
A Timed CSP Model for the Time-Triggered
Language Giotto

Yanhong Huang1, Yongxin Zhao1, Shengchao Qin2,

Guanhua He2, and João F. Ferreira2,3
1Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, Shanghai, P. R. China
2School of Computing, Teesside University, United Kingdom

3HASLab/INESC TEC, Universidade do Minho, Portugal

Email: {yhhuang, yxzhao}@sei.ecnu.edu.cn

{s.qin, g.he, jff}@tees.ac.uk

Abstract—Giotto is a time-triggered embedded programming
language which provides an abstract programming model for
hard real-time applications. It effectively decouples the imple-
mentation from the design. A Giotto program focuses on the
functionality and timing of periodic tasks. All the actions, e.g.,
task invocations, actuator updates, and mode switches, described
in Giotto programs are triggered by real time. We take the views
of the concerns of Giotto programs, including the reaction to
the environment, the communication between tasks, the timing
predictability, etc. Our goal is to simulate Giotto programs using
a timed CSP-based model which can effectively express the
concerns and can be used to verify safety properties. This paper
is a first step that presents the timed CSP model for Giotto
programs. We also give a case study to illustrate the utility of
the timed CSP model. Based on the existing research for CSP
with time, we believe that our model can support to analyze and
verify safety properties of Giotto programs.

Keywords: Embedded Systems, Time-Triggered Language,
Giotto, Timed CSP, Simulation

I. INTRODUCTION

Giotto [1] is designed specifically for hard real-time, reac-

tive, safety-critical embedded systems, such as aircraft control

system. The correctness of such kind of systems is depen-

dent both on the logical correctness and the timing of their

computing results. Giotto is a time-triggered language for

embedded programming. It defines a software architecture

of the implementation which specifies the functionality and

timing of the real-time control system (Fig. 1). There are

three levels: the first one is control design, the second one

is Giotto program, and the third one is Giotto compilation. It

effectively decouples the implementation task from the design

task for the software engineers. A Giotto program decomposes

the necessary computational activities into periodic tasks. It

assigns periodic tasks into different modes and switches modes

according to different requirements. In this level, software

engineers do not need to specify where, how, and when tasks

are scheduled. But it should present the functionality and

timing of each task, as well as the communication between

tasks. Giotto compilation will guarantee the correctness of the

mapping and scheduling on a specific hardware configuration

together with a real-time operating system. In this paper,

Fig. 1. Giotto-based control-systems development

we focus on the Giotto program level, which effectively and

independently describe the logical concerns (functionality and

timing) of Giotto-modeled systems.

Formal methods with their rigorously mathematical descrip-

tion and verification techniques are considered as approaches

to ensure that system requirements are always correct and

satisfied in the full development process, from logical speci-

fication to physical implementation. The goal of this paper is

to simulate Giotto programs using a timed CSP-based model

which can be used to analyze and verify this kind of programs.

Timed CSP provides a timed stability model, which assumes

that all events recorded by processes within the system relate

to conceptual global clock, and a process can engage in

only finitely many events in a bounded period of time. The

two assumptions are in accordance with the characteristics

of Giotto programs. All the actions, e.g., the periodic task

invocations, the actuators updates, and the mode switches,

are triggered by real time. The time operators in timed CSP

are sufficient to express the timing of such a program which

ensures the time of some actions take place is determined.

In this paper, we assume that all tasks in Giotto programs

always terminate in their respective periods and prepare the

results for updating the interrelating ports. Based on the

assumption, our work aims to define a timed CSP-based model

for Giotto programs. We simulate each component of a Giotto

program by using a timed CSP process. The timed CSP model

2012 IEEE 35th Software Engineering Workshop

1550-6215/13 $26.00 © 2013 IEEE

DOI 10.1109/SEW.2012.18

110



can easily represent the reaction of a Giotto program to the

environment, the communication between periodic tasks, and

when all interactions should take place. This is an essential

step in our whole work. Some researchers defined kinds of

semantics for CSP including time [9], [10], [11], while some

researchers developed some tools to support the simulation,

analysis and verification of timed CSP model [17], [18]. With

these techniques, one of our further work is to use our model

to analyze and verify safety properties of Giotto programs in

the further.

Related Work. Henzinger et al. have done much work on

Giotto. They presented the syntax and operational semantics

of the Giotto language discussed in [1]. The operational

semantics presents the behaviors of Giotto programs. They

also presented an approach to the compilation of Giotto which

provides time-safety checking [2]. Poddar and Bhaduri studied

a translation scheme for building timed automata in UPPAAL

for real-time systems written in Giotto. They also analyzed and

verified the functional and timing properties using UPPAAL

[6]. However, the focus and novelty of our work is on

simulating a Giotto program using a timed CSP-based model.

Timed CSP is a powerful language to model real-time reactive

systems [16]. Some researchers have already applied timed

CSP in formalizing systems with different features, such as

job-shop scheduling problems, Eiffel’ SCOOP, and Safety-

Critical Java [12], [13], [14], [15].

The remainder of the paper is organized as follows: Section

2 introduces Giotto language as well as the characteristics

of Giotto programs. We also list part of grammars of timed

CSP which are used to model Giotto programs. In Section

3, we define a timed CSP model for Giotto programs. We

simulate every component of a Giotto program into a timed

CSP process, e.g., port, driver, task, and mode. In Section 4, we

use the developed model in a case study. Finally, we conclude

the paper in Section 5, where we discuss related work and

further directions to develop the work presented.

