (|[a|f ]|) (32)

holds. In (30), abbreviationfor f (a p⋄ b) replacing(|[(a p⋄ b)|f ]|) is welcome as it
enhances readability.

The proof of (30) is given in appendix Appendix A. It relies onproperties of
probabilistic choice already given by Oliveira (2012a), namelychoice-fusion

(f p⋄ g) · h = (f · h) p⋄ (g · h) (33)

h · (f p⋄ g) = (h · f ) p⋄ (h · f ) (34)

and theexchange law:

[f |g] p⋄ [h|k ] = [(f p⋄ h)|(g p⋄ k)] (35)

Other interesting patterns of fault propagation arise inpipelining, that is, composi-
tions of probabilistic functionsk = f · g whereby one is able to obtain thefault of the
whole(probabilistick ) expressed in terms of thefaults of its parts(probabilisticf and
g) by “fault fusion”.

The example of fault fusion given below involvessequencesrather than natural
numbers, which means evolving from thefor combinator to the corresponding combi-
nator at sequence processing level16,

k = fold f d ≡ k · in = [d |f ] · (F k) (36)

whereF k = id ⊕ (id ⊗ k) and in = [nil|cons] is the initial algebra of sequences,
for (in Haskell notation)nil = [ ] andcons (h, t) = h : t . Besides the direct sum
(id ⊕ ·) splitting base from recursive case, as withfor, recursive patternF k involves
the Kronecker productid ⊗ k which delivers tof the head of the current sequence
and the outcome of the recursive callk . The base case is captured by vectord , a

16Both are instances of the genericcatamorphismconstruct, as already mentioned.
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distribution. For sharp functions,fold f u means the same asfoldr (curry f ) u in
standard Haskell. (This difference is not a very significantone, as we shall see in the
examples below.) Substitution ofk will yield a closed formula for probabilisticfold
(cancellation property):

fold f d = [d |f · (id ⊗ (fold f d))] ·

[

nil◦

cons◦

]

≡ { divide-and-conquer (11)}

d · nil◦ + f · (id ⊗ (fold f d)) · cons◦ (37)

As examples, considercount = fold (succ · snd) 0, the function that counts how
many items can be found in the input sequence, andcat = fold cons nil, that which
copies the input sequence to the output (thuscat = id ). Suppose there is some risk
thatcat might fail passing items from input to output, with probability p, as captured
by

fcatp = fold (lose p⋄ send) nil

where lose = snd and send = cons. For instance, forp = 0.1, distribution
fcat0.1 "abc" will range from perfect copy (72.9%) to complete loss (0.1%):

"abc" 72.9%
"ab" 8.1%
"ac" 8.1%
"bc" 8.1%

"a" 0.9%
"b" 0.9%
"c" 0.9%

"" 0.1%

Now suppose thatcount too may be faulty in the sense of skipping elements with
probabilityq:

fcountq = fold ((id q⋄ succ) · snd) 0

For instance, forq = 0.15, distributionfcount0.15 "abc" will be:

3 61.4%
2 32.5%
1 5.7%
0 0.3%

What can we tell about the risk of faults in the pipelinefcountq · fcat ·? We could
try specific runs, eg.(fcountq · fcatp) "abc" yielding distribution

3 44.8%
2 41.3%
1 12.7%
0 1.3%
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whose figures combine,in some way, those given earlier for the individual runs.
What we would like to know is thegeneralformula which combines such figures

and expresses the overall risk of failure. For this we resortto the fusion lawwhich
emerges from (36) in the standard way (Bird and de Moor, 1997)and also in the prob-
abilistic setting:

k · (fold g e) = fold f d ⇐ k · [e|g] = [d |f ] · (F k) (38)

In our case, this enables us to solve the equationfcountq · fcatp = fold x y for
unknownsx andy:

fcountq · fcatp = fold x y

⇐ { fold fusion (38) ; definition offcatp }

fcountq · [nil|(lose p⋄ send)] = [x |y] · (F fcountq)

≡ { (5) ; definition ofF; (7) ; (6) }
{

fcountq · nil = x

fcountq · (lose p⋄ send) = y · (id ⊗ fcountq)

≡ { fcountq · nil = 0 }
{

x = 0
fcountq · (snd p⋄ cons) = y · (id ⊗ fcountq)

Second, we solve the second equality just above fory:

fcountq · (snd p⋄ cons) = y · (id ⊗ fcountq)

