
The Magic of Algorithm Design and Analysis

Teaching Algorithmic Skills using Magic Card Tricks

João F. Ferreira
School of Computing
Teesside University
Middlesbrough, UK

HASLab/INESC TEC
Universidade do Minho

Braga, Portugal
joao@joaoff.com

Alexandra Mendes
Faculty of Arts

York St John University
York, UK

a.mendes@yorksj.ac.uk

ABSTRACT

We describe our experience using magic card tricks to teach algo-
rithmic skills to first-year Computer Science undergraduates. We
illustrate our approach with a detailed discussion on a card trick
that is typically presented as a test to the psychic abilities of an
audience. We use the trick to discuss concepts like problem de-
composition, pre- and post-conditions, and invariants. We discuss
pedagogical issues and analyse feedback collected from students.
The feedback has been very positive and encouraging.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and Information
Science Education—Computer science education; F.1.0 [Computation

by abstract devices]: General

Keywords

Algorithms; Algorithmic Problem Solving; Invariants; Pre/Post-
conditions; Hoare Triples; Magic Card Tricks; Puzzles and Games

1. INTRODUCTION
There is a growing number of educators who advocate the use of

recreational problems and so-called “unplugged” activities to teach
computer science concepts [2, 4, 12]. We have ourselves been using
“unplugged” activities for a few years to teach algorithmic problem
solving at undergraduate level [7, 8]. Recently, inspired by the en-
gaging work done in the project cs4fn [4, 5, 13, 14], we incorpo-
rated magic card tricks into our activities.

In this paper, we describe our experience using magic card tricks
to teach algorithmic skills to first-year Computer Science (CS) un-
dergraduates. Our main contribution is to show how more formality
can be added to the presentation of card tricks so that they can be
presented at university level (this was suggested as future work in
[4]). We enrich the contribution by including some pedagogical
comments and by discussing feedback provided by the students.

We start in Section 2, where we discuss in detail a card trick that
is typically presented as a test to the psychic abilities of an audi-
ence. The trick was taken from [14], a booklet on magic tricks that

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ITiCSE’14, June 21–25, 2014, Uppsala, Sweden.

Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.

http://dx.doi.org/10.1145/2591708.2591745.

has been used to demonstrate computer science concepts to school
students. After we describe the trick, we present a detailed explana-
tion of why it works, highlighting the algorithmic techniques used
along the way. In Section 3 we discuss some pedagogical consider-
ations that make the teaching of algorithmic skills using card tricks
more effective. We have collected feedback from first-year CS un-
dergraduates who attended a learning session based on the trick.
We analyse the feedback in Section 4. In Section 5 we present re-
lated work and we conclude the paper in Section 6, where we also
discuss some of the next steps.

2. ALGORITHMIC CARD TRICKS
Algorithmic card tricks (also called self-working tricks) are tricks

that do not involve any hidden mechanisms like rigged decks or
double lifts. In other words, if the spectator replicates the visible

steps performed by the magician, the same (surprising) result will
be achieved. Essentially, we can describe algorithmic card tricks
as algorithms that manipulate cards. We believe that card tricks are
excellent vehicles to teach important algorithmic skills, because:

• Students think about the underlying algorithms on a more ab-
stract level, ignoring implementation and computer language
details;

• The kinaesthetic and interactive nature of manipulating cards
helps students visualise the algorithms: they can quickly ver-
ify properties and test new hypotheses using the cards;

• Students learn that algorithmic problem solving applies to
areas outside computer science;

• The recreational nature of card tricks promotes student en-
gagement;

• Card tricks can be used to illustrate important concepts like
loops and invariants, assertions, and problem decomposition.

2.1 Example: are you psychic?
In this section, we present a card trick whose analysis and proof

of correctness is non-trivial. The trick is typically presented as a
test to the psychic abilities of an audience. We analyse the under-
lying algorithm and show how the card trick can be used to prac-
tise problem decomposition and the identification of pre- and post-
conditions. The correctness of the algorithm is proved by identify-
ing and formulating two invariants. To describe the trick, we follow
the explanation found in [14] (but we include more graphical aids).

