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Abstract algebra has the power to unify seemingly disparate theories once they are encoded
into the same abstract formalism. This paper shows how a relation-algebraic rendering
of both database dependency theory and Hoare programming logic purports one such
unification, in spite of the latter being an algorithmic theory and the former a data theory.
The approach equips relational data with functional types and an associated type system
which is useful for database operation type checking and optimization.
The prospect of a generic, unified approach to both programming and data theories on top
of libraries already available in automated deduction systems is envisaged.
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“Hardly anybody confronted with practical problems knows how to apply relational calculi [for which] there is almost no broadly
available computer support [. . . ] We feel, however, that the situation is about to change dramatically as relational mathematics
develops and computer power exceeds previous expectations.”

[Gunther Schmidt [1]]

1. Introduction

In a paper addressing the influence of Alfred Tarski (1901–1983) in computer science, Solomon Feferman [2] quotes the
following statement by his colleague John Etchemendy: “You see those big shiny Oracle towers on Highway 101? They would
never have been built without Tarski’s work on the recursive definitions of satisfaction and truth”.

The ‘big shiny Oracle towers’ are nothing but the headquarters of Oracle Corporation, the giant database software
provider sited in the San Francisco Peninsula. Still Feferman [2]: “Does Larry Ellison know who Tarski is or anything about
his work? [. . . ] I learned subsequently from Jan Van den Bussche that [. . . ] he marks the reading of Codd’s seminal paper as the starting
point leading to the Oracle Corporation.”

Bussche [3] had in fact devoted attention to relating Codd and Tarski’s work: “We conclude that Tarski produced two
alternatives for Codd’s relational algebra: cylindric set algebra, and relational algebra with pairing [. . . ] For example, we can represent
the ternary relation {(a,b, c), (d, e, f )} as {(a, (b, c)), (d, (e, f ))}”. Still Bussche [3]:

“Using such representations, we leave it as an exercise to the reader to simulate Codd’s relational algebra in RA+ [relational algebra
with pairing]”.
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To the best of the author’s knowledge, nobody has thus far addressed this exercise in a thorough and generic way. Instead,
standard relational database theory [4,5] includes a well-known relation algebra but this is worked out in set theory and
quantified logic, far from the objectives of Tarski’s life-long pursuit in developing methods for elimination of quantifiers
from logic expressions. This effort ultimately lead to his formalization of set theory without variables [6].

The topic has acquired recent interest with the advent of work on implementing extensions of Tarski’s algebra in au-
tomated deduction systems such as Isabelle [7] or Prover9 and the associated counterexample generator Mace4 [8]. This
offers a potential for automation which has not been acknowledged by the database community. In this context, it is worth
mentioning an early concern of the founding fathers of the standard theory [9]:

“[A] general theory that ties together dependencies, relations and operations on relations is still lacking”.

More than 30 years later, this concern is still justified, as database programming standards remain insensitive to techniques
such as formal verification and extended static checking [10] which are regarded more and more essential to ensuring
quality in complex software systems.

Contribution The remainder of this paper will show how an algebraic treatment of standard data dependency theory along
the exercise proposed by Bussche equips relational data with functional types and an associated type system which can be
used to type check database operations.

Interestingly, such a typed approach to database programming will be shown to relate to other programming logics such
as e.g. Hoare logic [11] or that of strongest invariant functions [12] which has been used in the analysis of while statements,
for instance.

On the whole, the approach has a unifying theories of programming [13] flavour, even though the exercise will not be
carried out in “canonical” UTP.

Outline Section 2 introduces functional dependencies (FD) and shows how to convert the standard definition into the
Tarskian, quantifier-free style. The parallel between the functions as types approach which emerges from such a conversion
and a similar treatment of Hoare logic starts in Section 3. Section 4 shows that, in essence, injectivity is what matters in
FDs and gives a correspondingly simpler definition of FD which is used in Section 5 to re-factor the standard theory into a
type system of FDs. Section 6 shows how to use this type system to type check database operations and Section 7 shows how
to calculate query optimizations from FDs. The last sections conclude and give an account of related and future work.

Some technical details are omitted from the current paper for conciseness. All can be found in a technical report available
on-line [14].

2. Introducing functional dependencies

In standard relational data processing, real life objects or entities are recorded by assigning values to their observable
properties or attributes. A database table is a collection of such attribute assignments, one per object, such that all values of
a particular attribute (say i) are of the same type (say Ai ). For n such attributes, a relational database file T can be regarded
as a set of n-tuples, that is, T ⊆ A1 × · · · × An . A relational database is just a collection of several such relations, or tables.

Attribute names normally replace natural numbers in the identification of attributes. The enumeration of all attribute
names in a database table, for instance S = {Pilot, Flight,Date,Departs} concerning the airline scheduling system given as
example in [4], is a finite set called the table’s scheme. This scheme captures the syntax of the data. What about semantics?
Even non-experts in airline scheduling will accept “business rules” such as, for instance: a single pilot is assigned to a given
flight, on a given date. This restriction is an example of a so-called functional dependency (FD) among attributes, which can be
stated more formally by writing “Flight Date → Pilot” to mean that attribute Pilot is functionally dependent on Flight and
Date, or that Flight,Date functionally determine Pilot.