≡ { choice fusion (34)}

(fcountq · snd) p⋄ (fcountq · cons) = y · (id ⊗ fcountq)

≡ { unfoldingfcountq · cons }

(fcountq · snd) p⋄ ((id q⋄ succ) · snd · (id ⊗ fcountq))

= y · (id ⊗ fcountq)

≡ { free theorem ofsnd }

(fcountq · snd) p⋄ ((id q⋄ succ) · fcountq · snd)

= y · (id ⊗ fcountq)

≡ { choice fusion (33)}

(id p⋄ (id q⋄ succ)) · fcountq · snd = y · (id ⊗ fcountq)

≡ { free theorem ofsnd again }

(id p⋄ (id q⋄ succ)) · snd · (id ⊗ fcountq) = y · (id ⊗ fcountq)

⇐ { Leibniz (id ⊗ fcount
·
cancelled from both sides)}

y = (id p⋄ (id q⋄ succ)) · snd
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Summing up, we have been able to consolidate the risk of the pipelinefcountq · fcatp ,
obtaining the overall behavior

fcountq · fcatp =

fold y 0 where

y = ((p + q − pq) id + (1 − p) (1− q) succ) · snd

in which the probabilistic definition ofy combines the choices according to (3). It can
be checked that this behaviour (which corresponds to that ofa even more riskyfcount ·
reading from a perfectcat ) matches up with the distributions obtained for the specific
runs given earlier.

10. Probabilistic “banana-split”

Our final result has to do with a program transformation technique known asbanana-
split (Bird and de Moor, 1997). Suppose you want to compute the average of a non-
empty list of integers:

avg l =
sum l

count l
(39)

Clearly, you need to visit the input listl twice, one for computing the sum of all integers
and the other for knowing how many there are.Banana-splitis known as a corollary of
the mutual recursion law which enables one to mergebothvisits into a single one by
keeping both values (current sum and current count) in a pair.

From the results of section 8 one cannot takebanana-splitfor granted in presence
of faults, as mutual-recursion does not hold in general. Letus start with an example:
we inject faults in (39) by defining

favgp,q = fsump
△ fcountq

for fcountq as before and

fsump = fold (uncurry faddp) 0

a (faulty) list sum function.17 For instance, we have the outcome:

Main> favg 0.15 0.1 [2,3]
(5,2) 58.5%
(5,1) 13.0%
(2,2) 10.3%
(3,2) 10.3%
(2,1) 2.3%
(3,1) 2.3%
(0,2) 1.8%

17We focus on computing the pair of values of (39), leaving aside the final division and the problem of the
divisions by zero which arise from faulty counting (to be handled by raising exceptions).
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(5,0) 0.7%
(0,1) 0.4%
(2,0) 0.1%
(3,0) 0.1%
(0,0) 0.0%

which will lead to the correct average2.5 = 5
2 with 58.5% probability, the wrong

average of5 with 13.0% probability and so on and so forth.
By application ofbanana split(details below) we transformfavgp,q into a single

fold on total/count pairs(t , c),

favgbsp,q = fold body (0, 0) where

body (a, (t , c)) = do {
t ′ ← fadd p a t ;

c′ ← (id q⋄ succ) c;
return (t ′, c′)}

which happens to yield the same output for the same arguments.
Perhaps the run above is not a good choice after all for showing some possible

discrepancy between the two versions of the code, before andafter banana split—
one would say. It turns out that further experiments won’t succeed in finding a run
discriminating both solutions, as these will remain probabilistically indistinguishable.

We show below that this happens because thebanana splitprogram transformation
law doeshold probabilistically, independently of mutual recursion. To give a single
proof covering both for-loops and folds on lists, we generalize both (9) and (36) to

k = (|f |) ≡ k · in = f · (F k) (40)

wheref is a suitably typed probabilistic function covering both the inductive and the
base cases of (9,36), and the customarybananabrackets(| |) are used to denote such a
generic fold, orcatamorphism.18 Cancellation

(|f |) · in = f · F (|f |) (41)

follows trivially from (40).

