
Reasoning about Fences and Relaxed Atomics

Mengda He∗† Viktor Vafeiadis‡ Shengchao Qin∗† João F. Ferreira∗§

∗School of Computing, Teesside University, UK
†Shenzhen University, China

‡Max Planck Institute for Software Systems (MPI-SWS), Germany
§HASLab / INESC TEC, Universidade do Minho, Portugal

Email: {m.he,s.qin,jff}@tees.ac.uk, viktor@mpi-sws.org

Abstract—For efficiency reasons, weak (or relaxed) memory is
now the norm on modern architectures. To cater for this trend,
modern programming languages are adapting their memory mod-
els. The new C11 memory model [1] allows several levels of mem-
ory weakening, including non-atomics, relaxed atomics, release-
acquire atomics, and sequentially consistent atomics. Under such
weak memory models, multithreaded programs exhibit more
behaviours, some of which would have been inconsistent under
the traditional strong (i.e. sequentially consistent) memory model.
This makes the task of reasoning about concurrent programs
even more challenging. The GPS framework, recently developed
by Turon et al. [22], has made a step forward towards tackling
this challenge. By integrating ghost states, per-location protocols
and separation logic, GPS can successfully verify programs with
release-acquire atomics. In this paper, we present a program logic,
an enhancement of the GPS framework, that can support the
verification of a bigger class of C11 programs, that is, programs
with release-acquire atomics, relaxed atomics and release-acquire
fences. Key elements of our proposed logic include two new types
of assertions, a more expressive resource model and a set of newly-
designed verification rules.

I. INTRODUCTION

Memory models are important for concurrent programs,
as they define how different threads can interact with each
other based on the shared resources in memory. Most work
on concurrent program verification assumes the sequentially
consistency (SC) memory model [12], which assumes a single
global memory. Threads take turns to access it, while within
each thread the program order is preserved, and each update
to memory becomes visible to all threads at the same time
and as soon as they occur. However, this assumption is no
longer true for many modern architectures (like the ARM and
PowerPC processors), in which memory consistency models
are weakened for efficiency reasons.

The SC model is intuitive and simplifies reasoning about
concurrent programs. However, such strong models are expen-
sive for modern architectures to adopt as costly synchronisation
instructions (e.g., hardware fences) would be required to keep
memory operations properly synchronised. Modern architec-
tures therefore employ relaxed memory models in which
different threads may observe different orders of memory
operations. For instance, the x86 architecture uses total-store-
order (TSO), where some ordering may be broken as long as
a total order for all store operations is preserved; ARM and
PowerPC architectures use even weaker memory models. To
allow programmers to write more efficient concurrent code,
programming languages like C/C++ and Java follow a weak
memory model [1], [15]. However, there is a demand in search

for programming logics that can reason about concurrent pro-
grams assuming weak memory models. Two notable examples
are the recent frameworks Relaxed Separation Logic (RSL)
[23] and GPS [22]. These frameworks offer well-designed
reasoning support for release/acquire and SC atomics and have
been successfully applied to verify real code in the Linux
Kernel [20]. However, neither of them support fences, an
important synchronisation mechanism. Moreover, the focus of
GPS has been solely on release/acquire atomics, meaning that
relaxed atomics are not yet supported.

In this current work we propose a program logic that
enhances the GPS reasoning mechanism to support the verifi-
cation of a much bigger class of C11 programs (than what GPS
can support). More specifically, we propose two new types
of assertions, namely shareable assertions and waiting-to-be-
acquired assertions, to facilitate the reasoning about fences
and relaxed atomics. We design a set of new verification rules
that can verify programs with release/acquire atomics, relaxed
atomics and release/acquire fences.

Our work is based on the C11 memory model [1], which
will be depicted in §II. We briefly introduce GPS in §III and
present our new program logic in §IV. The new rules are put
into action in §V with an illustrative example. We present our
new resource model in §VI before we conclude in §VII.

II. THE LANGUAGE AND THE MEMORY MODEL

We first present the syntax and semantics for a language
capturing the essential C11 features, an extension of the core
language used in GPS [22]; we then introduce the (simplified)
C11 memory model on which our work is based.

A. The Language

Val v ::= x | V whereV ∈ N

Exp e ::= v | v + v | v == v | v mod v
| let x = e in e | repeat e end

| if v then e else e | fork e
| alloc(n) | [v]O | [v]O := v
| CAS(v, v, v) | FAI(v) | fenceO

MO O ::= rel | acq | rlx | na
EvalCtx K ::= [] | let x = K in e

Fig. 1: A language for C11 concurrency with relaxed atomics
and fences

Our core language (Fig 1) is an expression-oriented lan-
guage with pointer arithmetic, let-binding (which is the only
evaluation context K), repeat e command (which repeatedly
executes its body e until a non-zero value is returned), thread

forking, conditional statement, memory allocation, load, store
and fence operations annotated with a specific memory order
(MO), and the atomic operations compare-and-swap and fetch-
and-increment.

Note the memory order annotation can be rel (for release
store atomic), acq (for acquire read atomic), rlx (for relaxed
atomic), and na (for non-atomic).1 Note also that we focus on
fence commands annotated with rel or acq in this work. For
the compare-and-swap command CAS, we assume it to have
both rel and acq effects in case the operation succeeds, and
rlx in case the update does not take place.

B. The Graph Semantics

Assuming a weak memory model, C11 allows different
threads to have different observations of the memory. There-
fore it is hard to express its semantics in terms of changing a
single shared memory. Instead, we need to track the history of
an execution, annotate the relations among its events, and then
judge if that execution fulfils the memory model (e.g. whether
an access to a certain location leads to a data-race, or if it
is possible for a read action to return a certain value). This
approach is followed by Batty et al. [2] to formally define
the C11 memory model. The same approach is followed by
RSL and GPS though with simplifications to make their focus
clear. We follow the same approach and present a graph based
semantics. Fig 2 gives the definition of an event graph, which is
formed by an action map and three relations sequenced before
sb, modification order mo and read from rf.