Data dependencies help in capturing the meaning of relational data. Data dependency theory involves not only functional
dependencies (FD) but also multi-valued dependencies (MVD). Both are central to the standard theory, where they are
addressed in an axiomatic way. Maier [4] provides the following definition for FD-satisfiability:

Definition 1. Given subsets x, y ⊆ S of the relation scheme S of an n-ary relation T , this relation is said to satisfy functional
dependency x → y iff all pairs of tuples t, t′ ∈ T which “agree” on x also “agree” on y, that is,

∀t, t′ : t, t′ ∈ T ⇒ (
t[x] = t′[x] ⇒ t[y] = t′[y]) (1)

(The notation t[x] in (1) means “the values exhibited by tuple t for the attributes in x”.) �

How does one express formula (1) in Tarski’s relation algebra style, without the two-dimensional universal quantification
and logical implications inside? For so doing we need to settle some notation. To begin with, t[x] is better written as x(t),
where x is identified with the projection function associated to attribute set x. Regarding x and y in (1) as such functions we
write:
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∀t, t′ : t, t′ ∈ T ⇒ (
x(t) = x

(
t′) ⇒ y(t) = y

(
t′)) (2)

Next, we observe that, given a function f : A → B , the binary relation R ⊆ A × A which checks whether two values of A
have the same image under f 1 — that is, a′Ra ≡ f (a′) = f (a) — can be written alternatively as a′( f ◦ · f )a. Here, f ◦ denotes
the converse of f — that is, a( f ◦)b holds iff b = f (a) — and the dot (·) denotes the extension of function composition to
binary relations2:

b(R · S)c ≡ ∃a : b R a ∧ a S c (3)

Using converse and composition the rightmost implication of (2) can be rewritten into t(x◦ · x)t′ ⇒ t(y◦ · y)t′ , for all
t, t′ ∈ T . Implications such as this can be expressed as relation inclusions, following the definition

R ⊆ S ≡ ∀b,a : b R a ⇒ b S a (4)

However, just stating the inclusion x◦ · x ⊆ y◦ · y would be a gross error, for the double scope of the quantification (t ∈
T ∧ t′ ∈ T ) would not be taken into account. To handle this, we first unnest the two implications of (2),

∀t, t′ : (t ∈ T ∧ t′ ∈ T ∧ t
(
x◦ · x

)
t′) ⇒ t(y◦ · y)t′

and treat the antecedent t ∈ T ∧ t′ ∈ T ∧ t(x◦ · x)t′ independently, by replacing the set of tuples T by the binary relation
[[T ]] defined as follows3:

b[[T ]]a ≡ b = a ∧ a ∈ T (5)

Note that t ∈ T can be expressed in terms of [[T ]] by ∃u : t[[T ]]u and similarly for t′ ∈ T . Then:

(
t ∈ T ∧ t′ ∈ T ∧ t

(
x◦ · x

)
t′)

≡ {
expansion of t ∈ T and t′ ∈ T

}

∃u, u′ : t[[T ]]u ∧ t′[[T ]]u′ ∧ t(x◦ · x)t′

≡ {∧ is commutative; u = t and u′ = t′; converse
}

∃u, u′ : t[[T ]]u ∧ u
(
x◦ · x

)
u′ ∧ u′[[T ]]◦t′

≡ {
composition (3) twice

}

t
([[T ]] · x◦ · x · [[T ]]◦)t′ �

Finally, by putting this together with t(y◦ · y)t′ we obtain

[[T ]] · x◦ · x · [[T ]]◦ ⊆ y◦ · y (6)

as a quantifier-free relation algebra expression meaning the same as (1).

Generalization To reassure the reader worried about the doubtful practicality of derivations such as the above, we would
like to say that we don’t need to do it over and over again: inequality (6), our Tarskian alternative to the original textbook
definition (1), is all we need for calculating with functional dependencies. Moreover, we can start this by actually expanding
the scope of the definition from sets of tuples [[T ]] and attribute functions (x, y) to arbitrary binary relations R and suitably
typed functions f and g:

R · f ◦ · f · R◦ ⊆ g◦ · g (7)

In this wider setting, R can be regarded not only as a piece of data but also as the specification of a non-deterministic
computation, or even the transition relation of a finite-state automaton; and f (resp. g) as a function which observes the
input (resp. output) of R . Put back into quantified logic, such a wider notion of a functional dependency will expand as
follows:

∀a′,a : f
(
a′) = f (a) ⇒ (∀b′,b : b′ R a′ ∧ b R a ⇒ g

(
b′) = g(b)

)
(8)

1 This is known as the nucleus [12] or kernel [15] of a function f .
2 Thus composition of both functions are relations should be read backwards. This is consistent with b f a (function f regarded as a special case of

relation) meaning b = f (a) and not a = f (b).
3 This is a standard way of encoding a set T as a partial identity [1], thus called since [[T ]] ⊆ id. The set of all such relations forms a Boolean algebra

which reproduces the usual algebra of sets. Moreover, partial identities are symmetric ([[T ]]◦ = [[T ]]) and such that [[S]] · [[T ]] = [[S]] ∩ [[T ]]. Also known as
coreflexives [16] or as monotypes [17], partial identities are special cases of tests in Kleene algebras with tests [18].
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In words: inputs a, a′ to R which are indistinguishable by f can only lead to outputs indistinguishable by g . Notationally, we will

convey this interpretation by writing R : f → g or f R g . We can still say that R satisfies FD f → g , in particular
wherever R is a piece of data. As can be easily checked, f (a′) = f (a) is an equivalence relation which, in the wider setting,
can be regarded as the semantics of the datatype which R takes inputs from (think of f : A → B as a semantic function
mapping a syntactic domain A into a semantic domain B), and similarly for g concerning the output type.