2.1.1 Description of the card trick

We start by getting five pairs of cards out of the pack. Any five
pairs can be used, but for simplicity, let us choose the five pairs
2r 2♠ , 3r 3♠ , 4r 4♠ , 5r 5♠ , and 6r 6♠ .

Next, set the cards up in one ordered pile as shown in Figure 1.
Show the pile to the audience and explain that the trick is about to
start.

6
♠

♠
6

♠

♠

♠

♠

♠

♠

5
♠

♠
5

♠

♠

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

3
♠

♠
3

♠

♠

♠

2
♠

♠
2

♠

♠

6
r

r

6

r

r

r

r

r

r

5
r

r

5

r

r

r

r

r

4
r

r

4

r

r

r

r

3
r

r

3

r

r

r

2
r

r

2

r

r

Figure 1: Five pairs of cards as one ordered pile.

To facilitate the explanation of the trick, we explain how to per-
form it with the faces of the cards up. However, when performing

the trick, the faces should be down!

Spread the cards in your hand and have the audience point to any
card. Split the pack at that point and place the top pile at the bottom
of the pack. Repeat this until the audience is happy the cards are
well mixed. For example, if the audience points to the four of hearts
shown in the left image of Figure 2, the resulting deck is the one on
the right image.

6
♠

♠
6

♠

♠ ♠

♠

♠ ♠

5
♠ ♠

5

♠

♠

♠

♠♠

4
♠

♠
4

♠

♠

♠

♠

3
♠

♠
3

♠

♠

♠

2
♠

♠
2

♠

♠

6
r

r

6

r

r

r

r

r

r

5
r

r
5

r

r

r

r

r

4
r

r
4

r

r

r

r

3
r

r
3

r

r

r

2
r

r
2

r

r

❄

✲

The audience
selects the 4r

4
r

r
4

r

r

r

r

3
r

r
3

r

r

r

2
r

r
2

r

r

6
♠

♠
6

♠

♠

♠

♠

♠

♠

5
♠

♠
5

♠

♠

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

3
♠

♠
3

♠

♠

♠

2
♠

♠
2

♠

♠

6
r

r
6

r

r

r

r

r

r

5
r

r
5

r

r

r

r

r

Figure 2: Mix the cards until the audience is happy, by cutting

the pack at the point selected by the audience.

When the audience is happy the cards are well mixed, deal the
top five cards, one at a time, into a pile on the table, thereby revers-
ing their order. Place the remaining undealt cards in a second pile
beside them. By putting this second pile straight down you have
kept their order the same. For example, from the deck shown in the
right image of Figure 2, we get the two piles shown in Figure 3.
Please note that the card 5r is the top card in the right deck shown
in Figure 2. (Remember that when performing the trick, the cards
should have their faces down.)

5
r

r

5

r

r

r

r

r

6
r

r

6

r

r

r

r

r

r

2
♠

♠
2

♠

♠

3
♠

♠
3

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

4
r

r
4

r

r

r

r

3
r

r

3

r

r

r

2
r

r
2

r

r

6
♠

♠
6

♠

♠

♠

♠

♠

♠

5
♠

♠
5

♠

♠

♠

♠

♠

Figure 3: Division into two piles. The left pile contains the top 5

cards of the right deck shown in Figure 2, in reverse order. The

right pile contains the remaining cards, in the original order.

Explain to the audience that as there are 5 cards in each pile you
will give them 4 chances to use their psychic powers. They can
have 4 swaps. A swap involves taking the top card on one of the

piles and placing it on the bottom of the same pile. Explain that
they can, for example, do all 4 swaps on one pile, 2 on each, or
3 on one and 1 on the other. It is their choice, remembering that
their aim is to be left with two matching cards. For example, if the
audience chooses to perform 3 swaps on the left pile of Figure 3
and 1 swap on the right pile of Figure 3, the resulting piles are the
ones shown in Figure 4.