Action α ::= S | A(l..l′) | W(l, V,O)
| R(l, V,O) | U(l, V, V) | F(O)

ActName a (from an infinite set)

ActMap A ∈ ActName
fin
⇀ Action

Graph G ::= (A, sb,mo, rf) where
sb,mo ⊆ dom(A)× dom(A),
rf ∈ dom(A) ⇀ dom(A)

ThreadMap T ∈ N
fin
⇀ (ActName × Exp)

Fig. 2: Syntax of event graph

We follow the two-layer semantics given in GPS but extend
it to support relaxed atomics and fences. Some of the semantic
rules are shown in Fig 3 and Fig 4, where C is the word
size. In the event layer, actions are generated from program

expressions e
α
→ e′. Note that a load operation generates a

read action R with an arbitrary value. The actual value read
is constrained by the C11 memory model in the second layer
of semantics. Note also that S stands for a skip action, A for
a memory allocation, W for a write, U for an atomic update,
and F for a fence action.

In the second layer of semantics, instead of transforming
expressions, a machine step changes machine configurations
〈T ;G〉. Here T is the pool of threads maintaining the identity
of the last event produced by each thread and their correspond-
ing continuation expressions, and G is the event graph built
up so far. In the graph G, all the events that have taken place
are recorded in the action map A and are connected with three
kinds of directed edges, namely sb, mo and rf.

1GPS focuses only on rel and acq and denotes them as at.

let x = V in e
S
→ e[V/x]

repeat e end
S
→

let x = e in if x then x else repeat e end

alloc(n)
A(l..l+n−1)
−−−−−−−→ l

[l]O
R(l,V,O)
−−−−−→ V

[l]O := V
W(l,V,O)
−−−−−−→ 0

CAS(l, Vo, Vn)
U(l,Vo,Vn)
−−−−−−−→ 1

CAS(l, Vo, Vn)
R(l,V ′,rlx)
−−−−−−−→ 0 V ′ 6= Vo

FAI(l)
U(l,V,V ′)
−−−−−−→ V

V ′ = (V + 1) mod C

fenceO
F(O)
−−−→ 0

K[e]
α
−→ K[e′] e

α
−→ e′

Fig. 3: Some event-step semantic rules: e
α
→ e′

e
α
→ e′ consistentC11(G′)

G′.A = G.A ⊎ [a′ 7→ α] G′.sb = G.sb ⊎ (a, a′)

G′.mo ⊇ G.mo G′.rf ∈ {G.rf, G.rf ⊎ [a′ 7→ b]}

〈T ⊎ [i 7→ (a, e)];G〉 −→ 〈T ⊎ [i 7→ (a′, e′)];G′〉

〈T ⊎ [i 7→ (a,K[fork (e)])];G〉 −→
〈T ⊎ [i 7→ (a,K[0]) ⊎ [j 7→ (a, e)];G〉

Fig. 4: Machine step semantics: 〈T ;G〉 −→ 〈T ′;G′〉

The sequenced-before relation (sb ⊆ dom(A)×dom(A))
records the order of events as specified in the program. As in
GPS and RSL, we make this relation not transitive. Thus it re-
lates each node only to its immediate successor in program or-
der. Note that the modification-order (mo ⊆ dom(A)× dom(A))
is a strict, total order on all writing actions to the same
location. The reads-from map (rf ∈ dom(A) ⇀ dom(A)) maps
each reading action to a writing action which it reads from.

From a machine configuration 〈T ;G〉, a move from an
arbitrary thread can transfer into a new machine configuration
〈T ′;G′〉 if the newly constructed graph G′ is legal under C11
memory model: consistentC11(G′).

C. The Memory Model

1) Happens-Before Relation: We have so far introduced sb,
mo, and rf. Now we describe the essential part of the memory
model: synchronisations. Different from GPS and RSL, now
fences can also form synchronisations. Our memory model
is still simplified when compared with the standard [1] (for
example, the subtle release-sequence is omitted).

We first introduce a derived relation synchronised-with
(sw ⊆ dom(A)× dom(A)). As illustrated in Fig 5, a pair of re-
lease write and acquire read can synchronise. Relaxed atomics
can also synchronise with the help of corresponding fences.

The idea of synchronisation in C11 is that when an event
c is synchronised with another event b, i.e. (b, c) ∈ sw, then
b’s observation about its preceding memory updates becomes
visible to c (and its succeeding events) as well. Based on this,
the heart of the C11 memory model, happens-before relation,
can be defined as: hb , (sb ∪ sw)+.

For instance, Fig 6 illustrates a 2-thread message passing
program, where msg is the message we intend to pass from the
first thread to the second and flg is used for synchronisation.

a: W(−,− ,rel) b: R(−,− ,acq)
rf

sw

a: W(−,− ,rel) c: R(−,− ,rlx)

b: F(acq)

rf sb
+sw

a: F(rel)

c: W(−,− ,rlx) b: R(−,− ,acq)
rf

sb
+

sw

a: F(rel)

c: W(−,− ,rlx)

b: R(−,− ,rlx)

b: F(acq)

rfsb
+

sb
+

sw

Fig. 5: Four ways to form synchronization

Thread 1 :

a : W(msg, 42, rlx)

b : W(flg, 1, rel)

Thread 2 :

c : R(flg, 1, acq)

d : R(msg, 42, rlx)

sb sb

rf

sw

hb

Fig. 6: Message passing using release write and acquire read

Both msg and flg are initialised as 0. When the acquire
load c reads from (rf) the release store b, a synchronised-
with (sw) relation is established between them. Consequently,
information observed by the source store b is eligible to be
shared with the reader c. In particular, this ensures d is aware
that a has happened, thus it will not read the stale value 0.

On the other hand if either one or both of actions on flg

are relaxed as shown in Fig 7, such sw relation fails to be
established, which means the out-of-order executions allowed
by the C11 standard may cause d to read the value 0 as well.