Summing up, the functions f and g in (7) can be regarded as types for R . Some type assertions of this kind will be very
easy to check, for instance id : f → f , just by replacing R, f , g := id, f , f in (7) and simplifying. But type inference will be
easier to calculate on top of the even simpler (re)statement of (7) which is given next.

3. Functions as types

Before proceeding let us record two properties of the relational operators converse and composition4:

(R · S)◦ = S◦ · R◦ (9)
(

R◦)◦ = R (10)

Moreover, it will be convenient to have a name for the relation R◦ · R which, for R a function f , is the equivalence relation
“indistinguishable by f ” seen above. We define

ker R � R◦ · R (11)

and read ker R as “the kernel of R”. Clearly, a′(ker R)a means ∃b : b R a′ ∧ b R a and therefore ker R measures the injectivity
of R: the larger it is the larger the set of inputs which R is unable to distinguish (= the less injective R is).

We capture this by introducing a preorder on relations which compares their injectivity:

R � S � ker S ⊆ ker R (12)

As an example, take two list functions: elems computing the set of all elements of a list and bagify keeping the bag of such
elements. The former loses more information (order and multiplicity) than the latter, which only forgets about order. Thus
elems � bagify. A function f (relation in general) will be injective iff ker f ⊆ id (id � f ), which easily converts to the usual
definition: f (a′) = f (a) ⇒ a′ = a.

Summing up: for functions or any totally defined relations R and S ,5 R � S means that R is less or as injective as S; for
possibly partial R and S , it will mean that R less injective or more defined than S . Therefore, for total relations R the preorder
is universally bounded, ! � R � id, where the infimum is captured by constant function ! which maps every argument to a
given (predefined) value, the choice of which is irrelevant.6 The kernel of ! is therefore the largest possible, denoted by 
(for “top”). The other bound is trivial to check, since ker id = id, this arising from the well-known fact that id is the unit of
composition. In general, id � R means that R is injective.

Equipped with this ordering, we may spruce up our relational characterization of the f R g type assertion, or
functional dependency (FD):

f R g

≡ {
definition (7)

}

R · f ◦ · f · R◦ ⊆ g◦ · g

≡ {
converses (9), (10); kernel (11)

}

ker ( f · R◦) ⊆ ker g

≡ {
(12): g is “less or as injective as f w.r.t. R”

}

g � f · R◦ �
We thus reach a rather compact formula for expressing functional dependencies, whose layout invites us to actually swap
the direction of the arrow notation (but, of course, this is optional and just a matter of taste):

4 It may help to recall the same properties from elementary linear algebra, once converse is interpreted as matrix transposition and composition as
matrix–matrix multiplication [1].

5 A relation R is totally defined (or entire) iff id ⊆ ker R .
6 Thus ! · f = !, for all f . Also note that R � S is a preorder, not a partial order, meaning that two relations indistinguishable with respect to their degree

of injectivity can be different.
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Definition 2. Given an arbitrary binary relation R ⊆ A × B and functions f : B → D and g : A → C , the “type assertion”

g fR meaning that R satisfies FD f → g is captured by the equivalence:

g fR ≡ g � f · R◦ � (13)

There are two main advantages in definition (13), besides saving ink. The most important is that it profits from the
relational calculus of injectivity which will be addressed in the following section. The other is that it makes it easy to
bridge with other programming logics, as is seen next.

Parallel with Hoare logic As is widely known, Hoare logic is based on triples of the form {p}R{q}, with the standard inter-
pretation: “if the assertion p is true before initiation of a program R, then the assertion q will be true on its completion” [11].

Let program R be identified with the relation which captures its state transition semantics and predicates p (and q) be
identified with relation s′[[p]]s ≡ s′ = s ∧ p(s) (similarly for q) in which the reader identifies the earlier trick of converting
sets to partial identities (Section 2). Note how [[p]] can be regarded as the semantics of a statement which checks p(s) and
does not change state, failing otherwise. In relation algebra the Hoare triple is captured by

{p}R{q} ≡ rng
(

R · [[p]]) ⊆ [[q]] (14)

meaning that the outputs of R (given by the range operator rng ) for inputs pre-conditioned by p fall inside q 7; that is, q is
weaker than the strongest (liberal) post-condition slp(R, p), something we can express by writing

{p}R{q} ≡ q � p · R◦ (15)

under a suitable preorder � expressing that q is less constrained than p · R◦ 8:

R � S ≡ dom S ⊆ dom R (16)

In spite of the different semantic context, there is a striking formal similarity between formulas (15) and (13) suggesting
that Hoare logic and the logic we want to build for FDs share the same mathematics once expressed in relation algebra. Such

similarities will become apparent in the sequel, particularly whereupon we write p R q (or the equivalent q pR )
for {p}R{q} to put the two notations closer to each other. In this way, rules such as e.g. that of composition, {p}R{q} ∧
{q}S{r} ⇒ {p}R; S{r} become reminiscent of labeled transition systems9:

p R q ∧ q S r ⇒ p
R;S

r (17)

We will check the FD equivalent to composition rule (17) shortly.