II. BACKGROUND

In this section, we describe the syntactic components of the

Giotto language together with an example. We also introduce

the language timed CSP which we will use to represent the

Giotto program in section 3.

A. Giotto

Henzinger et al. [1] presented a time-triggered language

Giotto which provides an abstract model for embedded control

systems with hard real-time constraints. Giotto defines a soft-

ware architecture which specifies functionality and timing, but

abstracts away from the realization of the software architecture

on a specific platform. It also does not care about issues such

as hardware performance and scheduling mechanism. A Giotto

program does not concern where, how and when tasks are

scheduled, but specifies the time when the output ports of

tasks are updated.

The abstract syntax of the Giotto language is shown as

below:

Prog ::= PortDecls ∗ TaskDecl ∗ DriverDecl ∗ ModeDecl ∗ Start

PortDecls ::= PortType PortDecl ∗

PortType ::= sensor | actuator | input | output | private
PortDecl ::= port p type pt [init n]

TaskDecl ::= task t input p∗ output p∗ private p∗ function f

DriverDecl ::= driver d source p∗ guard g destination p∗

function h

ModeDecl ::= mode m period π port p∗ Invoke∗ Update∗ Switch∗

Invoke ::= frequency ω invoke t driver d

Update ::= frequency ω update d

Switch ::= frequency ω switch m driver d

Start ::= start m

A Giotto program consists of the following components: a

port declaration set, a task declaration set, a driver declaration

set and a mode declaration set, and it specifies a model as the

start mode. The basic functional unit in Giotto is periodic task.

Several concurrent tasks make up a mode. Different modes

can share the same tasks. When switching from one mode to

another, tasks can be added or removed from the model. Tasks

communicate with each other, as well as with sensors and

actuators, by so-called drivers, which are used to transport and

convert values between ports. The detail of each component

is discussed below.

Ports.
In Giotto, a port represents a typed variable through which

data in the program is communicated. Each port has a unique

identity p and preserves its value until it is updated. The data

type pt of a port can be Integer, Real, Boolean or others

specifies which type of value can be stored in the port. The

initial value n is optional which initializes the port before

the Giotto system starts. In a virtual concept, each port has

a unique location in a globally shared name space which

simplifies the definition of Giotto.

Ports are partitioned into three kinds: sensor ports which are

updated by the environment; actuator ports which are updated

by Giotto programs and are usually used to store the feedback

information of Giotto programs; task ports which are also

updated by Giotto programs and are used to communicate data

between concurrent tasks. Moreover, task ports are divided into

three sub-kinds: input ports, output ports and private ports to

represent input, output and local state of a task respectively.

In a mode, the output ports of tasks which are invoked in this

mode are also called mode ports. When one mode starts, all

the mode ports need to be initialized.

Drivers.
A driver d in Giotto transforms the data from a set of

source ports Src to a set of destination ports Des. The

transformation process h : Vals[Src] → Vals[Des] is a function

which expresses how to convert the values of source ports to

values of destination ports. This transformation by a driver

111



is regarded to take no time. Drivers can be guarded with

the guard g : Vals[Src] → B. The function h can only be

executed if the guard g evaluates to true for the current source

ports; otherwise, the Giotto program ignores the corresponding

actions.

Drivers are needed when a task is invoked, an actuator port

is updated or a mode switch happens. The source ports Src
and destination ports Des of the driver d may be distinct in

different situations. When a task is invoked, Src of d are sensor

ports and mode ports (subset of output ports) of the current

mode, and Des of d are the input ports of the current invoked

task. If an actuator port is updated, Src of d are output ports

of corresponding tasks and Des of d are the updated actuator

ports. In each mode, an actuator port can be updated by at

most one driver. In a mode switch scenario, Src of d are

sensor ports and mode ports of the source mode, and Des of

d are the mode ports of the target mode.

Tasks.
Task t is a functional unit in Giotto programs, and in-

cludes a set of input ports In, a set of output ports Out
and a set of private ports Priv. The input ports In of t are

distinct from all other ports in Giotto, and the output ports

Out may be shared with other tasks if they are not in the

same mode. The private ports Priv record the state of t and

are inaccessible from the outside of the task. The function

f : Vals[In ∪ Priv] → Vals[Out ∪ Priv] can be implemented by

any sequential program, and indicates the functionality of the

task. No synchronization points occur during the execution

of tasks, all synchronization occurs outside of tasks, in other

words, it happens between tasks.

All Giotto tasks are periodic. The invoked time of each

task is at regularly spaced points. One task can be involved in

different modes with different invocation frequencies. On the

one hand a task cannot terminate prematurely, on the other

hand it must have enough time to execute (the worst case

execution time of every task needs to be provided for a given

platform). An important point of Giotto tasks is that the time

of updating the result of a task is determined.

Modes.
A Giotto program is made up by a set of modes. A mode m

repeatedly executes a fixed set of tasks in every fixed period

time π. The Giotto program is in one mode at a time. A Giotto

program does not specify the computations of tasks as well

as the physical scheduling. Moreover, the mode also needs to

update some actuator ports with given frequencies. A mode

may be switched to another mode at a specific time during

the execution of the program. Each mode contains a set of

mode switches, each of which denotes the target mode with a

switch frequency. Giotto requires that only one of the switch

conditions can be true at a time.

A mode m consists of a set of mode ports ModePorts,

a set of task invocations Invokes, a set of actuator updates

Updates and a set of mode switches Switches. ModePorts
is the union of output ports of invoked tasks in this mode.