Thread 1 :

a : W(msg, 42, rlx)

b : W(flg, 1, rlx)

Thread 2 :

c : R(flg, 1, rlx)

d : R(msg, ?, rlx)
sb sbrf

Fig. 7: Failed message passing

2) Data-Race and Memory Error: C11 provides various
levels of memory consistency orders, from the most strict
sequentially-consistent sc to the most relaxed non-atomic na

(which does not even ensure atomicity), as a handy feature
for users to flexibly balance the efficiency and safety of their
programs. However, one must remember that when two events
concurrently access a non-atomic location and at least one
of them is a write event, it will lead to a data race. The
C11 standard declares that if an execution is data-race free,
the non-atomic actions will perform as they are sequentially-
consistent; otherwise, the result of execution is undefined.
Another situation that will lead to an undefined result is
a memory error, which happens when an event accesses a
location that has not been allocated.

3) Axioms: Following Batty et al. [2], the C11 memory
model is formulated as a set of axioms (over an event graph
G), denoted as consistentC11(G), the definition of which is
left for the report [9]. In the machine step layer of semantics,

the execution of our program is restricted by the C11 memory
model via the checking with consistentC11.

4) Thin-Air Read and the Strengthening of the Memory
Model: Our core language includes relaxed atomic operations.
However in the C11 memory model, relaxed atomics are
known to have the thin-air-read issue [2], which refers to the
problem that a cleverly designed program will allow a relaxed
atomic read to return any value out of the thin air, without
breaking the very few restrictions applied to relaxed atomics.
This problem makes it impossible to rigorously reason about
a program with relaxed atomics. To rule out thin-air reads, we
follow the same approach as RSL [23], i.e. we add an extra
axiom to the consistency check:

consistentC11((A, sb,mo, rf)) ,
. . .

∧ acyclic(hb ∪ {(rf(a), a) | a ∈ A})
where acyclic(R) , 6 ∃x ∈ A. R+(x, x).

III. THE GPS FRAMEWORK

Our proposed reasoning mechanism is built on top of the
GPS framework [22], [20], which combines three concepts
advocated by state-of-the-art concurrent program logics (e.g.
[24], [8], [7], [3], [13], [6], [21], [17], [19], [4], [11]), namely
ghost states, protocols and separation logic, and adapts them
in a novel way to support modular weak memory reasoning.
We shall first give a brief introduction about GPS, focusing
on atomic writes/reads and escrows, which are essential for
synchronisations.

A. Protocols for Atomic Locations

Following the C11 standard, atomic locations in GPS
are meant to be read and written concurrently. Therefore it
is difficult to make any stable assertions about the precise
contents of an atomic location. GPS advocates per-location
protocols to describe how the contents of each atomic location
can evolve over time. A state assertion l : s τ indicates that
an atomic location l is governed by the protocol τ , and is at
least at state s. All possible state transition relations have to be
defined in τ as a partial order ⊑τ ; and in τ , state interpretation
τ(s, z) for each state s also has to be specified.

The state assertions about atomic locations belong to
knowledge in GPS, which refers to assertions that do not
depend on ownership. State assertions are ownership indepen-
dent because according to the C11 standard, atomic locations
are meant to be accessed concurrently (without hb ordering)
in different threads. Correspondingly, GPS assertions about
their states can be present in different threads at the same
time. Conversely, the assertions about non-atomic locations
(i.e. x →֒ v) are not knowledge and must be owned by one
thread at a time as concurrent access to them may raise data
races. Knowledge is indicated by a modality �, and GPS has
useful rules to reason about knowledge:

l : s τ ⇒ � l : s τ , �P ⇒ P and �P ⇔ �P ∗�P

The first rule says that a state assertion can be transformed into
its knowledge form. The second says knowledge can always
be turned back into its normal assertion. And the third shows
that knowledge can be duplicated and thus be shared.

A state interpretation τ(s, z) for a protocol τ governing
a location l is an assertion specifying what must be true for
a thread to be permitted to write z to l and thus change it
to state s. A read action which reads from this write may
retrieve this assertion. This approach elegantly captures the
idea of synchronisations in the C11 standard. Intuitively, the
write action happens before that read (as a synchronised-with
relation is formed between them), so it signifies that the effect
of any preceding actions (those happened-before the write) can
be transmitted to the reading thread.

The rule for atomic (i.e. acquire) read in GPS is given as:

[GPS−ATOMIC−LOAD]

∀s′ ⊒τ s. ∀z. τ(s′, z) ∗ P ⇒ �Q
{

l : s τ ∗ P
}

[l]acq
{

z. ∃s′. l : s′ τ ∗ P ∗�Q
}

The possible writes that an atomic read can observe are quan-
tified in the premise. Note that only assertions in knowledge
form (�Q) can be gained, as it is possible for multiple threads
to all read the location at the same state and thus gain the
same assertion. Therefore if the assertion is not an ownership
independent knowledge, data races may occur. The inclusion
of the assertion P enables rely-guarantee reasoning through
protocols [22].

The atomic (i.e. release) write rule in GPS is defined as:

[GPS−ATOMIC−STORE]

P ⇛ τ(s′′, v) ∗Q ∀s′ ⊒τ s. τ(s′,−) ∗ P ⇒ s′′ ⊒τ s′
{

l : s τ ∗ P
}

[l]rel := v
{

l : s′′ τ ∗Q
}

Note that from the precondition we only know the lower
bound state for l is state s (i.e. the location l is at least at state
s before the write takes place). Without knowing which exact
state l might have possibly been moved to by environment
actions prior to this write, here the write moves it to state s′′

that is reachable from any state s′ such that s′ ⊒τ s. In the first
premise, P is transformed to the state interpretation τ(s′′, v)
with some frame Q via a ghost move ⇛. Ghost moves are
another important concept in GPS: they represent moves that
only change logical states without affecting the actual machine
states. Ghost moves can take place any time that suits the
logic user’s needs. They can do useful things like creating
ghost assertions, packing and unpacking escrows, which we
are going to discuss next.