4. A calculus of injectivity (���)

One of the advantages of relation algebra is its easy “tuning” to special needs, which we will illustrate below concerning
the algebra of injectivity. We give just an example, taken from [14]; the reader is referred to this report for technical details.

We start by considering two rules of relation algebra which prove very useful in program calculation:

f · R ⊆ S ≡ R ⊆ f ◦ · S (18)

R · f ◦ ⊆ S ≡ R ⊆ S · f (19)

In these equivalences,10 which are widely known as shunting rules [23,1], f is required to be a (total) function. In essence,
they let one trade a function f from one side to the other of a ⊆-equation just by taking converses. (This is akin to
“changing sign” in trading terms in inequations of elementary algebra.)

It would be useful to have similar rules for the injectivity preorder, which we have chosen as support for our definition
of a FD (13). Such rules turn out to be quite easy to infer, as is the case of the following Galois connection for trading a
function f with respect to injectivity

R · f � S ≡ R � S · f ◦ (20)

7 See e.g. [19]. Term rng (R · [[p]]) instantiates the semiring diamond combinator of [20]. Wehrman et al. [21] give an even simpler semantics for Hoare
triples: P {R}Q ≡ R · P ⊆ Q , that is, P is at most the weakest pre-specification (residual relation) R \ Q , where b(R \ Q )a means ∀c : c R b ⇒ c Q a [22].

8 Details: by definition, dom R = ker R ∩ id and rng R = dom (R◦) (converse duality). Starting from (14), triple {p}R{q} asserts rng (R · [[p]]) ⊆ [[q]], itself
the same as dom ([[p]] · R◦) ⊆ dom [[q]] (15) by converse duality and the fact that the domain of a partial identity is itself. Parentheses [[_]] are dropped for
improved readability.

9 Forward composition R; S means the same as S · R .
10 Technically, these equivalences should be regarded as (families of) Galois connections.
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calculated as follows:

R · f � S

≡ {
definition (12); converses (9), (10); kernel (11)

}

ker S ⊆ f ◦ · (ker R) · f

≡ {
shunting rules (18), (19)

}

f · ker S · f ◦ ⊆ ker R

≡ {
converses, kernel and definition (12) again

}

R � S · f ◦ �
Below we put shunting rule (20) at work in the derivation of a trading-rule which will enable handling composite

antecedent and consequent functions in FDs:

g fh·R·k◦ ≡ g · h f · kR (21)

Thanks to (20), the calculation of (21) is immediate:

g fh·R·k◦

≡ {
definition (13); converses

}

g � f · k · R◦ · h◦

≡ {
shunting rule (20)

}

g · h � ( f · k) · R◦

≡ {
definition (13)

}

g · h f · kR �
Another result about relational injectivity which will help in the sequel is

X � R ∪ S ≡ X � R ∧ X � S ∧ R◦ · S ⊆ ker X (22)

where R ∪ S is the union of relations R and S . For X := id, (22) tells that R ∪ S is injective iff both R and S are injective
and don’t “equivocate” each other: wherever bSa and bRc hold, c = a. The calculation of (22) follows:

X � R ∪ S

≡ {
definitions of � (12) and kernel (11)

}

(R ∪ S)◦ · (R ∪ S) ⊆ ker X

≡ {distribution of converse and composition over union}
(R◦ · R) ∪ (R◦ · S) ∪ (S◦ · R) ∪ (S◦ · S) ⊆ ker X

≡ {
kernel (11)

}

ker R ∪ (R◦ · S) ∪ (S◦ · R) ∪ ker S ⊆ ker X

≡ {
universal property: R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X; (12)

}

X � R ∧ R◦ · S ⊆ ker X ∧ S◦ · R ⊆ ker X ∧ X � S

≡ {
the intermediate conjuncts are the same (taking converses)

}

X � R ∧ R◦ · S ⊆ ker X ∧ X � S �
Hoare logic counterparts Galois connection (20) holds with no further change once � is replaced by the preorder adopted
for Hoare triples (16), the reasoning being the same. Fact (22) is even simpler for such a preorder, as the third conjunct
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disappears.11 Finally, the Hoare logic counterpart of (21) is

q ph·R·k◦ ≡ wp(h,q) wp(k, p)
R (23)

where wp( f , p) = dom ([[p]] · f ) denotes the weakest-precondition for function f to ensure p on the output.12 The first
steps of the proof of (23) are the same as those of (21), leading to q · h � p · k · R◦ (abbreviating [[p]], [[q]] to p, q). But
the calculation requires further reasoning in this case because predicates p, q are (relationally) partial identities (tests) and
therefore are not at the same level as functions. Since domain is idempotent, dom can be added to any of R or S in R � S
and thus dom is a self-adjoint concerning (16):

dom R � S ≡ R � dom S (24)