Fig. 2. An Example of Giotto

Invokes consists of a set of tasks, and each task tI is

assigned with a driver dI and an invocation frequency ωI . The

mode invokes the task tI every π/ωI time units through the

driver dI , where π is the period of the mode m.

A driver dU in Updates is used to update the actuator ports

which are the destination ports of dU in every π/ωU time units,

where ωU denotes the frequency of update within the time

period π of the mode m.

Every element of model switch Switches consists of a

target mode mS, the corresponding switch driver dS and its

invoked frequency ωS. The mode switch evaluates periodically,

as specified by the switch frequency ωS. The guard of the

switch driver dS may only depend on the sensor ports and

mode ports of the source mode, and the convert function of

dS transforms the values of the senor and mode ports of the

source mode to the values of the mode ports of the target

mode. A mode switch may occur while a task is logically

running, i.e. the mode logically interrupts the task invocation.

Fig. 2 shows an example of Giotto which has two modes

m1 and m2. The mode m1 consists of two tasks t1 and

t2, an actuator a, and a mode switch to mode m2. The

period of mode m1 is π1. The mode ports of mode m1 are

the output ports of two tasks: port o1 and o2. It invokes

task t1 with a frequency ω1 and task t2 with a frequency

ω2. The input/output ports of task t1 are port i1 and o1
respectively. The input/output ports of task t2 are port i2 and

o2 respectively. The driver d1 reads the output port o2 of task

t2 and initializes the input port i1 of task t1. The driver d2
reads the sensor port s1 in environment and initializes the

input port i2 of task t2. The driver d4 gets the result of task

t1 from output port o1 and updates the actuator port a with

a frequency ωa. The driver d5 is a mode switch driver from

mode m1 to mode m2 with a frequency ωs. It prepares the

mode ports o1 and o2 for mode m2 from the sensor port s2
when mode switch happens. The components of mode m2 are

much similar to mode m1. One difference is the source ports

of task t3 are two ports: one is sensor port s1, the other is

the output port o1 of task t1. This example written in Giotto

language is shown in Appendix.

112



B. Timed CSP

Communicating Sequential Processes (CSP) [5] is a well

studied approach for synchronization and communication by

introducing a concept “channel”. Timed CSP is an extension

of CSP by adding some time operators, which is proposed

by Reed and Roscoe [3], and later modified by Davies and

Schneider [4]. It extends the original CSP by adding some

notations with timing constraints, e.g., Wait t. It is widely

applied in modeling and verification. The syntax of a subset

of Timed CSP which we will use to represent Giotto programs

is given as follows.

P,Q ::= Stop | Skip | Wait t | a→ P | P ;Q | P � Q | P �Q |
c!a→ P | c?x→ P | f(P ) | P\A | P‖|Q | P‖Q | μX •F (X)

Stop is a broken program. Skip is defined as a program

that does nothing but terminates immediately. Wait t is a

delay form of Skip which also does nothing but terminates

successfully after t time units. Skip can be denoted as Wait 0.

The program a → P is initially prepared to engage in

synchronisation a. If this event occurs, it immediately begins

to behave as P . The sequential program P ;Q behaves like P
first and behaves like Q until P terminates. P�Q is an external

choice between programs P and Q which is influenced by

environment on the very first step. P � Q is internal choice

which is wholly nondeterministic.

c!a → P sends a value a via a channel c, while c?x → P
is prepared to accept any value on channel c. f(P ) has a

similar control structure to P with observable events renamed

according to function f . The program P\A behaves as

P except the events from set A are concealed form the

environment of the program. Each action of the interleaving

program P‖|Q is one of P or Q. If both of two sub programs

have engaged in the same action, the choice between them

is nondeterministic. The parallel program P‖Q behaves like

the program composed of P and Q interacting in lock-step

synchronization. The recursive program μX • F (X) behaves

as F (X) with each instance of variable X representing a

recursive invocation.

III. A TIMED CSP MODEL FOR GIOTTO

In this section, we simulate a Giotto program using timed

CSP. We define processes to denote all syntactic components

of a Giotto program.

A. Modeling Ports

We define a process named Port which contains two

parameters portname and value to denote port in Giotto

programs. Here, we assume the value of a port always

matches the type of the port, so that we do not consider

the type of the value mentioned in PortDecl in the syntax

of the Giotto language. Moreover, we also use this process

to denote all types of ports including sensor ports, actuator

ports, input ports, output ports and private ports, in other

words, we do not distinguish PortType. Process Port can

Fig. 3. A timed CSP process for port

write or read value via the channels write.portname and

read.portname. If a new value arrives for a port over

the channel write.portname, then the value is set to the

new one. Otherwise, if another process requests the current

value of a port, then the corresponding process Port passes

the value via channel read.portname. When declaring a

port, we should set a possible initial value init for it, like

Port(portname, init).

Port(portname, value) =df

(write.portname?newvalue→ Port(portname, newvalue))

� (read.portname!value→ Port(portname, value))

All the ports in a Giotto program can be defined as if all

Port processes are running in interleaving. We assume there

are n ports, each of which has a name pi and an initial value

initi, where i ∈ {1, ..., n}.

Ports =df ‖|i∈{1,....n} Port(pi, initi)

B. Modeling Drivers

We define a timed CSP process Driver which consists

of five parameters drivername, a guard g, source ports

srcports, destination ports desports, and a function h.