B. Escrows for Non-Atomic Locations

According to the rule [GPS−ATOMIC−LOAD], only knowl-
edge can be transmitted in synchronisations. However, very
often we need to transfer the ownership of non-atomic loca-
tions. To do this, GPS allows them to be wrapped up into
knowledge form and be retrieved at the right time, via the
use of escrows. An escrow of the form σ : P Q can be
considered as a safe-box protecting Q, and the key to open
it is P (which is not duplicable). Ghost moves are used to
pack and unpack escrows:

[GPS−ESCROW−PACK]

σ : P Q

Q⇛ [σ]

[GPS−ESCROW−UNPACK]

σ : P Q

P ∧ [σ]⇛ Q

A packed escrow [σ] is an ownership-independent assertion
and can also be used in its knowledge form: [σ] ⇔ �[σ].

Thread 1 :

a : W(msg, 42, rlx)

e : F(rel)

b : W(flg, 1, rlx)

Thread 2 :

c : R(flg, 1, rlx)

f : F(acq)

d : R(msg, 42, rlx)

sb
sb

sb
sb

rf

sw

hb

Fig. 8: Message passing using relaxed atomics with fences

The “key” P is consumed once it has been used to unpack
an escrow. Therefore instead of using physical resources, ghost
assertions are introduced to describe the permissions to unpack
an escrow. A ghost assertion γ : t µ says there is a ghost
variable γ, whose value is ghost permission t drawn from some
partial commutative monoid (PCM) µ. New ghost t can appear
out of thin air, with a fresh identity: true⇛ ∃γ. γ : t µ .

A special kind of permission is token Tok. Tok has only
two kinds of permissions: ξ is the unit and represents empty
permission; and ⋄ represents for full permission. They are
usually written as γ : ξ and γ : ⋄ for short.

IV. REASONING ABOUT RELAXED ATOMICS AND FENCES

We now present our key proposal: a program logic that
supports the reasoning of a bigger class of C11 programs (than
GPS), including relaxed atomics and release-acquire fences.

A. Two New Types of Assertions

We would like to handle relaxed atomic operations in
a similar way as release and acquire atomics are treated
in GPS, since they are also applied on atomic locations.
Moreover, we would like to ensure that the idea of per-location
protocols works for all of them. However, as defined in §II-C
and illustrated in Fig 6 and Fig 7, one challenge is that
relaxed atomics form synchronised-with relations differently
from release-acquire atomics: a sw relation is automatically
set up when an acquire load operation reads from a release
store operation; but for relaxed atomics the C11 standard states
that the sw relation can only be established with the help of
fences2. Fig 8 shows that fences are needed to restore the sw

and thus the hb relations for the example in Fig 7.

We interpret these restrictions as (i) a relaxed atomic store
operation can only transmit the information that has been
marked as shareable by a preceding release fence; and (ii) a
relaxed load should not put the knowledge gained from its
loading source to the current state, instead it should mark
the knowledge as not yet available and await a succeeding
acquire fence to transform them to normal knowledge form.
To cater for these new scenarios, we introduce two new types
of assertions: shareable assertions 〈P 〉, and waiting-to-be-
acquired assertions ⊠P .

Intuitively 〈P 〉 indicates that P is shareable. That is, it can
be transmitted to others (even by a relaxed store operation).
⊠P signifies that knowledge received by a relaxed load is not
yet available according to the C11 standard. Reading, updating
or re-transmitting ⊠P is not permitted until an acquire fence
transforms it into normal knowledge �P .

2Or via release sequences, which we do not consider in this paper.

The formal semantics for these new assertions and their
properties will be presented later in Sec VI. It is worth noting
here that unlike �P ⇒ P , the property ⊠P ⇒ P does not hold,
as according to the C11 standard, ⊠ can only be stripped off
by using an acquire fence. Moreover, unlike the knowledge
symbol � that can be nested, the nesting of shareable or
waiting-to-be-acquired assertions is not allowed. As otherwise,
if an assertion like ⊠〈P 〉 is permitted, after an acquire fence
it immediately becomes a shareable assertion, which clearly
violates the C11 standard.

It is also worth noting that, in order to prevent improper as-
sertions (like ⊠P or 〈P 〉) from being included in state interpre-
tations for atomic variables, we require that all state interpreta-
tions must be “normal" assertions, i.e. ∀τ, s, V. normal(τ(s, V)),
where normal(P) , P⇒false ∨ 〈P 〉 6⇒ false. A similar re-
striction is applied to the assertions used in escrows: for each
escrow σ : P P ′, we require normal(P) and normal(P ′).

B. New Verification Rules

With the new forms of knowledge and assertions, we can
now ensure that knowledge will be distributed in a controlled
manner both from the starting point (a store operation) and at
the finishing point (a load operation). We present a number of
newly-designed verification rules in Fig 9. The rules that are
inherited from GPS without change and the rule for FAI are
left for the technical report [9].

[RELEASE−STORE]

P ⇛ τ(s′′, v) ∗Q ∀s′ ⊒τ s. τ(s′,−) ∗ P ⇒ s′′ ⊒τ s′
{

l : s τ ∗ P
}

[l]rel := v
{

l : s′′ τ ∗Q
}

[RELAXED−STORE]

P2 ⇛ τ(s′′, v) ∗Q ∀s′ ⊒τ s. τ(s′,−) ∗ P1 ∗ P2 ⇒ s′′ ⊒τ s′
{

l : s τ ∗ P1 ∗ 〈P2〉
}

[l]rlx := v
{

l : s′′ τ ∗ P1 ∗Q
}

[RELEASE−FENCE]

〈P 〉 6⇒ false

{P} fencerel {〈P 〉}

[ACQUIRE−LOAD]

