
JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 1

Verification of User Interface Software:
the Example of Use-Related Safety Requirements

and Programmable Medical Devices
Michael D. Harrison, Paolo Masci, José Creissac Campos, Paul Curzon

Abstract—One part of demonstrating that a device is accept-
ably safe, often required by regulatory standards, is to show that
it satisfies a set of requirements known to mitigate hazards. This
paper is concerned with how to demonstrate that a user interface
software design is compliant with use-related safety requirements.
A methodology is presented based on the use of formal methods
technologies to provide guidance to developers about addressing
three key verification challenges: (i) how to validate a model,
and show that it is a faithful representation of the device;
(ii) how to formalize requirements given in natural language,
and demonstrate the benefits of the formalization process; (iii)
how to prove requirements of a model using readily available
formal verification tools. A model of a commercial device is
used throughout the paper to demonstrate the methodology. A
representative set of requirements are considered. They are based
on US Food and Drug Administration (FDA) draft documentation
for programmable medical devices, and on best practice in user
interface design illustrated in relevant international standards.
The methodology aims to demonstrate how to achieve the FDA’s
agenda of using formal methods to support the approval process
for medical devices.

Index Terms—Human error, formal verification, performance,
medical devices, model checking, MAL, theorem proving, PVS

I. INTRODUCTION

Design anomalies in user interface software are an impor-
tant concern in safety-critical application domains, including
Aviation, Power Generation and Medicine. In these domains,
manufacturers are mandated by regulators to ensure that their
system or device has been developed using best practice, and
that risks associated with the use of their products are minimal
or “as low as reasonably practicable”. This must be done
before the system or device can be deployed in a safety critical
context. Such a demonstration usually includes “proof” that
the device satisfies a set of safety requirements designed to
mitigate identified hazards (see [1]). The FDA has produced
one such set of requirements in draft documentation [2] fo-
cusing on programmable medical devices, particularly infusion
pumps.

Manuscript received —; revised — This work has been funded by the
EPSRC research grant EP/G059063/1: CHI+MED (Computer–Human Inter-
action for Medical Devices). José C. Campos and Paolo Masci were funded
by project NORTE-01-0145-FEDER-000016, financed by the North Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European Regional Develop-
ment Fund (ERDF).

J. C. Campos and P Masci are with the Departamento de Informática,
Universidade do Minho & HASLab/INESC TEC, Portugal.

M. D. Harrison is with Newcastle University, Newcastle upon Tyne &
Queen Mary University of London, London, UK

P. Curzon is with Queen Mary University of London, London, UK

This paper is concerned with how to demonstrate that a
software design is compliant with use-related requirements.
FDA guidelines propose that such a demonstration is “highly
dependent upon comprehensive software testing, inspections,
analyses and other verification tasks performed at each stage
of the software development cycle” [3]. The data produced for
such analysis is usually substantial and does not prove the
absence of compliance breaches.

Formal techniques provide additional information. They are
concise, precise and exhaustive, and can be applied before a
complete implementation is available. Using formal techniques
for the analysis of a system design involves two main steps.
The first step is to develop a formal (i.e., mathematical)
model of the device that captures relevant characteristics and
functionalities of the system. The second step is to use mech-
anized tools to perform a systematic analysis of the developed
model, to check that the behaviors described in the model
comply with relevant requirements. If the model correctly
represents the real system, then requirements proved of the
model apply also to the real system. Formal techniques provide
information when the analysis of a requirement fails. This
information, typically captured in a counter-example, identifies
a precise scenario in which design aspects of the device can
violate the constraints imposed by the requirements being
analyzed. Developers can use counter-examples constructively,
to explore the significance of the failure, and decide whether
redesign is necessary or other factors or processes can be taken
into account to mitigate the identified failure.

Three types of formal techniques are used in this work to
analyze the user interface software of an interactive system:
model checking, theorem proving, and simulation.

• Model checking is used to validate models and analyze
the interface mode behavior of the device against relevant
safety requirements. This verification technology focuses
on state transition systems. By exploring the state space
of the transition system exhaustively, developers can
check automatically whether a requirement is true of
the model. The ingenuity in model checking is to build
abstract models whose complexity can be handled by
the analysis tools, and to formulate the requirements
appropriately.

• Theorem proving is used for the analysis of detailed mod-
els of the device that cannot be analyzed efficiently using
model checking. The verification technology is based
on natural deduction, and is concerned with resolving
logic problems by mechanized application of inference

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Accepted for publication. DOI: 10.1109/THMS.2017.2717910

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 2

rules. Arbitrarily complex models and requirements can
be handled. However, proof of requirements is usually
not fully automatic, and guidance from the analyst may
be required.

• Simulation is used throughout the analysis process to
validate a developed model against the real system. The
specific type of simulation technology adopted in the
present work involves the use of executable formal mod-
els and prototyping. The detailed formal models guide
the behavior of interactive prototypes whose features and
characteristics closely resemble those of the real system.
These prototypes can be used by domain experts to check
whether the formal model mimics the behavior of the real
device, and by human factors specialists to discuss use-
related requirements with engineers and formal methods
experts. Formal methods experts can demonstrate results
obtained using model checking or theorem proving in
a way that is accessible to the other team members.
Finally, engineers can explore alternative design solu-
tions at reduced cost. This process is fundamental in
human-centered design processes carried out by a multi-
disciplinary team of developers [4].