The source ports and destination ports may contain a set

of ports. Here, the srcports and desports are the lists of

portnames of ports involved in this driver. The guard g
and the function h are both many-to-many relations. The

process Driver first gets the values of srcports via some

channels get.srcports and use variables Src to keep the

values, where “get.srcports?Src” and some other similar

expressions will be explained later. Secondly, the guard g is

used to check whether the value of Src is true or not. If it

is true, the function h is executed to calculate the values for

desports which are kept by variables Des. Then the process

updates the destination ports via channels send.desports.

Moreover, we introduce two events drivername.start and

drivername.skipped to realize the synchronization with

other related processes (e.g., the task invocation, the actuator

update, and the mode switch) in different conditions.

113



Fig. 4. A timed CSP process for driver

Driver(drivername, srcports, g, desports, h) =df

get.srcports?Src→
((Des := h(Src)→ send.desports!Des

→ drivername.start→ Skip)

� g(Src) � drivername.skipped→ Skip);

Driver(drivername, srcports, g, desports, h)

Here we explain the notations get.ports?X or

send.ports!X . We assume that ports are used to denote a

list of portnames 〈pr pr+1 ... ps〉, and variables X are used

to denote the corresponding values xr, xr+1, ..., xs got from

/ sent to those ports. We define

get.ports?X → P =df

(get.pr?xr → Skip ‖| get.pr+1?xr+1 → Skip

‖| ... ‖| get.ps?xs → Skip);P

send.ports!X → P =df

(send.pr!xr → Skip ‖| send.pr+1!xr+1 → Skip

‖| ... ‖| send.ps!xs → Skip);P

For example, there is a driver named d, in which the

srcports are p1, p2 and p3, while the desports are p4 and

p5. The process can be described as below:

Driver(d, 〈p1 p2 p3〉, g, 〈p4 p5〉, h) =df

(get.p1?x1 → Skip‖|get.p2?x2 → Skip‖|get.p3?x3 → Skip);

((y1, y2 := h(x1, x2, x3)→ (send.p4!y4 → Skip‖|
send.p5!y5 → Skip); d.start→ Skip; )

� g(x1, x2, x3) � d.skipped→ Skip);

Driver(d, 〈p1 p2 p3〉, g, 〈p4 p5〉, h)

In Giotto, the three actions: updating ports, the evaluation

of a guard g and the execution of a function h in the driver

take no time. So these two components of a Giotto program:

Port processes and Driver processes described in the timed

CSP model can be considered to execute without costing any

time.

Fig. 5. A timed CSP process for task

C. Modeling Tasks

We define a timed CSP process Task which has five

parameters taskname, input ports inports, output ports

outports, private ports privports, and a function f . Like

the definition of the process Driver, the inports, outports
and privports are a list of portnames to denote the

corresponding ports needed in this task. The function f is

a many-to-many relation. The process Task firstly gets the

values of inports and privports via channels get.inports
and get.privports respectively. These values are kept in the

variables Src and Priv respectively. Secondly, the function

f is executed to compute the results including the values of

outports and the new values of privports, which are kept

by variables Des and Priv′ respectively. The private ports

can be updated immediately by sending the values Priv′ via

channels send.privports. But the time of updating output

ports of a task is determined. The process needs to wait an

event taskname.timeup which is synchronized with other

related process (a process Invoke introduced later). Until

this event occurs, the process can update the values of output

ports via channels send.outports.

Task(taskname, privports, inports, outports, f) =df

get.inports?In→ get.privports?Priv →
(Priv′, Out) := f(Priv, In)→ send.privports!Priv′ →
taskname.timeup→ send.outports!Out→
Task(taskname, privports, inports, outports, f)

D. Modeling Modes

We define a timed CSP process Mode which consists of

modename, a period π, modeports which is the union of

output ports of all the invoked tasks in this mode, a set of

task invocations Invokes, a set of actuator updates Updates
and a set of mode switches Switches. The notation Invokes
stands for a set of sub-processes Invoke running in parallel,

where the process Invoke is simulated as a task invocation.

The notation Updates presents a set of sub-processes Update
running in parallel, where the process Update is simulated as

an actuator update. And the notation Switches denotes a set

of sub-processes Switch running in parallel, where Switch

114



Fig. 6. A timed CSP process for Mode

is simulated as a mode switch. Now, we introduce the three

sub-processes Invoke, Update, and Switch at first.

A process Invoke contains three parameters, an invocation

frequency ωtask, a taskname which refers to a related

process Task with the same task name, and a drivername
which refers to a related process Driver with the same driver

name. This process is defined by a parallelism among three

processes: one is the process Driver, one is an external

choice process which is related with the process Task, one

is a process in charge of timing. For the first two processes,

the process Driver runs first, if the event drivername.start
offered by the process Driver occurs, then the process Task
here can run. As explained earlier, if the guard g of the driver

is evaluated to be true, the related process, such as the process

Task can run. Otherwise, the event drivername.skipped
takes place, then the corresponding task will not be invoked

this time. At the same time, the process Wait π/ωtask

in the third process consumes the time which should be

taken by the task invocation in this mode. Afterwards,

the third process offers an event taskname.timeup or an

event drivername.skipped synchronized with the other two

processes to ensure that the process Invoke terminates after

π/ωtask time units.