∀s′ ⊒τ s. ∀z. τ(s′, z) ∗ P ⇒ �Q
{

l : s τ ∗ P
}

[l]acq
{

z. ∃s′. l : s′ τ ∗ P ∗�Q
}

[RELAXED−LOAD]

∀s′ ⊒τ s. ∀z. τ(s′, z) ∗ P ⇒ �Q
{

l : s τ ∗ P
}

[l]rlx
{

z. ∃s′. l : s′ τ ∗ P ∗⊠Q
}

[ACQUIRE−FENCE]

{⊠P} fenceacq {�P}

[CAS]

∀s′ ⊒τ s. τ(s′, vo) ∗ P1 ∗ P2 ⇛ ∃s′′ ⊒τ s′. τ(s′′, vn) ∗ Q

∀s′′ ⊒τ s. ∀y 6= vo. τ(s
′′, y) ∗ P1 ⇒ �R

{

l : s τ ∗ P1 ∗ 〈P2〉
}

CAS(l, vo, vn)

{

z.∃s′′. l : s′′ τ ∗ ((z=1 ∗ Q)
∨(z=0 ∗ P1 ∗ 〈P2〉 ∗�R))

}

Fig. 9: New verification rules

Being atomic store operations, both release and relaxed
stores can transmit some extra information to their readers.
But according to the standard and as pointed out in their
instrumented semantics we discussed before, the scopes of
information that are available for them to release are different.
This difference is captured by our rules. Being a store using
a weaker memory order, a relaxed store can only use the
assertion P2 that is marked as shareable in its precondition
to imply the interpretation of the state it is going to write,
i.e. it can only transmit the things that are already marked as
shareable. Meanwhile, a release store uses a general assertion
P , which is not necessarily to be a shareable assertion, to
ghostly imply the state interpretation it needs. Note that P can
also contain shareable assertions, in which case the following
[UNSHARE] ghost move becomes handy if the normal form of
these assertions is needed to imply the state interpretation:

[UNSHARE] : 〈P 〉⇛ P

This ghost move allows us to convert a shareable assertion
back to its previous form (where resources were held in the
local part instead of the shareable part). The assertion P1 in
the [RELAXED−STORE] rule is used to reduce the possible
intermediate environment moves we need to consider.

A release fence marks resources that are ready to be
shared. Our [RELEASE−FENCE] rule shows that an assertion
P in its precondition is transformed into a shareable assertion
after the fence (assuming it is possible to do so). The sanity
check in the premise prevents false from being gained in
the postcondition. Note that if the precondition P is already a
shareable assertion or a waiting-to-be-acquired assertion (i.e.
〈P 〉 ⇒ false), the release-fence would act like the skip action,
and the postcondition would remain as P (according to the
frame rule in Separation Logic).

For atomic loads, the [ACQUIRE−LOAD] rule in GPS is
compatible with our new setting. Note that the knowledge it
retrieves from its load source is directly put in the postcon-
dition. However as we have discussed, the knowledge gained
by a relaxed load should not be considered as immediately
available to the current thread (for reading, updating or re-
transmitting). Therefore, in our new [RELAXED−LOAD] rule,
the knowledge �Q the load gains is marked as waiting-to-be-
acquired knowledge ⊠Q in its post condition. One can then use
the [ACQUIRE−FENCE] rule to turn an acquirable knowledge
into a normal one.

CAS(l, vo, v) (compare and swap) is an important synchro-
nisation operation, which is widely used in various lock
algorithms. It performs the following things in one atomic step:
firstly it loads from l, and compares the value it gets with the
expected value vo; if they are equal, it updates l with a new
value v and returns 1 indicating its success, otherwise returns 0.
The CAS in our [CAS] rule is a release-acquire CAS, i.e. in the
case of success (corresponding to the first premise) it behaves
like a release store, and in the case of fail (corresponding to the
second premise) it behaves like an acquire load that read some
value other than vo. Moreover, in the case of success, it can
retrieve non-knowledge assertions from the interpretation of
the state s′. As we require that all state interpretations must be
normal assertions (or false), we do not need to be concerned
that improper assertions, like shareable assertions that can be
immediately re-transmitted by any following relaxed stores
without a release fence, will be retrieved from τ(s′, vo) and
left over in Q.

V. ILLUSTRATIVE EXAMPLE

We illustrate our reasoning logic using the racy program
shown in Fig 10. We first show how our logic can detect the
data race and how it is unable to prove the program to be
correct. We then show that after resolving the race by properly
adding fences, our logic can prove it successfully.

let x = alloc(1) in
let y = alloc(1) in
let z = alloc(1) in
[x]na := 0; [y]rel := 0; [z]rel := 0;

[x]na := 1; repeat [y]rlx end; repeat [z]acq end;
[y]rel := 1; [z]rlx := 1; [x]na := 2

Fig. 10: A program with a data race

Note that a message x →֒ 1 is created in thread 1, and is
passed to thread 2 by the release store to y. Thread 2 performs
a relaxed store to z, intending to retransmit this message to
thread 3, where the ownership of x is demanded to perform
the non-atomic write.

According to the C11 standard, this program contains a
data race as it is not properly synchronised. Despite the fact
that in thread 1 the store operation to y is release atomic,
the load operation in thread 2 that reads from it is relaxed.
Without a subsequent acquire fence, no synchronisation can
be established between thread 1 and 2. Similarly, though the
acquire load operation of z in thread 3 reads from the store
operation in thread 2, the two threads are not synchronised
as the store operation is relaxed and lacking a release fence
before it. Therefore, the chain of happens before (hb) relation
breaks between thread 1 and 3. Without having a happens
before relation, the non-atomic writes to x in thread 1 and
3 produce a data race.