Theorem 1 (Probabilistic ‘banana-split’). Transformation

(|f |) △ (|g|) = (|(f ⊗ g) · unzipF|) (42)

where

unzipF = (F fst) △ (F snd) (43)

holds forf andg probabilistic and for all functorsF over whichunzipF is natural:

(F f ⊗ F g) · unzipF = unzipF · F (f ⊗ g) (44)

18FunctorsF X = id ⊕X andF X = id ⊕ (id ⊗X ) give us backfor-loops and list folds, respectively.
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Proof: Relying onabsorption law

(M ·N) △ (P ·Q) = (M ⊗ P ) · (N △ Q) (45)

valid for any (suitably typed) matricesM , N , P , Q (Macedo, 2012), we proceed by
cata-universality, by solving forf the right hand side equation of (40), oncek is in-
stantiated tok = (|f |) △ (|g|):

((|f |) △ (|g|)) · in

= { as in is a proper function, pair-fusion holds (A.1)}

((|f |) · in) △ ((|g|) · in)

= { two cancellations (41)}

(f · F (|f |)) △ (g · F (|g|))

= { pairing-absorption (45)}

(f ⊗ g) · ((F (|f |)) △ (F (|g|)))

= { (46) below}

(f ⊗ g) · unzipF · F ((|f |) △ (|g|))

�

Thus (42) holds, by (40). As shown in the appendix, fact

unzipF · F (f △ g) = (F f ) △ (F g) (46)

used in the proof is an immediate corollary of the naturality(44) ofunzip
F
.

�

In the appendix we show that functors which support folds andfor-loops are such
that (44) holds, thus granting “banana-split” (42) for suchprogramming schemes.
Moreover, this property is structurally preserved by functor composition, sum etc.

In retrospect, note how law (42) was proved not as a corollaryof mutual recursion
but as anindependentresult. Also note the major role of functionunzipF (43) in each
inductive step: it separates that part of the output which isto be fed tof from that to be
fed tog. It is this separation which grantsnon-interferencebetween both computations,
as happened in thesquareexample but not infibonacciexample, as we have seen.

For completeness, we state the (conditioned) mutual recursion law in a similar
generic setting:

Theorem 2 (Probabilistic mutual-recursion). Transformation
{

f · in = h · F (f △ g)
g · in = k · F (f △ g)

≡ f △ g = (|h △ k |) (47)

holdsprovided one of probabilisticf or g is sharp.
Proof: generalize the rationale of section 6 fromfor-loops toF-catamorphisms. Typ-
ically, for one such function, sayf , to be sharp, it has to be independent of the other
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(sayg), assumed truly probabilistic. This means thath · F (f △ g) = h′ · (G f ), for
someh′ andG.
�

11. Conclusions

The production ofsafety criticalsoftware is bound to a number of certification stan-
dards in which estimating therisk of failureplays a central role. NASA’s procedures
guide forprobabilistic risk assessment(PRA) reviews the historical background of risk
analysis, evolving from a qualitative to a quantitative perspective of risk (Stamatelatos
and Dezfuli, 2011). The UK MoD Defence Standard 00-56 (MoD, 2007) enforces that
all (...) calculations underpinning the risk estimationbe recorded in so-calledsafety
cases(documents supporting the claim that some given software issafe)such that the
risk estimates can be reviewed and reconstructed.

Risk estimation seems to live outside programmers’ core practice: either the soft-
ware system once completed is subject (by others) to intensive simulation over faults
injected into safety-critical parts, or the estimation proceeds by analysis of worse case
scenarios on a large-scale view of the system’s operation.

Software development and risk analysis are performed separately because program-
ming language semantics are (in general)qualitativeand risk estimation calls forquan-
titativesemantic models such as those already prominent in security(McIver and Mor-
gan, 2005). Quantitative methods face another problem, diagnosed by Morgan (2012):
probability theory is too descriptive and not fit enough for calculation as this is under-
stood in today’s research in program correctness.

In this paper we propose that risk calculation be constructively handled in the pro-
gramming process since the early stages, rather than being an a posterioriconcern.
This means that risk is taken into account as the “normal” situation, absence of risk be-
ing an ideal case. In particular, operations are modelled asprobabilistic choice between
expected behaviour and faulty behaviour.

Functional programmingappears to be particularly apt for this purpose because
of its strong mathematical basis. The obstacles mentioned above are circumvented
by adopting a linear algebra approach to probability calculation (Oliveira, 2012a), a
strategy which fits into the calculational style of functional program development based
on its algebra of programming (Bird and de Moor, 1997).

This puts functional programming in the forefront of risk estimation simply by
exploring the adjunction between distribution-valued functions and matrices of proba-
bilities. One side of the adjunction is “good for programming”: the monadicone, as
we have shown by our experiments in Haskell; the other side (linear algebra) is “good
for calculation”.