Invoke(ωtask, taskname, drivername) =df

Driver(drivername, srcports, g, desports, h) ‖
(drivername.start→ Task(taskname, privports, inports, outports, f)

� drivername.skipped→ Skip) ‖
(Wait π/ωtask; (taskname.timeup→ Skip

� drivername.skipped→ Skip))

A process Update contains two parameters, an update

frequency ωact and a drivername which refers to a process

Driver with the same driver name. Actually, the updated

actuator ports are included in the destination ports of the

driver. This process contains two paralleling processes.

One is the process Driver which waits to be started with

an event drivername.timeup, and the other is a process

which is in charge of timing. As mentioned before, the

driver will not take any time, so after π/ωact time units

(denoted by a process Wait π/ωact), the second process

offers an event drivername.timeup, then there comes an

external choice between two events drivername.start and

drivername.skipped synchronized with the process Driver.

Actually, only when the guard g of the driver is true, the

actuator can be updated successfully.

Update(ωact, drivername) =df

(drivername.timeup→
Driver(drivername, srcports, g, desports, h)) ‖
(Wait π/ωact; drivername.timeup→
(drivername.start→ Skip � drivername.skipped→ Skip))

A process Switch includes three parameters, a switch

frequency ωswitch, a target mode name modename′, and

a drivername which refers to a process Driver with the

same driver name. This process which is much similar to

the process Update also contains two processes running in

parallel: one is the process Driver, the other is the process

with timing. After waiting π/ωswitch time units, an event

driver.timeup occurs to start the process Driver. When the

guard g of the driver is true, the process Driver will offer

an event drivername.start to synchronize with the second

process. In the second process, an event modename′.start
following drivername is added to start the target mode. That

means the system switches to another mode. Otherwise, the

current mode continues running when the guard g is false.

Switch(ωswitch,modename′, drivername) =df

(modename′.timeup→
Driver(drivername, srcports, g, desports, h)) ‖
(Wait π/ωswitch;modename′.timeup→
(drivername.start→ modename′.start→ Skip

� drivername.skipped→ Skip))

According to the introduction of mode in section 2, we

define a process Mode which contains several parallel pro-

cesses: a set of Invoke processes, a set of Update processes,

and a set of Switch processes. Each of these processes

includes a parameter “a frequency ω”, which denotes the

execution times in one period of mode. In order to better

describe the execution of these actions, we define another three

processes InvokeRef , UpdateRef and SwitchRef , which

are correspond to Invoke, Update and Switch respectively to

simulate the three actions in the mode. Each pair of them has

the same parameters, i.e., both InvokeRef and Invoke have

the same ω, taskname and drivername. We also introduce

a variable N to denote the execution times left for each of

processes Invoke, Update and Switch.

We assume there are p task invocations, q actuator updates,

and r mode switches in one mode. Here we take task

115



invocations for example, the parameter Invokes stands

for all the p task invocations, and we use i ∈ {1, ..., p}
to denote these task invocations respectively. A process

InvokeRef(ωtaski , tasknamei, drivernamei) indicates that

the mode invokes tasknamei with a frequency ωtaski
, and a

related driver is drivernamei. For process InvokeRef of

task takenamei, we use a variable Ni which initially equals

the invocation frequency ωtaski
to denote the execution times

in one period of the mode. Then the process InvokeRef
runs. If Ni > 0, it means that the task can be invoked in

this period, then the corresponding process Invoke can

execute, while the invocation times variable Ni subtracts one.

Otherwise, all the invocations of the task in the period of

mode terminates. The processes about actuator updates and

mode switches are similar to the task invocations, so we do

not introduce them repeatedly.

Mode(modename, π,modeports, Invokes, Updates, Switches) =df

(‖i∈{1,...,p}(Ni := ωtaski
;

InvokeRef(ωtaski
, tasknamei, drivernamei))

‖i∈{1,...,q}(Ni := ωacti ;UpdateRef(ωacti , drivernamei))

‖i∈{1,...,r}(Ni := ωswitchi
;

SwitchRef(ωswitchi
,modename′i, drivernamei)));

Mode(modename, π,modeports, Invokes, Updates, Switches)

InvokeRef(ωtaski
, tasknamei, drivernamei) =df

(Ni := Ni − 1; Invoke(ωtaski
, tasknamei, drivernamei);

InvokeRef(ωtaski
, tasknamei, drivernamei))

�Ni > 0 � Skip

UpdateRef(ωacti , drivernamei) =df

(Ni := Ni − 1;Update(ωacti , drivernamei);

UpdateRef(ωacti , drivernamei))

�Ni > 0 � Skip

SwitchRef(ωswitchi
,modename′i, drivernamei) =df

(Ni := Ni − 1;Switch(ωswitchi
,modename′i, drivernamei);

SwitchRef(ωswitchi
,modename′i, drivernamei))

�Ni > 0 � Skip

E. Modeling A Giotto Program
A Giotto program consists of several modes, one of which

is the start mode decided initially. Moreover, only one mode

is running at any time. We assume there are n modes in

a Giotto program, denoted by i ∈ {1, ..., n}. We define a

process System which may have one parameter: the start

mode name (denoted by startname), or have no parameter.

In this process, we combine the processes about the modes

and the ports in the Giotto program in parallel by replacing

channel name “read/get” by “left”, and replacing channel

name “write/send” by “right”. Each of the processes in Mode
awaits an event modename.start to start to run. At the very

beginning, the system runs the start mode by offering the event

“startname.start”. During the execution of the system, there

is no need to set the start mode name again, which is denoted

by System().