2
♠

♠
2

♠

♠

3
♠

♠
3

♠

♠

♠

4
♠

♠
4

♠

♠

♠

♠

5
r

r

5

r

r

r

r

r

6
r

r

6

r

r

r

r

r

r

5
♠

♠
5

♠

♠

♠

♠

♠

4
r

r

4

r

r

r

r

3
r

r

3

r

r

r

2
r

r

2

r

r

6
♠

♠
6

♠

♠

♠

♠

♠

♠

Figure 4: Resulting piles if the audience chooses to perform 3

swaps on the left pile of Figure 3 and 1 swap on the right pile of

Figure 3.

Once the 4 swaps are made, remove the top card on each pile and
place them aside (with their faces down!). Point out that it does not
matter what they are as they are being discarded. Now there are 4
cards in each pile, as shown in Figure 5.

5
♠

♠
5

♠

♠

♠

♠
♠

4
r

r

4

r
r

r
r

3
r

r

3

r

r

r

2
r

r

2

r

r

2
♠

♠
2

♠

♠

3
♠

♠
3

♠

♠

♠
4
♠

♠
4

♠

♠

♠

♠

5
r

r

5

r

r

r

r

r

6
r

r

6

r

r

r
r

r

r
6
♠

♠
6

♠

♠

♠
♠

♠

♠

Figure 5: After the top card on each pile is removed, we are

left with two piles of 4 cards. We place the two removed cards

aside.

At this point, offer the spectator 3 swaps in total, and once the
swaps are done remove the top two cards from the piles. There
are now three cards left in each pile, so give them two swaps this
time, and again remove the top card from both piles. This leaves
two cards in each pile. This is their final chance to get it right. Tell
the audience that one swap is left, and one card can make all the
difference. They choose their swap, and the top two cards from
each pile are discarded. Now it is time to reveal the final two single
cards left on the table. They match! The audience chose freely
how to mix the cards and which cards to eliminate, so it was their
secret psychic powers that came through to ensure a match at the
end. Give their jaw time to drop, then dramatically reveal that all
the pairs of cards they removed match in value too.

2.1.2 Discussion and analysis of the trick

This trick can be used to discuss the specification of algorithms
(via Hoare triples), the identification of pre- and post-conditions,
problem decomposition, and the identification and formulation of
invariants [8]. It also provides a good example to discuss the con-
cept of proof of correctness, because students are very keen on un-
derstanding why the trick works.

In what follows, we explain our approach when presenting the
analysis of the trick to first-year CS undergraduates.

Formal specification and abstraction. The first step in the
analysis of the algorithm is to specify what it does. Using a Hoare

triple, a high-level specification can be written as:

{ 10 cards: 2r 3r 4r 5r 6r 2♠ 3♠ 4♠ 5♠ 6♠ }

perform card trick

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

In the description of the trick we referred to both piles as “left”
and “right”. Here, we name them pile1 and pile2. The expression
“pile1=N ∧ pile2=N” means that pile1 and pile2 both contain one
card with the number N; we use the conjunction operator ∧ to de-
note “and”. The expressions between curly brackets correspond to
assertions. An expression of the form { P } S { Q } where P and Q

are predicates and S is a program statement (i.e., an algorithm) is
called a Hoare triple. It means that if P is true before the execution
of the statement S , execution of S is guaranteed to terminate in a
state where property Q is true. We are stating that when we start
the trick with the 10 cards 2r 3r 4r 5r 6r 2♠ 3♠ 4♠ 5♠ 6♠we are
always guaranteed to terminate with 1 pair of cards with the same
number.

An important algorithmic skill is the avoidance of unnecessary
detail, so we start by observing that the suits of the cards are irrel-
evant and the trick works with any five pairs. We can thus abstract
from the specific cards used and be more general by introducing
variable names to represent arbitrary cards:

{ 10 cards: ABCDE ABCDE }

perform card trick

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

There are many (and possibly better) choices for expressing the pre-
and the post-condition. The one we use was tested and works well
with first-year CS undergraduates.