This does not prevent one from actually running case studiesin a matrix-speaking
language such as eg. MATLAB . Interestingly, we have observed that, although using
MATLAB for the purposes of this paper may seem a “tour de force” (since it is poorly
typed and not polymorphic, calling for explicit type error checking in the old style),
MATLAB tends to perform faster than Haskell when the probabilisticmonadic calcula-
tions involve distributions of wider support.
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The core of this paper shows how to calculate the propagationof faults across
standard program transformation techniques known astupling (Hu et al., 1997) and
fusion(Harper, 2011). This enables one to find conditions for thefault of the whole
to be expressed in terms of thefaults of its parts— a compositionalapproach to risk
calculation.

12. Related and future work

Program analysis techniques based on languages such as eg. Rely (Carbin et al.,
2013) evaluate quantitative reliability of computations running on unreliable hardware,
eg. unreliable arithmetic/logical operations (as in the current paper) or unreliable physi-
cal memories. Rely’s analysis generatesreliability pre-conditionswhich are handled by
reliability transformers, bridging to current work on probabilistic Hoare logic (Barthe
et al., 2012).

The work by Pierro et al. (2010) is closer to ours in its adoption of (untyped) linear
algebra in the compositional construction of a so-calledlinear operator semantics,
leading to probabilistic program analysis inspired by classicalabstract interpretation.
As in our setting, the key element in the construction is the use of tensor products to
capture different aspects of a program.

On the foundations side, probabilisticweaktupling has been addressed in the more
wide setting ofmonoidalcategories adopted in eg. categorial quantum physics (Co-
ecke, 2011). These include not onlyFdHilb, the category of finite dimensional Hilbert
spaces, but alsoRel , the category of binary relations. Thus the remarks by Coecke and
Paquette, in theirCategories for the Practising Physicist(Coecke, 2011):

Rel [the category of relations] possesses more ’quantum features’ than the cate-
gorySet of sets and functions [...] The categoriesFdHilb andRel moreover admit
a categorical matrix calculus.

We hope to exploit this connection in the future, in particular concerning partial orders
defined for quantum states which could be used to support a notion of refinement.

On a more practical register, we would like to find side-conditions for probabilistic
mutual-recursion (Theorem 2) weaker than that imposing onefunction to be sharp.
Interestingly, this seems to link to work by Wong and Butz (2000) on another topic:
Bayesian embedded multivalued dependencies as necessary and sufficient conditions
for lossless decomposition of probabilistic relations. For this we hope to be able to
generalize previous work in this field (Oliveira, 2011).

Our experiments in probabilistic mutual recursion show that linear versions consis-
tently score better than the recursive. This conforms to intuition, as program optimiza-
tion leads to less computations and therefore to lesser propagation of faults. We would
like to quantifysuch a difference in probabilistic behaviour. In general, one may think
of ordering fault-injected functions with respect to some expected, sharp function. Let
f : A → B be such a function andg, h : A → B be probabilistic approximations to it,
all represented as CS-matrices. Theng andh can be compared againstf as follows,

g 6f h iff g × f 6 h × f
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whereM ×N denotes the Hadamard (entry-wise) product of matricesM andN . That
is, for eacha, we compare the probability whichg andh offer for the correct value
f a. Of course,g 6f f always holds, that is,f is the best approximation to itself.
The question is — how effective is it to calculate with this preorder? Is the difference
h × f − g × f a metric suitable for quantifying fault propagation acrosscorrectness-
preserving program transformations?

Scaling-up, another follow-up of the strategy put forward in this paper is its appli-
cation to fault-propagation in component-oriented software systems. Cortellessa and
Grassi (2007) quantify component-to-component error propagation in terms of a ma-
trix which emulates a probabilisticcall-graph. We are currently working on a formal
alternative to this approach (Barbosa et al., 2013) in whichcomponents represented
by coalgebras(Barbosa, 2003) extended probabilistically, by adding to the coalgebraic
matrices of (Oliveira, 2012b) abehaviourmonad inside thedistributionone.