System(startname) =df

(startname.start→ Skip) ‖
(((�i∈{1,...,n}modenamei.start→
(Mode(modenamei, πi,modeportsi, Invokesi, Updatesi, Switchesi)

‖System()))[left/get, right/send] ‖
Ports[left/read, right/write])\{left, right})

IV. THE CASE STUDY

In this section, we apply our approach to a case study: an

elevator Giotto program [7]. We simulate this system by using

our model formalized in the last section.

Fig. 7. A framework of an elevator Giotto program

The elevator Giotto program is controlling an one degree

of freedom elevator: the elevator can move up/down to reach

the requested floors; and only when the elevator reaches the

requested floor, the elevator stops and the door opens. The

elevator has two sensors in the environment: buttons and

position. The buttons reads a request from each floor or the

elevator. The position reads on which floor the elevator stays.

There are two actuators: mvtion and door, which are used

to respond to the request from sensors. The mvtion controls

the elevator move up or down, while the door controls the

door open or close. Both the sensors and actuators have

corresponding ports. Moreover, the system also contains some

task ports which are listed later. There are five modes, and

each of them invokes only one task: idle, up, down, open,

close (e.g., the up mode invokes the Up task). Each task reads

the value of the buttons as input value, and uses its function to

calculate the output values to update the mvtion and door. The

period of every mode is 500 time units, and each mode invokes

the corresponding task once in one period. The idle mode is

the start mode of this system. When the requested floor is

higher than the position of elevator, the system switches to

the up mode. Conversely, the system switches to the down
mode. After the elevator reaches the requested floor, the system

switches to the open mode. Then the system switches to the

close mode, afterwards switches back to the idle mode. The

mode switches are shown in Fig.7.

116



Step 1. We use the process Port(portname, values) to

describe ports in the elevator Giotto program as below.

According to the elevator Giotto program, we define eight

interleaving processes to simulate all the ports in elevator

system, and assign each of them a reasonable initial value. For

the sensor port buttons, we set 0 as its initial value, which

denotes there is no input value of this sensor port at the very

beginning (process Port(buttons, 0)). If someone pushes

the button in floor 2 for example, the value of buttons is

updated as 2. Similarly, process Port(position, 0) indicates

that the initial position of the elevator is floor 0. Processes

Port(m, stop) and Port(d, close) means that the elevator

stops and the door closes at the very beginning. The other four

processes denote three output ports tmotion, tdoor, openwin
and one input port b. The initial value of tmotion is stop
which accords with the corresponding actuator port m.

Similarly, we set the initial values of the other three ports to

close, false, 0.

Ports =df Port(buttons, 0) ‖| Port(position, 0) ‖| Port(m, stop) ‖|
Port(d, close) ‖| Port(tmotion, stop) ‖| Port(tdoor, close)
‖|Port(openwin, false) ‖| Port(b, 0)

Step 2. We use the process Driver(drivername, srcports,
g, desports, h) to simulate seven drivers in elevator Giotto

program. Note that we use “〈 〉” to denote that more than

one port belong to one type of port (e.g., two ports p1, p2
are srcports can be written as 〈p1 p2〉), while use “·” to

stand for no port. Take the driver Move for example, the

corresponding code in Giotto is written as:

driver Move(tmotion) output (PortMovem) {
if constant true() then copy PortMove(tmotion,m)}

Here, we define Driver(Move, tmotion, constant true(),
m, copy PortMove (tmotion,m)) to describe this driver.

The driver name is Mode, the source port is tmotion,

the destination port is m, the guard is constant true(),
and the function is copy PortMove(tmotion,m). All the

information of Giotto programs is included in this process.

Similarly, the other six drivers are simulated using our timed

CSP model.

Driver(Move, tmotion, constant true(),m,
copy PortMove(tmotion,m))

Driver(Door, tdoor, constant true(), d,
copy PortDoor(tddor, d))

Driver(getButtons, buttons, constant true(), b,
copy PortButtons(buttons, b))

Driver(PGTC, 〈buttons position〉,
CondPosGTCall(buttons, position), ·, dummy())

Driver(PLTC, 〈buttons position〉,
CondPosLTCall(buttons, position), ·, dummy())

Driver(PEQC, 〈buttons position〉,
CondPosEQCall(buttons, position), ·, dummy())

Driver(True, ·, constant true(), ·, dummy())

Step 3. The simulation of task is much similar to the

simulation of driver. The five tasks in the elevator Giotto

program, have the same input port b, the same output ports

tmotion, tdoor, and no private port. Although they have

the same task ports, even they share a common driver

getButtons. Because the five tasks have different functions,

we should define five different processes to denote them.

Task(Idle, ·, b, 〈tmotion tdoor〉, TaskIdle(b, tmotion, tdoor))
Task(Up, ·, b, 〈tmotion tdoor〉, TaskUp(b, tmotion, tdoor))
Task(Down, ·, b, 〈tmotion tdoor〉, TaskDown(b, tmotion, tdoor))
Task(Open, ·, b, 〈tmotion tdoor〉, TaskOpen(b, tmotion, tdoor))
Task(Close, ·, b, 〈tmotion tdoor〉, TaskClose(b, tmotion, tdoor))

Step 4. We use Mode(modename, π,modeports, Invokes,
Updates, Switches) to simulate five modes. This process

consists of several parallel processes. Take mode idle for

example, it contains one task invocation, two actuator updates

and three mode switches. Firstly, the mode name and the

period of the mode is described as two parameters in the

process Mode. As the Giotto program does not indicate

the mode ports of mode idle, we use “·” to denote there

is no mode ports. The three parameters Invokes, Updates,

Switches model that there are several parallel sub-processes

in process Mode. When simulating each of the parallel

processes, take a task invocation for example, we not only

need to add the basic information in our model, such as the

invocation frequency, the task name, and the driver name

presented in process InvokeRef(1, Idle, getbuttons), but

also need to assign the invocation frequency to the variable

N (N := 1), to present the invocation times. The other four

modes are simulated like simulating mode idle.