Problem decomposition. Now that we have a high-level specifi-
cation, a reasonable step is to decompose the problem into simpler
components. The algorithm can be decomposed into three main
parts: the “shuffling” process, where the audience chooses how to
mix the cards; the division into two different piles; and finally, the
part where multiple swaps are performed. We can express this de-
composition as follows:

{ 10 cards: ABCDE ABCDE }

shuffle

{ ? };

divide into two piles

{ ? };

perform swaps

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

The goal now is to characterise the assertions marked with “?”. We
investigate each part separately.

The specification and decomposition of the problem are obtained
through an interactive discussion with the entire classroom. For the
remaining steps of the analysis, the students work together in small
groups.

Shuffling step. In the first part of the algorithm, we ask the audi-
ence to point to any card and we split the pack at that point, placing
the top pile at the bottom of the pack. We repeat this until the au-
dience is happy the cards are well mixed. Figure 2 shows how the
initial pack changes when the audience selects the four of hearts.
The figure also shows that the cards are indeed mixed, that is, the
order of the cards changes. However, there is a key property be-
ing maintained by this mixing process: the top five cards match

the bottom five cards. In other words, the sequence of numbers
corresponding to the top five cards is the same as the sequence of
numbers corresponding to the bottom five cards. This can be easily
observed in the right image of Figure 2, where the top five cards
are 5r 6r 2♠ 3♠ 4♠ and the bottom five cards are 5♠ 6♠ 2r 3r 4r .

This property is also satisfied by the initial configuration (shown
in the left image of Figure 2). Since the mixing process corre-
sponds to a finite sequence of rotations, the property will clearly be
maintained. In other words, it does not matter how many times the
pack is rotated, the top five cards will always match the bottom five
cards.

We can thus conclude that an invariant of the mixing process is:
the top five cards match the bottom five cards. A simple way to
specify this invariant is as follows:

{ 10 cards: the top five cards match the bottom five cards }

shuffle

{ 10 cards: the top five cards match the bottom five cards }

We can avoid the use of natural language and be more consistent
with the pre-condition written above, by introducing five new vari-
ables A′,B′,C′,D′,E′:

{ 10 cards: ABCDE ABCDE }

shuffle

{ 10 cards: A′B′C′D′E′ A′B′C′D′E′ }

The introduction of new variables is necessary because we do not
know what will be the first card in the sequence; nevertheless, we
are certain that the top five cards will match the bottom five.

Creating two piles. When the audience is happy the cards are well
mixed, we deal the top five cards, one at a time, into a pile on the
table, thereby reversing their order. We then place the remaining
undealt cards in a second pile beside them. By putting this second
pile straight down we keep their order the same. For example, from
the deck shown in the right image of Figure 2, we get the two piles
shown in Figure 3. It is easy to see that these piles are reverses of
each other. A simple way to specify this is:

{ 10 cards: A′B′C′D′E′ A′B′C′D′E′ }

divide into two piles

{ 10 cards: pile1 = E′D′C′B′A′ ∧ pile2 = A′B′C′D′E′ }

A more compact and formal way of writing the post-condition is as
follows:

{ 10 cards: A′B′C′D′E′ A′B′C′D′E′ }

divide into two piles

{ 10 cards: pile1[k] = pile2[4−k], for 0 ≤ k ≤ 4 }

The expression pile1[k] denotes the kth card of pile1. We start
counting at 0, so pile1[0] corresponds to the top card of pile1.
Using this notation and naming the piles in Figure 3 as pile1 and
pile2, we observe, for example, that pile1[0]=4=pile2[4 − 0] and
pile1[4]=5=pile2[4 − 4].