Then:

q · h � dom (p · k · R◦)
≡ {

domain: dom (R · S) = dom (dom R · S)
}

q · h � dom (dom (p · k) · R◦)
≡ {

(24)
}

dom (q · h) � dom (p · k) · R◦

≡ {
weakest precondition for functions: wp( f , p) = dom (p · f )

}

wp(h,q) � wp(k, p) · R◦

≡ {
Hoare triple (15)

}

wp(h,q) wp(k, p)
R �

5. Building a type system of FDs

The machinery set up in the previous sections is enough for developing a type system whereby dependencies, relations
and operations on relations are tied together, as envisaged by Beeri et al. [9].

Composition rule FDs on relations which matching antecedent and consequent functions (as types) compose:

y xS·R ⇐ y zS ∧ z xR (25)

Proof.

h gS ∧ g fR

≡ {
(13) twice

}

h � g · S◦ ∧ g � f · R◦

⇒ {
� -monotonicity of (·S◦); converse (9)

}

h � g · S◦ ∧ g · S◦ � f · (S · R)◦

⇒ {
� -transitivity

}

h � f · (S · R)◦

≡ {
(13) again

}

h fS·R �
For R and S the same database table (tuple set), this rule subsumes Armstrong axiom F5 (Transitivity) in the standard

FD theory [4]. For R and S regarded as describing computations, rule (25) is the FD counterpart of the rule of composition
in Hoare logic, recall (17).13

11 This happens because dom distributes through union, while ker does not. Both versions of (20) are instances of a generic result concerning Galois
connection lifting, see appendix D.6 of [14].
12 Terms such as h · R · k◦ denote programs which begin by reversing a function, proceeding as R and then updating the state by another function; for

instance, program {x := x-1; R; x := 2*x} on a single-variable state x is denoted by relational term (2∗) · R · (1+)◦ , for some subprogram R .
13 The proof is the same, as both (12) and (16) are preorders (thus transitive) compatible with relational composition. Recall that R; S = S · R .
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Consequence (weakening/strengthening) rule

k hR ⇐ k � g ∧ g fR ∧ f � h (26)

Proof. See [14], where this rule is shown to subsume and generalize standard Armstrong axioms F2 (Augmentation) and F4
(Projectivity). In the parallel with Hoare logic, it corresponds to the two rules of consequence [11] which, put together and
writing triples as arrows, becomes

q′ p′R ⇐ q′ ⇐ q ∧ q pR ∧ p ⇐ p′

for a program R and assertions p, q, p′ , q′ . (Note that implications q′ ⇐ q etc. correspond to [[q]] ⊆ [[q′]] and therefore to
q′ � q once brackets [[]] are dropped for simplicity.)

Reflexivity We have seen already that

f fid (27)

holds trivially. This rule, which corresponds to the “skip” rule of Hoare logic, p p
skip

is easily shown to hold for any
set T ,

f f
[[T ]]

(28)

as FDs are downward closed (that is, preserved by sub-relations, by monotonicity). Rule (28) is known as Armstrong axiom
F1 (Reflexivity).

Note in passing that (25) and (27) together define a category whose objects are functions (types) and whose morphisms
(arrows) are FDs.

6. Type checking database operations

Merging (union) Let us proceed to an example of database operation type checking: we want to know what it means for the
merging of two database files to satisfy a particular functional dependency f g . That is, we want to find a sufficient

condition for the union R ∪ S of two relations R and S to be of type f g . The relational algebra of injectivity does
most of the work:

g fR∪S

≡ {
definition (13); converse distributes by union

}

g � f · (R◦ ∪ S◦)
≡ {

relational composition distributes through union
}

g � f · R◦ ∪ f · S◦

≡ {
algebra of injectivity (22); definition (13) again, twice

}

g fR ∧ g fS ∧ R · ker f · S◦ ⊆ ker g

≡ {
introduce “mutual dependency” shorthand

}

g fR ∧ g fS ∧ g f
R,S �

The “mutual dependency” shorthand g f
R,S

introduced in the last step for R · ker f · S◦ ⊆ ker g can be read as a
generalization of the standard definition of FD to two relations instead of one — just generalize the second R in (8) to
some S . For R and S two sets of tuples, it means that grabbing one tuple from one set and another tuple from the other
set, if they cannot be distinguished by f then they will remain indistinguishable by g .

It should be stressed that the bottom line of the calculation expresses not only a sufficient but also a necessary condition

for g fR∪S to hold, as all steps are equivalences. Summing up, rule

g fR∪S ≡ g fR ∧ g fS ∧ g f
R,S

(29)

holds.14

14 The counterpart of (29) in Hoare logic is {p}R{q} ∧ {p}S{q} ≡ {p}(R ∪ S){q} written directly in the original triple notation, where R ∪ S denotes the
non-deterministic choice between R and S .
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Type checking other database operations will follow the same scheme. Below we handle in detail one particular such
operation, relational join [4]. This is justified not only for its relevance in data processing but also because it brings about
other standard FD rules not yet addressed.