Mode(idle, 500, ·, Invokes, Updates, Switches) =df

((N := 1; InvokeRef(1, Idle, getbuttons)) ‖
(N := 1;UpdateRef(1,Move)) ‖
(N := 1;UpdateRef(1, Door)) ‖
(N := 1;SwitchRef(1, up, PLTC))) ‖
(N := 1;SwitchRef(1, down, PGTC)) ‖
(N := 1;SwitchRef(1, open, PEQC)));

Mode(idle, 500, ·, Invokes, Updates, Switches)

Mode(up, 500, ·, Invokes, Updates, Switches) =df

((N := 1; InvokeRef(1, Up, getbuttons))‖
(N := 1;UpdateRef(1,Move)) ‖
(N := 1;UpdateRef(1, Door)) ‖
(N := 1;Switch(1, open, PEQC)));

Mode(up, 500, ·, Invokes, Updates, Switches)

Mode(down, 500, ·, Invokes, Updates, Switches) =df

((N := 1; InvokeRef(1, Down, getbuttons)) ‖
(N := 1;Update(1,Move)) ‖
(N := 1;Update(1, Door)) ‖
(N := 1;Switch(1, open, PEQC)));

Mode(down, 500, ·, Invokes, Updates, Switches)

Mode(open, 500, ·, Invokes, Updates, Switches) =df

((N := 1; Invoke(1, Open, getbuttons)) ‖
(N := 1;Update(1,Move)) ‖
(N := 1;Update(1, Door)) ‖
(N := 1;Switch(1, close, T rue)));

Mode(open, 500, ·, Invokes, Updates, Switches)

Mode(close, 500, ·, Invokes, Updates, Switches) =df

((N := 1; Invoke(1, Close, getbuttons)) ‖
(N := 1;Update(1,Move)) ‖

117



(N := 1;Update(1, Door)) ‖
(N := 1;Switch(1, idle, T rue))

Mode(close, 500, ·, Invokes, Updates, Switches)

Step 5. At last, we use process System to simulate the

elevator Giotto program. The process is shown as below, the

mode idle is the start mode, so we put the name of this

mode as the parameter of process System. As explained in

the definition of process System before, we use five events,

idle.start, up.start, down.start, open.start, close.start,
to control the corresponding mode to start to run.

System(idle) =df

(idle.start→ Skip) ‖
((((idle.start→Mode(idle, 500, ·, Invokes, Updates, Switches)‖

System()) �

(up.start→Mode(up, 500, ·, Invokes, Updates, Switches)‖
System()) �

(down.start→Mode(down, 500, ·, Invokes, Updates, Switches)‖
System()) �

(open.start→Mode(open, 500, ·, Invokes, Updates, Switches)‖
System()) �

(close.start→Mode(close, 500, ·, Invokes, Updates, Switches)‖
System()))

[left/get, right/send] ‖ Ports[left/read, right/write])\{left, right})

Overall, we use timed CSP based model to simulate the

whole elevator Giotto program step by step. This model can be

implemented in some CSP based tools, such as PAT (Process

Analysis Toolkit) which is an enhanced simulator, model

checker and refinement checker for concurrent and real-time

systems [18]. Then we can analyze some safety properties,

i.e., deadlock free, or some timing properties with these tools.

V. CONCLUSION

In this paper, we investigated a formal model for Giotto

programs, emphasizing the functionality and timing of abstract

periodic tasks as well as the communication between these

tasks. We applied timed CSP in formalizing Giotto programs.

We simulated all components of Giotto programs, including

ports, drivers, tasks and modes. We illustrated our approach by

a case study for an elevator Giotto program, which shows that

our modeling system can be successfully applied to practicable

hard real-time systems.

With this model, we can analyze and verify some

traditional safety properties, e.g., deadlock-free, and timing

properties, e.g., the schedulability on different scheduling

strategies. One of our further work is to translate our

model to some tools, such as FDR [17] or PAT [18], to

validate it, and use the tools to analyze and verify properties

automatically. With the Unifying Theories of Programming

(UTP) [8] techniques for reasoning, the other one is to

analyze Giotto programs based on our formal model with

the support of the UTP semantics of CSP with time [10], [11].

ACKNOWLEDGMENT

This work is supported by National Basic Research Program

of China (No. 2011CB302904), China Core Electronic Com-

ponents, High-end Universal Chips and Infrastructure Software

series Significant Project (No. 2009ZX01038-001-07), Nation-

al High Technology Research and Development Program of

China (No. 2011AA010101 and No. 2012AA011205), Nation-

al Natural Science Foundation of China (No. 61061130541

and No. 61021004), Shanghai Leading Academic Discipline

Project (No. B412), and East China Normal University Over-

seas Research Foundation (No. 79622040).

The majority of the work reported in this paper was done

while Yanhong Huang was a visiting researcher at Teesside

University. The support of Teesside University is gratefully

acknowledged.