Performing swaps. The last step of the algorithm consists of an
iterative process, where a number of swaps are done and the size
of the two piles is reduced until the piles only have one card each.
We start with two piles of the same size (that are reverses of each
other) and we keep reducing the size of both piles by 1. Initially, in
the first iteration, each pile contains 5 cards, so the audience has to
perform 4 swaps. One card is removed from each pile, meaning that
in the second iteration each pile contains 4 cards and the audience
has to perform 3 swaps. More generally, if at a given iteration each
pile contains n cards, the audience has to perform n−1 swaps. This
can be modelled more precisely (but still at a high-level) as follows:

{ 10 cards: pile1[k] = pile2[4−k], for 0 ≤ k ≤ 4 }

swaps := 4 ;

do swaps ≥ 1 →

Ask for number j where 0 ≤ j ≤ swaps ;

Swap j cards in pile1 ;

Swap swaps− j cards in pile2 ;

Remove the top card from each pile ;

swaps := swaps−1

od

{ 1 pair: pile1 = N ∧ pile2 = N

where N is the number on a card }

We write do swaps ≥ 1→ · · · od to express a loop that executes
while swaps ≥ 1. So, the loop terminates (and the trick ends) when
no more swaps can be performed. Let us focus now on the step
where cards are swapped. The step “Swap j cards in pile1” puts
the card pile1[j] at the top of pile1, without affecting the relative
order of the other cards. Similarly, the step “Swap swaps− j cards

in pile2” puts the card pile2[swaps− j] at the top of pile2, without
affecting the relative order of the other cards. As a result, after the
swaps, the top cards on pile1 and pile2 are, respectively, pile1[j]
and pile2[swaps− j]. We can easily observe this in the transition
from Figure 3 to Figure 4. In Figure 3, we have pile1[3] = 6r and
pile2[1] = 6♠ . The two piles shown in Figure 4 are formed after
the audience chooses to perform 3 swaps on the left pile (pile1) of
Figure 3 and 1 swap on the right pile (pile2) of Figure 3. We can see
that the cards 6r and 6♠ are now at the top; moreover, the relative
order of the other cards is maintained.

Given that the initial value of swaps is 4, we conclude from the
pre-condition that pile1[j] = pile2[swaps− j]. As a result, after the
swaps are performed the top cards of both piles form a pair. So, af-
ter the step “Remove the top card from each pile”, a pair is removed
and the resulting piles are reverses of each other. This means that
an invariant of the loop is the property that the piles are reverses
of each other. Given that the value of swaps is decreased, we can
formulate the invariant as

pile1[k] = pile2[swaps−k], for 0 ≤ k ≤ swaps .

As discussed before, the invariant is valid initially when each pile
contains 5 cards. We have just discussed that the invariant is valid

after each iteration, when the size of each pile decreases by 1.
Therefore, the invariant will be valid on termination when each pile
contains 1 card. So, on termination we will have two piles with one
card each that are reverses of each other. This means that the two
remaining cards must match! More formally, we observe that the
final value of swaps is 0, so we can conclude immediately from the
invariant that pile1[0] = pile2[0].

Further discussion. The formulation of the last step can be sim-
plified by not introducing the variable swaps, because swaps can
be determined by the number of cards in the piles. However, when
presenting the trick, we feel that the introduction of variable swaps

facilitates discussion; it also provides the opportunity to discuss
program transformation: we often ask the students how can we
rewrite the algorithm without using that variable.

As mentioned above, we target first-year CS undergraduates. For
that reason, we avoid formalisms that students are not familiar with.
If we were teaching more advanced students, we could use modular
arithmetic to express the key properties of the algorithm and write
more formal proofs of correctness.

3. PEDAGOGICAL COMMENTS
Although, in our experience, the recreational nature of card tricks

naturally promotes student engagement, learning sessions still need
to be planned considering psychological constraints on learning. In
particular, sessions are more effective acknowledging that a) the at-
tention of students is typically maintained for about 10 to 15 min-
utes, after which learning drops off rapidly; b) a change of activity
every 15 minutes restores performance almost to the original level;
and c) a period of consolidation at the end of the session greatly
enhances retention [3].

We observed that the introduction of group work in the sessions
on magic tricks contributes to their effectiveness. It is known that
group work promotes active involvement and deep learning, mainly
because it increases the amount of time that students spend think-
ing about conceptual ideas [16], encouraging discussion and nego-
tiation of ideas and meaning. As stated in [17], “having to achieve
practical outcomes as a group can lead to more understanding of
processes due to having to plan explicitly, articulate and agree the
next steps forward”. Moreover, an important aspect of group work
is that reflective aspects are sharpened because students readily
identify each other’s learning in a way they do not with top-down
teacher-directed learning [3]. As part of a formal peer-review sys-
tem, one of the sessions where we present the card trick described
in the previous section was observed by another academic mem-
ber of staff. In her written comments, the observer confirmed that
engagement was positive: “Good student involvement and engage-
ment from the start [...]” and “From where I was sitting (at the
back) all students appeared engaged in the task”.