Joining (pairing) Recall from Section 1 how [3] explains the relevance of Tarski’s work on pairing in relation algebra by illus-
trating how a ternary (in general, n-ary) relation {(a,b, c), (d, e, f )} gets represented by a binary one, {(a, (b, c)), (d, (e, f ))}.

Pairing is not only useful for ensuring that sets of arbitrarily long (but finite) tuples are representable by binary relations
but also for defining the join operator (�) on such sets. This operator turns out to be particularly handy to formalize in case
the two sets of tuples are already represented as relations R and S:

(a,b)(R � S)c ≡ a R c ∧ b S c (30)

Interestingly, relational join behaves as a least upper bound with respect to the injectivity preorder:

R � S � T ≡ R � T ∧ S � T (31)

This arises from fact15

ker (R � S) = ker R ∩ ker S (32)

as follows:

R � S � T

≡ {
(12) and (32)

}

ker T ⊆ (ker R) ∩ (ker S)

≡ {
universal property: X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S

}

ker T ⊆ ker R ∧ ker T ⊆ ker S

≡ {
(12) twice

}

R � T ∧ S � T �
This combinator, termed split in [23], fork in [24] and strict fork in [1], turns out to be more general than its use in

data processing suggests. In particular, when R and S are functions f and g , f � g is the obvious function which pairs the
outputs of f and g: ( f � g)x = ( f (x), g(x)). Think for instance of the projection function fx (resp. f y) which, in the context
of Definition 1 yields t[x] (resp. t[y]) when applied to a tuple t . Then ( fx � f y)t = (t[x], t[y]) = t[xy], where xy denotes the
union of attributes x and y [4]. So, attribute union corresponds to joining the corresponding projection functions. This gives
us a quite uniform framework for handling both relational join and compound attributes. To make notation closer to what
is common in data dependency theory we will abbreviate fx � f y to fx f y and this even further to xy, identifying (as we
did before) each attribute (say x) with the corresponding projection function (say fx).

Keeping abbreviation f g of f � g (for functions), from (31) it is easy to derive facts ! � f � id, f � f g and g � f g . This
is consistent with the use of juxtaposition to denote “sets of attributes”. Likewise, � can be regarded as expressing “attribute
inclusion” in this context: the more attributes one observes the more injective the projection function corresponding to such
attributes is.16

A first illustration of this unified framework is given below: the (generic) calculation of the so-called Armstrong axioms
F3 (Additivity) and F4 (Projectivity).17 This is done in one go, for arbitrary (suitably typed) R, f , g,h18:

gh fR ≡ g fR ∧ h fR (33)

Calculation:

gh fR

≡ {
(13); expansion of shorthand gh

}

g � h � f · R◦

15 Fact (32) follows immediately from (R � S)◦ · (X � Y ) = R◦ · X ∩ S◦ · Y [23].
16 Note how ! mimics the empty set and id mimics the whole set of attributes, enabling one to “see the whole thing” and thus discriminating as much as

possible.
17 See [4].
18 In the Hoare logic counterpart of this rule, gh stands for the product g × h of predicates g and h defined by (g × h)(b,a) = g(b) ∧ h(a). The rule,

derived in [15], ensures that the category of FDs has products.
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≡ {
universal property of � (31)

}

g � f · R◦ ∧ h � f · R◦

≡ {
(13) twice

}

g fR ∧ h fR �
The typing rule for the join R � S of two relations R and S is calculated in the same way. The reasoning involves properties
of the projection functions π1(x, y) = x and π2(x, y) = y:

g fR ∧ h fS

⇒ {
π1 · (R � S) ⊆ R and π2 · (R � S) ⊆ S; FDs are downward closed

}

g f
π1·(R�S) ∧ h f

π2·(R�S)

≡ {
trading (21) twice

}

g · π1 fR�S ∧ h · π2 fR�S

≡ {
F3 + F4 (33)

}

(g · π1) � (h · π2) fR�S

≡ {
product of functions: f × g = ( f · π1) � (g · π2)

}

g × h fR�S �
7. Beyond the type system: database operation optimization

As explained above, FD theory (resp. Hoare logic) can be regarded as a type system whose rules help in reasoning about
data models (resp. programs) without going into the semantic intricacies of data business rules (resp. program meanings).

When compared to the quantified expression of Definition 1, quantifier-free equivalent (13) looks simpler and is therefore
expected to be easier to use in practice. This section gives two illustrations of this, one concerned with query optimization
and the other with optimizing lexicographic sorting of database files.

FDs for query optimization This example, taken from [5], is also addressed by [25]: one wants to optimize the conjunctive
query

{(
d,a′) ∣∣ (t,d,a) ∈ Movies,

(
t′,d′,a′) ∈ Movies, t = t′} (34)

over a database file Movies(Title,Director,Actor) into a query accessing this file only once, knowing that FD Title → Director
holds.