We show in Fig 11a that, with the help of the two
new types of assertions, our logic can detect the failure of
synchronisation, and will not prove the racy program to be
correct. First, we define the escrow for x and protocols for y

and z, where each of y and z has only two protocol states 0
and 1, and 0 ⊑Prot(l) 1 for l∈{y, z}:

XE : γ : ⋄ x →֒ 1

Prot(l)(0, v) , v=0 Prot(l)(1, v) , v=1∧�[XE] l∈{y, z}

As shown in Fig 11a, the verification could not be finished
in thread 2. Even though in thread 1 the message about x is
packed via ghost move from (1.2) to (1.3), and put into y’s
state interpretation as a knowledge, the relaxed load operation
of y in thread 2 can only extract the knowledge in a waiting-
to-be-acquired form ⊠[XE] according to [RELAXED−LOAD].
Without subsequent acquire and release fences, this waiting-
to-be-acquired knowledge is kept in this form and cannot be
used to entail the required precondition for the next com-
mand [z]rlx := 1, in which the packed escrow is expected
to be in the shareable form 〈�[XE]〉 according to the rule
[RELAXED−STORE].

To resolve the data race in this program, as shown in
Fig 11b, an acquire fence and a release fence are needed to be
inserted between the relaxed load operation of y and the release
operation to z in thread 2, which will change the waiting-to-
be-acquired knowledge into a normal knowledge and then a
shareable knowledge before the relaxed store operation to z

transfers it to thread 3.

It is worth noting that our logic supports modular rea-
soning. The verification of thread 1 and 3 can be conducted
separately despite the error in the original thread 2.

We have also applied our reasoning logic to a number of
more challenging programs as documented in the report [9].

VI. RESOURCE MODEL

In this section we shall first briefly introduce the GPS
resource model and then present our new resource model
which is built on the GPS one.

A. GPS Resources

In GPS, resources are used to logically represent computa-
tion states. A resource r ∈ Resource is a triple (Π, g,Σ) where
the physical location map Π maps each location to either a
value (for non-atomics) or a protocol and state (for atomics),
the ghost identity map g keeps the ghost values, and the known
escrow set Σ contains all escrows available. Resources form a
PCM with composition ⊕. Some useful definitions are:

emp , ((λn. ⊥), (λµ. λn. ǫµ), ∅)
r ≤ r′ , ∃r′′. r ⊕ r′′ = r′

r#r′ , r ⊕ r′defined

Each proposition P in GPS is interpreted as a set of resources,
i.e. JP K ⊆ Resource. Moreover, the interpretation satisfies the
following property:

∀r ∈ JP K. ∀r′#r. r ⊕ r′ ∈ JP K

GPS also introduces a rely-guarantee-styled instrumented
semantics for all actions. Let us take the release store operation
as an example. Given a resource rpre that meets the pre-
condition of the write, and assuming resource r is the actual
resource used by the write (note r can be different from rpre as
the environment may also make changes prior to the write), the
effect of this atomic write can be illustrated by its guarantee
definition as shown below, where rsb is the resource that will
be passed down to its sb successor in the execution graph and
rrf is the resource to be transmitted to its reader:

(rsb, rrf) ∈ guar(rpre, r,W(l, V, rel)) if
∃τ, s, S.rrf ∈ interp(τ)(s, V)
∧rrf ⊕ rsb = r[l := at(τ, S ∪ {s})] ∧ rsb[l] = rrf [l]
∧(r[l] = uninit ∧ S = ∅ ∨ r[l] = at(τ, S) ∧ ∀s0 ∈ S. s0 ⊑τ s)

∧∀rE .





∃τ, s′, V ′. rE ∈ interp(τ)(s′, V ′)
∧ rpre[l] ⊑at RE [l] ≡at at(τ, S ∪ {s′})
∧ rpre#rE





⇒ rE [l] ⊑at rrf [l]

Note interp(τ)(s, V) denotes the semantics of the state inter-
pretation under the new state s, namely Jτ(s, V)K, which carries
the information we intend to transmit through this atomic
write. The notation r[l] is short for r.Π(l), which is the value
of the physical location l. For an atomic location, this is an
atomic protocol value in the form of at(τ, S), where τ is the
protocol type governing that location and S is a trace of states
the location has gone through. Some relations between these
protocol values are defined as:

at(τ, S) ⊑τ at(τ, S′) , ∀s ∈ S. ∃s′ ∈ S′. s ⊑τ s′

π ≡at π
′ , π ⊑τ π′ ∧ π′ ⊑τ π

The assertion-level ghost move is defined in terms of
resource-level ghost moves:

P ⇛ Q , ∀r ∈ JP K. r ⇛ JQK

(0.1) {true}

let x = alloc(1) in let y = alloc(1) in let z = alloc(1) in

[x]na := 0; [y]rel := 0; [z]rel := 0;

(0.2)
{

x →֒ 0 ∗ y : 0 Prot(y) ∗ z : 0 Prot(z)
}

(0.3)
{

x →֒ 0 ∗ y : 0 Prot(y) ∗ z : 0 Prot(z) ∗ ∃γ. γ : ⋄
}

(1.1)

{

x →֒ 0 ∗

y : 0 Prot(y)

}

[x]na := 1;

(1.2)

{

x →֒ 1 ∗

y : 0 Prot(y)

}

(1.3)

{

[XE] ∗

y : 0 Prot(y)

}

[y]rel := 1;

(1.4)
{

y : 1 Prot(y)
}

(2.1)

{

y : 0 Prot(y) ∗

z : 0 Prot(z)

}

repeat [y]rlx end;

(2.2)

{

y : 1 Prot(y) ∗ ⊠[XE] ∗

z : 0 Prot(z)

}

(2.3)

{

// Expected precondition :

z : 0 Prot(z) ∗ 〈�[XE]〉

}

// (2.2) 0 (2.3): Verification failed!