Altogether, we hope to show that the linear algebra of programming is a wide-range
formalism suitable to generically support quantitative methods in the software sciences.
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Appendix A. Proofs in appendix

Proof of cancellation (21).Base case (f andg are column vectors)19:

fst · (f △ g) = f ∧ snd · (f △ g) = g

≡ { fst = id ⊗ ! andsnd = !⊗ id }

(id ⊗ !) · (f △ g) = f ∧ (!⊗ id) · (f △ g) = g

≡ { for vectors,f △ g = f ⊗ g (15) }

(id ⊗ !) · (f ⊗ g) = f ∧ (!⊗ id) · (f ⊗ g) = g

≡ { functor-· ⊗ ·; natural-id }

f ⊗ (! · g) = f ∧ (! · f )⊗ g = g

≡ { g is probabilistic, therefore! · f = ! · g = ! (Oliveira, 2012a)}

f ⊗ ! = f ∧ !⊗ g = g

≡ { 1 1
!oo = 1 andM ⊗ 1 = M }

f = f ∧ g = g

�

Inductive step:f = [f1|f2] andg = [g1|g2]. Calculatingfst · (f △ g) = f first:

fst · (f △ g) = f

≡ { f = [f1|f2] andg = [g1|g2] }

fst · ([f1|f2] △ [g1|g2]) = [f1|f2]

≡ { exchange law (16)}

fst · [(f1 △ g1)|(f2 △ g2)] = [f1|f2]

≡ { fusion (5) }

[(fst · (f1 △ g1))|(fst · (f2 △ g2))] = [f1|f2]

≡

{

induction hypothesis:fst · (f △ g) = f

holds forf , g := fi, gi (i = 1, 2)

}

[f1|f2] = [f1|f2]

�

Branchsnd · (f △ g) = g is calculated in a similar way.

19Row vector!:A → 1 corresponds to the sharp, constant function which maps every input to the singleton
datatype.
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Proof of (27). This equality arises from rule (25):

〈
∑

c :: (f a, c) k a〉 = 1

≡ { one-point rule}

〈
∑

b, c : f a = b : (b, c) k a〉 = 1

≡ { b = fst (b, c) ; (25) }

(f a) (fst · k) a = 1

≡ { f = fst · k }

(f a) f a = 1

≡ { f is sharp}

true

�

Proof of (28). This equality arises fromk being probabilistic:

〈
∑

b, c : b 6= f a : (b, c) k a〉 = 0

≡ { 1 + 0 = 1 }

1 + 〈
∑

b, c : b 6= f a : (b, c) k a〉 = 1

≡ { (27) }

〈
∑

c :: (f a, c) k a〉 +
〈
∑

b, c : b 6= f a : (b, c) k a〉 = 1

≡ { merge quantifiers}

〈
∑

(b, c) :: (b, c) k a〉 = 1

≡ { k is probabilistic }

true

�

Proof of base-case fault propagation (30).Clearly, by (32) and universal property (31),
our target (30) re-writes to the equality

((for f a) p⋄ (for f b)) · in =

[(a p⋄ b)|f ] · (F ((for f a) p⋄ (for f b)))

which holds by transforming the left-hand side into the right-hand side:
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((for f a) p⋄ (for f b)) · in

= { choice-fusion (33)}

(for f a · in) p⋄ (for f b · in)

= { (32) and (31), twice}

([a|f ] · F (for f a)) p⋄ ([b|f ] · F (for f b)))

= { F f = id ⊕ f ; [M |N ] · (P ⊕Q) = [M · P |N ·Q] }

[a|(f · (for f a))] p⋄ [b|(f · (for f b))]

= { exchange law (35)}

[(a p⋄ b)|((f · for f a) p⋄ (f · for f b))]

= { choice-fusion (34)}

[(a p⋄ b)|(f · ((for f a) p⋄ (for f b)))]

= { [M |N ] · (P ⊕Q) = [M · P |N ·Q] }

[(a p⋄ b)|f ] · (id ⊕ ((for f a) p⋄ (for f b)))

= { F f = id ⊕ f }

[(a p⋄ b)|f ] · (F ((for f a) p⋄ (for f b)))

�

Proof of Khatri-Rao (conditional) fusion.We want to prove

(M △ N ) · h = (M .h) △ (N .h) ⇐ h is sharp (A.1)

where probabilistic functionsf andg are generalized to arbitrary matricesM andN :

(b, c) ((M △ N) · h) a

= { (26) forh a standard function}

(b, c) (M △ N) (h a)

= { pointwise Khatri-Rao (13)}

(b M (h a)) × (c N (h a))

= { (26) forh a standard function}

b (M · h) a × c (N · h) a

= { pointwise Khatri Rao (13) — twice}

(b, c) ((M · h) △ (N · h)) a

�
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Proofs concerning naturality ofunzipF (44). This property holds trivially for the iden-
tity functorF X = X , whereunzipF = id , and for any constant functorF X = K , in
which caseunzip

F
= id △ id .