The observer also wrote that “students responded well to ques-
tions”. Our sessions are normally structured around questions (e.g.,
it is very common to start the discussion with the question “How
can we specify this algorithm?” or “How can we decompose the
problem into simpler and smaller problems?”). As [16] suggests,
this gives the students the opportunity to exercise responsible choice
in the method and content of study. Moreover, because often stu-
dents suggest multiple correct ways of tackling the problem, they
decide which path to follow; this gives them ownership of the learn-
ing process. Normally, the questions that we ask are convergent,
i.e., there is a correct (or “best”) answer in mind and students are
steered towards that answer. This promotes social construction of

knowledge, where learners contribute and agree on the structure as
it emerges [3].

4. EVALUATION
We have collected feedback from students to gain a better under-

standing of their opinion about the use of card tricks for teaching
algorithmic skills. As part of a first-year undergraduate module on
algorithms and data structures offered at Teesside University, we
delivered a one-hour session on the card trick presented in Section
2. All the students enrolled in the module are studying for a BSc in
Computer Science. Forty (40) students attended the session. They
had the opportunity to work in small groups of two or three stu-
dents. Each group had one deck of playing cards to replicate the
trick.

The feedback was collected through an online, voluntary ques-
tionnaire that was completed by 23 students, in their own time out-
side the classroom. The questionnaire was made of six compulsory
and three optional questions. Table 1 shows the first six questions
and the average of the results on a Likert scale from 1 to 5, where
1 corresponds to Strongly Disagree and 5 corresponds to Strongly

Agree.
The feedback is positive for all questions: the lowest average

score is over 4.2 and the overall average score is a very encourag-
ing 4.4. For questions 1, 4, and 6 there were no negative answers.
This clearly suggests that students enjoyed the session and that they
would like to have more sessions where card tricks are used to illus-
trate algorithmic concepts. It is also interesting to see that students
found the use of real playing cards helpful to understand the al-
gorithm. For questions 2 and 3, only one student disagreed with
the statements. Another student disagreed with the statement in
question 5. All other feedback for questions 2, 3, and 5 was either
neutral or positive indicating that, although there is still room for
improvement, the vast majority of students found the use of a card
trick engaging, motivating, and a good way to learn and practise
algorithmic skills. It is interesting to note that no student “Strongly
disagreed” with any of the statements.

These results are encouraging and a good indication that card
tricks are a good vehicle to teach important algorithmic skills.

The remaining three optional questions were more general:

1. What did you like about this session? (If anything)

(19 answers) Several students indicated the interactivity of
the session as one of the highlights: “I enjoyed the inter-
action, by using objects to explain algorithms”. Some stu-
dents indicated that the session was entertaining and unique:
“The uniqueness of the session. Nothing else done in this
interesting manner”. Being able to “visualise” the algorithm
through the card trick seems to be appreciated by several stu-
dents. One student wrote “Much more easier as I was able to
see exactly how it worked instead of thinking how it worked
and trying to get my head around previous tasks”. Other
answers regarding the visual aspect of the session included
“The engagement within the lecture, and particularly the vi-
sualisation in which helped me understand the algorithm a
lot better [sic]”, and “I like the way that I could see the al-
gorithm working”. Another student wrote “I liked how well
the use of the card trick was explained as the lecturer went
through the steps clearly while demonstrating it in a practical
way”. One student answered that he liked “Everything”. In
addition, feedback indicates that card tricks can benefit stu-
dents with certain learning difficulties: “I liked how I could
visually engage with the lecture, having an auditory learning
difficulty sometimes affects my ability to fully engage with
new material so having a visual aid and something I could
use with my hands helped me a lot”.