[z]rlx := 1;

(3.1)

{

z : 0 Prot(z) ∗

γ : ⋄

}

repeat [z]acq end;

(3.2)

{

z : 1 Prot(z) ∗

�[XE] ∗ γ : ⋄

}

(3.3)

{

z : 1 Prot(z) ∗

x →֒ 1

}

[x]na := 2

(3.4)

{

z : 1 Prot(z) ∗

x →֒ 2

}

(a) Failed verification of the racy program

(2.1′)

{

y : 0 Prot(y) ∗

z : 0 Prot(z)

}

repeat [y]rlx end;

(2.2′)

{

y : 1 Prot(y) ∗ ⊠[XE] ∗

z : 0 Prot(z)

}

fenceacq;

(2.3′)

{

y : 1 Prot(y) ∗ �[XE] ∗

z : 0 Prot(z)

}

fencerel;

(2.4′)

{

y : 1 Prot(y) ∗ 〈�[XE]〉 ∗

z : 0 Prot(z)

}

[z]rlx := 1;

(2.5′)

{

y : 1 Prot(y) ∗

z : 1 Prot(z)

}

(b) Verification of the fixed thread 2

Fig. 11: Verification of Relayed Message Passing

For instance, the escrow packing rule is validated by the
following resource-level ghost move:

interp(σ) = (JP K, JP ′K) r′ ∈ JP ′K

(Π, g,Σ)⊕ r′ ⇛ ⌊(Π, g,Σ ∪ {σ})⌋

Note that the escrow’s interpretation interp(σ) = (JP K, JP ′K)
requires that JP K ∗ JP ′K = ∅. Note also that ⌊r⌋ is defined as
{r ⊕ r′ | r′ ∈ Resource}.

B. The New Resource Model

To deal with the two new types of assertions, we extend
the GPS resource model to a more expressive one by lifting
resources to resource triples:

ResTriple , {(r1, r2, r3) | r1, r2, r3 ∈ Resource∧r1⊕r2⊕r3 defined}

For each resource triple R = (r1, r2, r3) we use R[L] to denote
r1,R[S] for r2, and R[A] for r3, representing resp. its local,
shareable, and waiting-to-be-acquired component.

Like resources, ResTriple also forms a PCM. The compo-
sition operation ⊕ is defined point-wise; the compatibility can
be defined as:

R#R′ , R⊕R′

defined

EMP is defined as a resource triple comprising only empty re-
sources: EMP , (emp, emp, emp). The semantics for propositions
is lifted to the ResTriple model as well. The interpretation JP K
of an assertion P is a set of resource triples satisfying the
property:

∀R ∈ JP K. ∀R′#R. R⊕R′ ∈ JP K

For any basic assertion P and resource triple R , only the
local part of R is needed when checking R∈JP K. For example,

R ∈ J l : s τ K ⇔ ∃S. R[L].Π(l) = at(τ, S) ∧ s ∈ S

Composed assertions like separating conjunction are directly
lifted up to use resource triples:

R ∈ JP1∗P2K ⇔ ∃R1,R2. R = R1⊕R2∧R1 ∈ JP1K∧R2 ∈ JP2K

The semantics for synchronisation related assertions,
namely knowledge, shareable assertion and waiting-to-be-
acquired assertions are defined as:

R ∈ J�P K ⇔ |(R[L], emp, emp)| ∈ JP K

R ∈ J〈P 〉K ⇔ (R[S], emp, emp) ∈ JP K

R ∈ J⊠P K ⇔ (R[A], emp, emp) ∈ J�P K

Note the stripping |R| is a lifted version of the GPS stripping,
i.e, |(r1, r2, r3)| , (|r1|, |r2|, |r3|).

3

Under the new resource model, the following properties
hold. Note properties for knowledge that hold in GPS are all
preserved in the new model but are omitted here.

〈P 〉 ∗ 〈Q〉 ⇔ 〈P ∗Q〉 ⊠P ⇔ ⊠P ∗⊠P
�〈P 〉 ⇒ false if EMP6∈JP K ⊠〈P 〉 ⇒ false if EMP6∈JP K
〈⊠P 〉 ⇒ false if EMP6∈JP K �⊠ P ⇒ false if EMP 6∈JP K
⊠⊠ P ⇒ false if EMP 6∈JP K 〈〈P 〉〉 ⇒ false if EMP6∈JP K

1) Ghost Moves: As in GPS, assertion-level ghost
moves are defined in terms of resource-level ghost moves:
P ⇛ Q , ∀R ∈ JP K. R⇛ JQK. The only difference is that re-
source triples are now used in the resource level. For instance,
the resource level escrow packing ghost move is changed to:

interp(σ) = (JP K, JP ′K) R′ ∈ JP ′K R[L] = (Π, g,Σ)

R⊕R′ ⇛ ⌊((Π, g,Σ ∪ {σ}),R[S],R[A])⌋

Based on this definition, we can obtain the same escrow
packing rule as that in GPS.

In addition to all ghost moves inherited from GPS, we also
propose a new one:

R′[L] = R[L]⊕ r R′[S]⊕ r = R[S] R′[A] = R[A]

R⇛ ⌊R′⌋

This resource-level ghost move gives us the assertion-level
ghost move rule [UNSHARE] (shown in Sec IV).

2) Rely/Guarantee Definitions: Following the GPS ap-
proach, we define the instrumented semantics for all actions
in the rely/guarantee style (more details are left for the report
[9]). But instead of manipulating resources, our actions work
on resource triples, which is more expressive and allows
us to describe the subtle difference among various kinds of
actions. As an example, the guarantee definitions for release
and relaxed writes are illustrated in Fig 12.

3In GPS, |r| represents the duplicable part of r: r = r ⊕ |r|. For du-
plicable items in r, like atomic values and the known escrow set, stripping
keeps them unchanged. That is, we have |r|.Σ = r.Σ, and if lat is an atomic
location in r we have |r|.Π(lat) = r.Π(lat). For non-duplicable items, like
non-atomic values, stripping removes them. For example, if lna is a non-atomic
location in r we have |r|.Π(lna) = ⊥. The value ⋄ of ghost type Tok is
also not duplicable, and all ghost locations of type Tok will be set as empty
after stripping: |r|.g(Tok)(−) = ξ.