Using abbreviations M , t , d and a for (respectively) Movies, Title, Director and Actor, we want to solve for X the equation

d · M · (ker t) · M · a◦ = X (35)

— whose left hand side is the relational equivalent of (34) 19 — aiming at a solution X containing only one instance of M .

The equation is solved by taking FD d tM itself as starting point and trying to re-write it into something one recognizes
as an instance of (35):

d tM

≡ {
(13)

}

d � t · M◦

≡ {
expanding (11), (12); M◦ = M since M is a partial identity

}

M · t◦ · t · M ⊆ d◦ · d

≡ {
composition (·M) with a partial identity [14]

}

M · t◦ · t · M ⊆ d◦ · d · M

19 As the interested reader may check by introducing the variables back. Note how ker t expresses t = t′ and projection functions d (for Director) and a (for
Actor) work over tuple (t,d,a) and tuple (t′,d′,a′), respectively. The use of the same letters for data variables and the corresponding projection functions
should help in comparing the two versions of the query.
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⇒ {
shunting (18), (19); monotonicity of (·a◦); kernel (11)

}

d · M · (ker t) · M · a◦ ⊆ d · M · a◦ �
We thus find d · M · a◦ as a candidate solution for X . To obtain X = d · M · a◦ it remains to check the converse inclusion:

d · M · a◦ ⊆ d · M · (ker t) · M · a◦

⇐ {
id ⊆ ker t because kernels of functions are equivalence relations

}

d · M · a◦ ⊆ d · M · M · a◦

≡ {
M · M = M ∩ M = M because M is a partial identity

}

d · M · a◦ ⊆ d · M · a◦ �
Altogether, FD d tM grants the solution X = d · M · a◦ to Eq. (35) — that is

X = {(
d,a′) ∣∣ (

t,d,a′) ∈ Movies
}

— which optimizes the given query by only visiting the movies file once.20

Optimizing lexicographic sorting This example calculates an improvement in lexicographic sorting of database files subject to
FDs. Let � and � be two preorders of the same type. By the expression � � � we mean the lexicographic order

a(� � �)a′ ≡ a � a′ ∧ (
a � a′ ⇒ a � a′)

which gives priority to �, that is,

� � � = �∩ (�◦⇒ �) (36)

where relational implication is the upper adjoint of intersection:

R ∩ S ⊆ X ≡ R ⊆ (S ⇒ X) (37)

Now suppose that T is a database file whose schema includes attribute x (resp. y) whose domain is ordered by partial order
�x (resp. �y). Thus the tuples of T can be ordered not only by the preorders

t �T
a t′ ≡ t, t′ ∈ T ∧ a(t) �a a(t)′ (38)

for a ∈ {x, y}, but also by lexicographic combinations thereof, e.g. �T
x � �T

y . However, such lexicographic preorders can be
simplified in presence of FDs. Below we calculate a sufficient condition for such a lexicographic preorder to reduce to one
of its components, for instance:

�T
x � �T

y = �T
x ⇐ y xT (39)

The relation-algebraic calculation of rule (39) goes in the same style as before21:

�T
x � �T

y = �T
x

≡ {
(36); X ∩ Y = X equivalent to X ⊆ Y

}

�T
x ⊆ ((�T

x )◦ ⇒ �T
y )

≡ {
Galois connection (37)

}

�T
x ∩ (�T

x )◦ ⊆ �T
y

≡ {
variable-free versions of (38) for a ∈ {x, y}; converses

}

T · x◦ ·�x · x · T ∩ T · x◦ ·�x
◦ · x · T ⊆ T · y◦ ·�y · y · T

≡ {
distributions over intersection, as x · T is univalent; converses

}

T · x◦ · (�x ∩�◦
x) · x · T ⊆ T · y◦ ·�y · y · T

20 By the way: symmetry between a and d in calculation step d · M · t◦ · t · M · a◦ ⊆ d · M · a◦ above immediately tells that FD a tM would also
enable the proposed optimization.
21 The fourth step in the reasoning relies on prop. 5.3 of [1]: for univalent Q , distribution law (R ∩ S) · Q = (R · Q )∩ (S · Q ) holds — and therefore (taking

converses) so does Q ◦ · (R ∩ S) = (Q ◦ · R) ∩ (Q ◦ · S).
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≡ {
�x is antisymmetric: �x ∩ �◦

x= id
}

T · x◦ · x · T ⊆ y◦ ·�y · y

⇐ {
�y is reflexive

}

T · x◦ · x · T ⊆ y◦ · y

≡ {
(6); (13)

}

y xT �
8. Conclusions

“The great merit of algebra is as a powerful tool for exploring family relationships over a wide range of different theories. (. . . ) It is
only their algebraic properties that emphasize the family likenesses (. . . ) Algebraic proofs by term rewriting are the most promising
way in which computers can assist in the process of reliable design.”

[Hoare and Jifeng [13]]

There is a growing interest in algebraic reasoning in computer science able to eventually promote calculational techniques
in software engineering, hopefully unifying seemingly disparate theories once they are encoded into the same abstractions.
Relation algebra [1] is particularly apt in this respect.