2. What did you dislike about this session? (If anything)

(10 answers) 7 answers did not point out anything wrong
with the session, most answering “Nothing” or “N/A”. One
of these 7 students wrote “I didn’t dislike anything really, it
helped me understand algorithms a lot more”. One student
indicated that it “Would be nice if there were more cards”;
we cannot be certain, but the student was possibly indicat-
ing that each student should be given one deck cards (instead
of one deck per group). One considered the session “a bit
fast-paced”. Another one wrote an answer unrelated with the
content of the session.

3. Please provide any further comments or suggestions that can

be used for improving this session. (If any)

(5 answers) Two students indicated that more hands-on demon-
strations could be included in future sessions. One of these
students wrote “More hands on as it makes it easier to un-
derstand the problem much quicker”. The other one stated
that other puzzles used throughout the module could also be
demonstrated in a similar visual way. Another student wrote
“I wouldn’t just use card tricks. Keeping things different and
interesting seems to help motivate people in my opinion”.
Two students did not provide suggestions, answering “None”
and “N/A”.

Overall the feedback was very positive and clearly the session
was a positive experience for the students. All suggestions for im-
provement include a more frequent use of similar approaches to
teaching.

5. RELATED WORK
The current leading work in this area is the cs4fn project [5],

whose goal is to enthuse school students about computer science
and teach advanced computing ideas. The project consists of a free
magazine, live interactive shows and a popular webzine. More de-
tails about their work with card tricks can be found in the booklets
[13, 14] and in the papers [4, 5]. The work presented in this paper
was developed after attending a cs4fn presentation where the card
trick “Are you psychic?” was shown. We enjoyed it so much that
we decided to add more formality to the presentation of the trick
and test it with our first-year undergraduate students. We also ex-
tended the presentation to include other algorithmic concepts, such
as pre- and post-conditions and problem decomposition. In [4], the
authors write that their “target audience has been school students
but the approach, with more formality added, could also be used to
illustrate theory to university students too. We leave this as further
work.”. Our work contributes towards this suggestion.

Other related work includes the CS Unplugged project [2], who
were pioneers in using magic to teach computing and algorithms.
In [11], a trick for demonstrating binary numbers is shown and in
[9, 10] a variety of tricks are used to demonstrate topics that include
algorithms, modular arithmetic, and binary encoding.

A related line of work is the use of recreational problems to teach
computer science. In [12], for example, the authors advocate a
wider use of recreational problems in teaching design and analy-
sis of algorithms. In [6], the authors introduce a sample syllabus
and course material for engineering and computer science, using a
puzzle-based learning approach; the main book on this approach is
[15]. In [1], the author presents a problem-based approach to algo-
rithmic problem solving, where all the problems have a recreational
flavour. A similar approach is followed in [8], where principles and
techniques of algorithmic problem solving are exemplified using
recreational problems.

Table 1: Questions and scores

Question Score

1 I enjoyed the session on "The Algorithmics of Card Tricks" (Lecture 11), where we analysed the algorithm
behind a card trick

4.52

2 The use of a card trick improved my engagement during the lecture 4.43
3 I think that card tricks are a good way to learn and practise algorithmic skills 4.43
4 I would like to have more sessions where card tricks are used to illustrate concepts on algorithm design and

analysis
4.30

5 The use of a card trick made me feel more motivated and interested in learning more algorithmic skills 4.26
6 Using real playing cards to simulate the card trick helped me understand better the underlying algorithm 4.43

6. CONCLUSION
Magic card tricks can be used to illustrate important algorithmic

skills. We have shown how we use a specific card trick to teach
first-year CS undergraduates concepts like problem decomposition,
pre- and post-conditions, and invariants. We have discussed some
pedagogical issues and we have analysed feedback collected from
students.

We started this project inspired by the excellent work reported
in [4], where the authors write that their “target audience has been
school students but the approach, with more formality added, could
also be used to illustrate theory to university students too. We leave
this as further work.”. Our work contributes towards their sugges-
tion and the feedback that we collected suggests that card tricks
can indeed be used to teach algorithmic concepts at first-year un-
dergraduate level.