(Rsb,Rrf) ∈ guar(Rpre,R,W(l, V, rel)) if (Rsb,Rrf) ∈ guar(Rpre,R,W(l, V, rlx)) if
∃τ, s, S,R′, rrf . ∃τ, s, S,R′, rrf .




∃r1, r2. R
′[A] = R[A]

∧ R[L] = r1 ⊕ r2 ∧ r2 ≤ rrf ∧R′[L] = r1[l := at(τ, S ∪ {s})]
∧ R′[S] = R[S]⊕ r2[l := at(τ, S ∪ {s})]









R′[A] = R[A]
∧ R′[L] = R[L][l := at(τ, S ∪ {s})]
∧ R′[S] = R[S][l := at(τ, S ∪ {s})]





∧ (rrf , emp, emp) ∈ interp(τ)(s, V) ∧Rrf = (emp, rrf , emp) ∧ (rrf , emp, emp) ∈ interp(τ)(s, V) ∧Rrf = (emp, rrf , emp)
∧ Rrf ⊕Rsb = R′ ∧ Rrf ⊕Rsb = R′

.
(a) New guarantee condition for release write (b) Guarantee condition for relaxed write

Fig. 12: Guarantee conditions for release write vs relaxed write

Note that a release write can move a resource (r2) from
R[L] to the shareable part R[S] and transmit it, while the
relaxed write can only use the resource already in the shareable
component.

VII. CONCLUSION

We present a verification logic for weak memory programs,
by enhancing the GPS mechanism with two new forms of
assertions: shareable assertions 〈P 〉 and waiting-to-be-acquired
assertions ⊠P . This change enables us to control more pre-
cisely the synchronisations that happen between threads, mak-
ing the reasoning about relaxed atomics and fences possible.

Our work is closely related to GPS [22] and RSL [23],
both of which focus on program verification under the C11
weak memory model. RSL was intended to provide support
for reasoning about release-acquire accesses in the style of
Concurrent Separation Logic (CSL) [18]. Our logic inherits
several ideas from GPS, including per-location protocols and
escrows, which are also relevant with a previous work [21].
Another important concept we borrow from GPS are ghost
resources as PCMs. This idea is related with [5], [10], [14],
and a recent work [11].

We are currently working on the mechanised soundness
proof in Coq [16] for our reasoning logic, in the style of the
GPS encoding [22]. Future work includes the incorporation of
release sequence and the consideration of more memory orders
like consume read. The most recent work [20] demonstrates
the power of GPS in reasoning about real code and inspires
us to apply our logic to more real code.

Acknowledgement The work was supported in part by NSFC
No. 61373033 and SZSTI No. JCYJ201418193546117.

REFERENCES

[1] ISO/IEC 9899:2011. Programming Language C. 2011.

[2] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ Concurrency. pages 55–66, 2011.

[3] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A Practical System
for Verifying Concurrent C. In International Conference on Theorem

Proving in Higher Order Logics (TPHOLs ’09), pages 23–42, 2009.

[4] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A Logic
for Time and Data Abstraction. In ECOOP, pages 207–231. 2014.

[5] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and
H. Yang. Views: Compositional Reasoning for Concurrent Programs.
In ACM POPL, pages 287–300, 2013.

[6] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis. Concurrent Abstract Predicates. In ECOOP, pages 504–
528, 2010.

[7] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-Guarantee
Reasoning. In ESOP, pages 363–377, 2009.

[8] X. Feng. Local Rely-guarantee Reasoning. In ACM POPL, pages 315–
327, 2009.

[9] M. He, V. Vafeiadis, S. Qin, and J. F. Ferreira. Reasoning about Fences
and Relaxed Atomics (Technical Report), 2015. School of Computing,
Teesside University.

[10] J. B. Jensen and L. Birkedal. Fictional separation logic. In ESOP, pages
377–396, 2012.

[11] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer. Iris: Monoids and Invariants As an
Orthogonal Basis for Concurrent Reasoning. In ACM POPL, pages
637–650, 2015.

[12] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers,
28(9):690–691, 1979.

[13] K. R. Leino, P. Müller, and J. Smans. Verification of Concurrent
Programs with Chalice. In Foundations of Security Analysis and Design

V, pages 195–222, 2009.

[14] R. Ley-Wild and A. Nanevski. Subjective Auxiliary State for Coarse-
grained Concurrency. In ACM POPL, pages 561–574, 2013.

[15] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
ACM POPL, pages 378–391, 2005.

[16] The Coq development team. The Coq proof assistant reference manual.
LogiCal Project., 2014. Version 8.4pl6. URL: http://coq.inria.fr.

[17] A. Nanevski, R. Ley-Wild, I. Sergey, and G. Delbianco. Communicating
State Transition Systems for Fine-Grained Concurrent Resources. In
ESOP, pages 290–310. 2014.

[18] P. W. O’Hearn. Resources, Concurrency, and Local Reasoning. Theor.

Comput. Sci., 375(1-3):271–307, April 2007.

[19] K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract
Predicates. In ESOP, pages 149–168. 2014.

[20] J. Tassarotti, D. Dreyer, and V. Vafeiadis. Verifying Read-Copy-Update
in a Logic for Weak Memory. In ACM PLDI, Portland, OR, USA,
2015.

[21] A. Turon, D. Dreyer, and L. Birkedal. Unifying Refinement and Hoare-
style Reasoning in a Logic for Higher-order Concurrency. In ICFP,
pages 377–390, 2013.

[22] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating Weak Memory
with Ghosts, Protocols, and Separation. In ACM OOPSLA, pages 691–
707, 2014.

[23] V. Vafeiadis and C. Narayan. Relaxed Separation Logic: A Program
Logic for C11 Concurrency. In ACM OOPSLA, pages 867–884, 2013.

[24] V. Vafeiadis and M. J. Parkinson. A Marriage of Rely/Guarantee and
Separation Logic. In 18th International Conference on Concurrency

Theory (CONCUR’07), volume 4703 of Lecture Notes in Computer

Science, pages 256–271, 2007.

