number theory

Ferreira JF.  2010.  Principles and Applications of Algorithmic Problem Solving. Abstractthesis-a4-colour.pdf

Algorithmic problem solving provides a radically new way of approaching and solving problems in general by using the advances that have been made in the basic principles of correct-by-construction algorithm design. The aim of this thesis is to provide educational material that shows how these advances can be used to support the teaching of mathematics and computing.
We rewrite material on elementary number theory and we show how the focus on the algorithmic content of the theory allows the systematisation of existing proofs and, more importantly, the construction of new knowledge in a practical and elegant way. For example, based on Euclid’s algorithm, we derive a new and efficient algorithm to enumerate the positive rational numbers in two different ways, and we develop a new and constructive proof of the two-squares theorem. Because the teaching of any subject can only be effective if the teacher has access to abundant and sufficiently varied educational material, we also include a catalogue of teaching scenarios. Teaching scenarios are fully worked out solutions to algorithmic problems together with detailed guidelines on the principles captured by the problem, how the problem is tackled, and how it is solved. Most of the scenarios have a recreational flavour and are designed to promote self-discovery by the students. Based on the material developed, we are convinced that goal-oriented, calculationa algorithmic skills can be used to enrich and reinvigorate the teaching of mathematics and computing.

Backhouse R, Ferreira JF.  2011.  On Euclid's Algorithm and Elementary Number Theory. Science of Computer Programming. 76(3):160-180. Abstract2011-oneuclidsalgorithm.pdf

Algorithms can be used to prove and to discover new theorems. This paper shows how algorithmic skills in general, and the notion of invariance in particular, can be used to derive many results from Euclid’s algorithm. We illustrate how to use the algorithm as a verification interface (i.e., how to verify theorems) and as a construction interface (i.e., how to investigate and derive new theorems). The theorems that we verify are well-known and most of them are included in standard number-theory books. The new results concern distributivity properties of the greatest common divisor and a new algorithm for efficiently enumerating the positive rationals in two different ways. One way is known and is due to Moshe Newman. The second is new and corresponds to a deforestation of the Stern-Brocot tree of rationals. We show that both enumerations stem from the same simple algorithm. In this way, we construct a Stern-Brocot enumeration algorithm with the same time and space complexity as Newman’s algorithm. A short review of the original papers by Stern and Brocot is also included.