We intend to further develop the work shown here by adapting
more tricks to teach first-year undergraduates. We also plan to test
a more formal approach with rigorous mathematical proofs with
students at a more advanced level. In both cases, we will perform
more evaluation on whether students truly understand Hoare triples,
and pre- and post-conditions.

ACKNOWLEDGEMENTS

We would like to thank all the students who provided feedback. We
are also grateful to Eudes Diemoz for his encouragement and to the
anonymous referees for their valuable comments.

REFERENCES

[1] Roland Backhouse. Algorithmic Problem Solving. John
Wiley & Sons Ltd., 2010.

[2] Tim Bell, Ian H. Witten, and Mike Fellows. Computer

Science Unplugged. 2010. Available at
http://csunplugged.org. Last accessed: 17 Mar 2014.

[3] John Biggs and Catherine Tang. Teaching for Quality

Learning at University: What the Student does (Society for

Research Into Higher Education). Open University Press,
4th edition, 2011.

[4] Paul Curzon and Peter McOwan. Teaching formal methods
using magic tricks. In “Fun with formal methods” at the

25th International Conference on Computer Aided

Verification (CAV 2013), St Petersburg, Russia, July 2013.

[5] Paul Curzon and Peter W. McOwan. Engaging with
computer science through magic shows. In Proceedings of

the 13th Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE ’08, pages
179–183, New York, NY, USA, 2008. ACM.

[6] Nickolas Falkner, Raja Sooriamurthi, and Zbigniew
Michalewicz. Puzzle-based learning for engineering and
computer science. Computer, 43(4):20–28, 2010.

[7] João F. Ferreira, Alexandra Mendes, Alcino Cunha, Carlos
Baquero, Paulo Silva, L.S. Barbosa, and J.N. Oliveira. Logic
training through algorithmic problem solving. In Tools for

Teaching Logic, volume 6680 of Lecture Notes in Computer

Science, pages 62–69. Springer Berlin Heidelberg, 2011.

[8] João F. Ferreira. Principles and Applications of Algorithmic

Problem Solving. PhD thesis, School of Computer Science,
University of Nottingham, 2010.

[9] Daniel D. Garcia and David Ginat. Demystifying computing
with magic. In Proceedings of the 43rd ACM Technical

Symposium on Computer Science Education, SIGCSE ’12,
pages 83–84, New York, NY, USA, 2012. ACM.

[10] Daniel D. Garcia and David Ginat. Demystifying computing
with magic, continued. In Proceedings of the 44th ACM

Technical Symposium on Computer Science Education,
SIGCSE ’13, pages 207–208, New York, NY, USA, 2013.
ACM.

[11] Gerald Kruse. “Magic numbers” approach to introducing
binary number representation in CSO. SIGCSE Bull.,
35(3):272–272, 2003.

[12] Anany Levitin and Mary-Angela Papalaskari. Using puzzles
in teaching algorithms. SIGCSE Bull., 34(1):292–296, 2002.

[13] P. W. McOwan and P. Curzon. The Magic of Computer

Science. 2008. Available from: http://www.cs4fn.org/
magic/downloads/cs4fnmagicbook1.pdf. Last
accessed: 17 Mar 2014.

[14] P. W. McOwan, P. Curzon, and J. Black. The Magic of

Computer Science II: Now we have your attention. 2009.
Available from: http://www.cs4fn.org/magic/
downloads/cs4fnmagicbook2.pdf. Last accessed: 17
Mar 2014.

[15] Z. Michalewicz and M. Michalewicz. Puzzle-based

Learning: Introduction to Critical Thinking, Mathematics,

and Problem Solving. Hybrid Publishers, 1st edition, 2008.

[16] Paul Ramsden. Learning to Teach in Higher Education.
Routledge, 2nd edition, 2003.

[17] Alison Shreeve, Shân Wareing, and Linda Drew. Teaching

for Quality Learning at University: What the Student does

(Society for Research Into Higher Education), chapter Key
aspects of teaching and learning in the visual arts. In [3], 4th
edition, 2011.