The current paper shows how a relation-algebraic rendering of both data dependency theory and Hoare logic purports
one such unification, in spite of the latter being an algorithmic theory and the former a data theory, thanks to both algo-
rithms and data structures being expressed in the unified language of binary relations.

In short (and informally), both logics rely on triples: something (a data set; a program) lies between an antecedent and
a consequent observation (a data attribute; a state assertion); there is an ordering (injectivity; definition) on observations;
triples express that antecedent observations are “enough” for consequents to hold “modally through” what is in between.

Triples are nicely captured by arrows, whose end-points can be regarded as types. On the data side, our approach equips
relational data with functional types and an associated type system which can be used to type check database operations and
optimize queries by calculation once they are written as Tarskian, quantifier-free formulas.

As formal verification is becoming more and more widespread to ensure quality in complex software systems, we believe
our approach may contribute to unified formal verification tools blending in the same framework extended static checking
and database programming.

Back to the opening story, surely Tarski’s work on satisfaction and truth is relevant to computer science. But
Etchemendy’s answer could have been better tuned to the particular context of database technology suggested by the
Oracle towers landscape:

[. . . ] “They would never have been built without Tarski’s work on the calculus of binary relations.”

9. Related and future work

Functional dependencies have been characterized relationally by checking the determinism of the relations obtained by
projecting tuple sets by antecedent and consequent attributes [26,27]. This alternative definition is equivalent to the one
followed in the current paper.22 As a generalization, Jaoua et al. [27] also study so-called difunctional dependencies.

Dependencies in relational databases have also been expressed using so-called indiscernibility relations [28]. Freyd and
Scedrov [16] develop a τ -category theory of relations based on monic n-tuples. Concepts such as table, column, short column
etc. fit into the spirit of (pointfree) data dependency and database theory and should be carefully studied in the context of
the current paper.

Wisnesky [25] addresses the semantic optimization of monad comprehensions in functional programming by generalizing
results from relational database theory. As this theory relies on the powerset monad, whose comprehensions correspond to
database queries, by handling similar optimizations in relation algebra (as we did in Section 7) we have followed the
well-known shift towards the Kleisli adjoint category.

As is well-known, this shift can be generalized to any other monad. Wisnesky [25] includes queries on probabilistic
databases, this time relying on the (finite support) distribution monad. As shown by Oliveira [29], the “Kleisli shift” w.r.t.
this monad leads to typed linear algebra. Wong and Butz [30] introduce Bayesian embedded multivalued dependencies as
necessary and sufficient conditions for lossless decomposition of probabilistic relations. Lossless decomposition and mul-
tivalued dependencies have been handled by Oliveira [14] in the same way as FDs in the current paper. The prospect of
calculating with data dependencies in probabilistic systems directly in matrix algebra is an interesting prospect for future

22 See section Generic relational projections in [14].
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work, in line with the consistent use of matrix notation by Schmidt [1] in relation algebra. Whether this carries over to
probabilistic Hoare logic [31] remains to be seen.

Other ways of relating data dependency theory with algorithmic reasoning can be devised. For instance, Mili et al. [12]
reason about while-loops w = (while t do b) in terms of so-called strongest invariant functions, where invariant functions f ,
ordered by injectivity, are such that f · [[t]] = f · b · [[t]] holds. A simple argument in relation algebra shows this equivalent

to f · b · [[t]] ⊆ f , thus entailing FD f f
b·[[t]]

. How much of our FD relation-algebraic approach could be applied in this
setting is open to research. This includes finding a meaningful counterpart of the rule of iteration [11] at data level, a topic
not addressed in the current paper.

Another law not considered in the correspondence between Hoare logic and functional dependencies is the axiom of
assignment, {p[e/x]}x := e{p} where p[e/x] denotes the predicate which is obtained from p by replacing all occurrences of
x by e. This axiom is interesting because it relies on the state structure of imperative programs: variables which hold data.
Assignment x := e means selective updating: program variable x is updated to e. A possible data-level counterpart to such
selective updating is the SQL update command, which is of the form UPDATE R SET f WHERE x, meaning: update
all tuples in R which satisfy selection criterion x by tuple-transformation f , leaving the rest unchanged. While the semantics of
this operation is easy to encode in relation algebra, the parallel is somewhat artificial and needs further analysis. In general,
future work should identify which generic properties of the � relation on types are common to both frameworks and derive
a more general kernel theory which both are instances of.

Last but not least, another prospect for future work concerns automated reasoning. RelView [32] is a well-known system
that calculates with relations “beyond toy size”. Many applications of relation algebra have been handled successfully in
this tool. Algebraic structures such as idempotent semirings and Kleene algebras (which relation algebra is an instance
of) have also been shown to be amenable to automation by e.g. Höfner and Struth [8] and Struth [7]. Möller et al. [33]
encode a database preference theory into idempotent semiring algebra and show how to use Prover9 to discharge proofs.
Model checking of extended static checks in tools such as e.g. the Alloy Analyser also blends well with algebraic-relational
models [34].

The implementation of a generic, unified approach to both data and program theories on top of libraries already available
in such automated deduction systems is a prospect for long term research.
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