REFERENCES

[1] Thomas A. Henzinger, Benjamin Horowitz and Christoph Meyer Kirsch.
Giotto: A Time-Triggered Language for Embedded Programming. Embed-
ded Software. Lecture Notes in Computer Science, Volume 2211/2001,
2001, Pages 166-184.

[2] Thomas A. Henzinger, Christoph M. Kirsch, Rupak Majumdar and Slo-
bodan Matic. Time-safety checking for embedded programs. Proceedings
of the Second International Workshop on Embedded Software. Lecture
Notes in Computer Science 2491, Springer-Verlag, 2002, Pages 76-92.

[3] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Se-
quential Processes. Automata, Language and Programing. Lecture Notes
in Computer Science, Volume 226/1986, 1986, Pages 314-323.

[4] Jim Davies and Steve Schneider. A Brief History of Timed CSP. Meeting
on the mathematical foundation of programing semantics. Volume 138,
1995, Pages 243-271.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[6] Rajiv Kumar Poddar and Purandar Bhaduri. Verification of Giotto Based

Embedded Control Systems. Nordic Journal of Computing. Volume 13
Issue 4, 2006, Pages 266-293.

[7] An Elevator giotto program. http://embedded.eecs.berkeley.edu/giotto/
examples/elevator.giotto. [Last accessed: 26 Nov 2012]

[8] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall International Series in Computer Science, 1998.

[9] Steve Schneider. An Operational Semantics for Timed CSP. Information
and Computation archive, Volume 116 Issue 2, Feb. 1, 1995, Pages 193-
213.

[10] Jifeng He. Integrating CSP and DC. The Eighth IEEE International
Conference on Engineering of Complex Computer Systems, 2002, Pages
47-54.

[11] Marcel Oliveira, Ana Cavalcanti and Jim Woodcock. A UTP semantics
for Circus. Formal Aspects of Computing. Volume 21, Issue 1-2, 2009,
Pages 3-32.

[12] Xian Zhang. Reasoning about Timed CSP with Extensions. Technical
Report. http://www.comp.nus.edu.sg/∼zhangxi5/tp.pdf.

[13] Xian Zhang. Job-Shop Scheduling Problems using Timed Planning.
Secure Software Integration and Reliability Improvement Companion,
2010, Pages 110-117.

[14] Phillip J. Brooke, Richard F. Paige and Jeremy L. Jacob. A CSP model
of Eiffel’s SCOOP. Formal Aspects of Computing. Volume 19, Number
4, 2007, Pages 487-512.

[15] Frank Zeyda, Ana Cavalcanti, and Andy Wellings. The Safety-Critical
Java Mission Model: A Formal Account. Formal Methods and Software
Engineering. Lecture Notes in Computer Science, Volume 6991/2011,
2011, Pages 49-65.

[16] Steve Schneider. Specification and Verification in Timed CSP. Real-time
Systems Specification, Verificaiton and Analysis, Chapter 6. Prentice Hall
International, London, 2001.

[17] FDR2 User Manual : Available at: http://www.fsel.com/documentation/
fdr2/html/index.html

[18] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards
Flexible Verification under Fairness. In 21th International Conference on
Computer Aided Verification, Grenoble, France, 2009, Pages 702-708.

118



APPENDIX

We list the details of a Giotto program mentioned in the

example in section 2. This Giotto program contains two

modes, m1 and m2. Mode m1 has a period of 6 ms, while

mode m2 has a period of 12 ms. The mode ports of the

two modes are o1 and o2. Mode m1 invokes task t1 with

a frequency 1 and invokes task t2 with a frequency 2. Mode

m2 invokes task t1 with a frequency 2 and invokes task t3
with a frequency 3.

Task t1 reads input port i1 and writes output port o1. Task

t2 reads input port i2 and writes output port o2. Task t3
reads input ports i3, i4 and writes output port o2. The drivers

d1, d2 and d3 prepare the input ports of tasks t1, t2 and t3
respectively. The output port o1 of task t1 is read by driver

d4 to update the actuator port a. In both modes the actuator is

updated every 6 ms. Mode m1 may switch to mode m2 every

3 ms, while m2 may switch back to mode m1 every 4 ms.

These mode switches are controlled by driver d5, which reads

the sensor port s2 and prepares mode ports o1 and o2 if the

switch guard is true. In all, the start mode is mode m1. The

code is shown as below:

R: the set of real numbers

B:{true, false}
sensor

port s1 type R

port s2 type B

actuator

port a type R init 0

intput

port i1 type R

port i2 type R

port i3 type R

port i4 type R

output

port o1 type R init 0

port o2 type R init 0

private

port p1 type R init 0

port p2 type R init 0

port p3 type R init 0

task t1 input i1 output o1 private p1 function f1

task t2 input i2 output o2 private p2 function f2

task t3 input i3, i4 output o2 private p3 function f3

driver d1 source o2 guard g1 destination i1 function h1

driver d2 source s1 guard g2 destination i2 function h2

driver d3 source s1, o1 guard g3 destination i3, i4 function h3

driver d4 source o1 guard g4 destination a function h4

driver d5 source s2 guard g5 destination o1, o2 function h5

mode m1 period 6 ports o1, o2

frequency 1 invoke t1 driver d1

frequency 2 invoke t2 driver d2

frequency 1 update d4

frequency 2 switch m2 driver d5

mode m2 period 12 ports o1, o2

frequency 2 invoke t1 driver d1

frequency 3 invoke t3 driver d3

frequency 2 update d4

frequency 3 switch m1 driver d5

start m1

119