We show next that the property is structurally preserved by functor composition,
sayF = G H, whereby

unzipGH = unzipG · (G unzipH) (A.2)

holds by pair-fusion (A.1), cf. the sharp right term. In thisand the remaining calcula-
tions we generalize probabilistic functionsf andg in (44) to arbitrary matricesM , N
over a semiring. We have:

unzipGH · G H (M ⊗N )

= { (A.2) }

unzipG · (G unzipH) · G (H (M ⊗N ))

= { functorG (composition)}

unzipG · G (unzipH · H (M ⊗N ))

= { induction hypothesis: assume (44) forF = H; G again}

unzip
G
· G (((H M )⊗ (H N )) · (G unzip

H
)

= { induction hypothesis: assume (44) forF = G }

((G (H M ))⊗ (G (H N ))) · unzip
G
· G (unzip

H
)

= { (A.2) }

((G H M )⊗ (G H N )) · unzipGH

�

Next, we do the same for sums, sayF = G⊕ H. In this case we have:

unzipF = ((G fst)⊕ (H fst)) △ ((G snd)⊕ (H snd)) (A.3)

Facts

unzip
F
· i1 = (i1 ⊗ i1) · unzipG (A.4)

unzipF · i2 = (i2 ⊗ i2) · unzipH (A.5)

are easy to prove via exchange law (16), wherei1 andi2 are the injections of the direct
sum, that is[i1|i2] = id . The same law also grants equality

[((i1 ⊗ i1) · (M △ N ))|((i2 ⊗ i2) · (P △ Q))]
= (M ⊕ P) △ (N ⊕Q)

(A.6)

which is valid for all suitably typed matricesM ,N ,P andQ , and will help in the proof
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that (44) holds for sums of functors which (inductively) satisfy the same property:

unzipF · F (M ⊗N )

≡ { F = G⊕M }

unzipF · ((G (M ⊗N ))⊕ (H (M ⊗N )))

= {M ⊕ N = [(i1 ·M )|(i2 · N )] }

[(unzip
F
· i1 · (G (M ⊗N )))|(unzip

F
· i2 · (H (M ⊗N )))]

= { (A.4,A.5) }

[((i1 ⊗ i1) · unzipG · (G (M ⊗N )))|((i2 ⊗ i2) · unzipH · (H (M ⊗N )))]

= { induction hypothesis: assume (44) forF = G andF = H }

[((i1 ⊗ i1) · ((G M )⊗ (G N )) · unzipG)|((i2 ⊗ i2) · ((H M )⊗ (H N )) · unzipH)]

≡ { definitions ofunzip
G

andunzip
H

; absorptions}

[((i1 ⊗ i1) · (G (M · fst)) △ (G (N · snd)))|((i2 ⊗ i2) · ((H (M · fst))⊗ (H (N · snd))))]

= { (A.6) }

((G (M · fst))⊕ (H (M · fst))) △ ((G (N · snd))⊕ (H (N · snd))

≡ { F = G⊕M }

(F (M · fst)) △ (F (N · snd))

≡ { functorF ; reverse absorption}

((F M )⊗ (F N )) · ((F fst) △ (F snd))

≡ { definition ofunzip
F
}

((F M )⊗ (F N )) · unzipF

�

Finally, we address functorF X = id ⊗X which participates in the recursion schema
of folds. Note that we can replaceid by id⊕ id since·⊕· is a bifunctor in any category
of matrices (Macedo, 2012). Then

F X = (id ⊕ id)⊗X = (id ⊗X )⊕ (id ⊗X ) = (F X )⊕ (F X )

This reduces this case to the previous one, forG X = F X andH X = F X , where the
identities in these functors are of smaller size. Thus, in a sense, induction proceeds on
the size of the identity matrix which participates in functor definitionF X = id ⊗X .
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Proof of fact (46).

unzipF · F (f △ g)

= { reverse pairing-absorption (45)}

unzipF · F (f ⊗ g) · F (id △ id)

= { naturality (44)}

(F f ⊗ F g) · unzip
F
· F (id △ id)

= { functorF; unzip
F

(43) ; pairing-fusion (A.1), asid △ id is sharp}

(F f ⊗ F g) · (F (fst · (id △ id)) △ F (fst · (id △ id)))

= { standard pairing-cancellation (21)}

(F f ⊗ F g) · (F id △ F id)

= { functorF; pairing-absorption (45)}

(F f ) △ (F g)

�
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