To date, little or no guidance has been produced to demonstrate
how to use formal methods technologies for the analysis
of user interface software. As a result, formal verification
of usability aspects have seen slow take-up in industry. We
address this challenge, providing software developers with
a demonstration of how formal techniques can be used to
gain high assurance that user interface software design is
compliant with given requirements, while also considering
how software engineers, domain experts and human factors
experts can collaborate to ensure that the manner in which the
requirements are satisfied will mitigate use-error.

Contribution. We present a methodology that can be used
as guidance by developers when applying formal methods
technologies to the analysis of user interface software against
use-related requirements. The paper describes the steps taken
to demonstrate that the requirements are satisfied. This in-
cludes demonstrating that: (i) the model correctly describes the
interactive behavior of the device; (ii) requirements given in
natural language are correctly translated into formal properties
of the model; (iii) the model satisfies the formal properties and
(iv) the consequence of failure, if there is failure, is considered
leading either to redesign of the device, modification of the
property, or changes to the overall system to mitigate against
the failure. A case study based on a commercial infusion pump
is used to illustrate the methodology.

We progress an agenda suggested by the FDA’s use of
formal techniques [5]. However, whether the analysis is fea-
sible in the organizations that develop medical devices is
an important consideration, and this challenge is part of the
paper’s discussion.

Organization. Section II sets the work described in the
paper in context, discussing related work and scoping what
is achieved. Section III describes the methodology adopted
for the formal analysis of user interface software design.
Section IV illustrates the user interface features of the medical

device. Section V illustrates the two forms of the model
that were developed. Section VI discusses how the models
were validated against the actual device. Section VII describes
the requirements and indicates how theorems representing
the requirements were proved. Finally, Section VIII provides
discussion and conclusions.

II. RELATED WORK

Other work shares similar concerns with this paper about
how to verify use-related requirements. Bolton et al. [6] use
models of user tasks as a basis for generating properties
for verification, while in [7] a set of patterns that embody
usability principles are proposed. Bolton and Bass [8], [9] used
SAL [10] to analyze related properties of the Baxter iPump.
They translate formal representations of normative tasks into
properties that can be checked on a model of the pump user
interface. They also analyze the normative tasks systematically
to identify potentially erroneous sequences. Example tasks
include: turning the pump on and off, stopping the infusion,
and entering a volume to be infused. Their papers include
detailed discussion of the challenges faced when modeling
and analyzing a realistic system model with a model checker.
Mori and others [11] and Fields [12] also represent tasks in
a formal language and use a model checker to analyze tasks.
Berstel and others [13] use a formal notation to model and
analyze WIMP style interfaces.

Bowen and Reeves have produced some initial proposals
for design patterns for modeling user interfaces [14], for
example the callback pattern, representing the behavior of
confirmation dialogs used to confirm user operations and
the binary choice pattern, representing the behavior of input
dialogs used to acquire data from the user. These patterns
address use-related design issues. Their utility is orthogonal
to our approach, as they focus on best modeling practice for
user interface software models, rather than verification of given
safety requirements.

Most previous research, relating to the formal verification
of safety requirements has been devoted to the analysis of the
control part of a system, rather than to the human-machine
interface. For example, a set of FDA safety requirements was
also formalized in [15] using the UPPAAL [16] model checker.
Their analysis focuses on design aspects of the controller of
the pump rather than user interface design and use-related
requirements. Li and others [17] have developed verification
patterns that can be used for the analysis of safety interlock
mechanisms in interoperable medical devices. Although they
use the patterns to analyze use-related properties such as
“When the laser scalpel emits laser, the patient’s trachea
oxygen level must not exceed a threshold ⇥O2”, the aim is the
integration of a model checker in the actual implementation of
the safety interlock as a runtime fault prevention mechanism,
rather than the analysis of use-related aspects of the safety
interlock. This and other similar research activities, e.g., [18]–
[20], are not concerned with the analysis of use-related re-
quirements. Proving requirements with similar characteristics
to those described in this paper (though not explicitly use-
related) has been the focus of a mature set of tools developed

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 3

by Heitmeyer’s team using SCR [21]. Their approach uses
a tabular notation to describe requirements which makes the
technique relatively acceptable to developers.

Combining simulation with model checking, as discussed
in Section III when validating the model, has also been a
focus in, for example, [22]–[24]. Recent work concerned with
simulations of PVS specifications has been used to support
the specific modeling process described in this paper with
simulation [25].

While the present paper takes an existing device as its
starting point, this must be seen in the context of work that
uses formal specifications as part of the design process. Tools
such as Event B [26] have been developed with such a goal
in mind. With Event B, an initial model is first developed that
specifies the device characteristics and incorporates the safety
requirements. This model is gradually refined using details
about how specific functionalities are implemented. Bowen
and Reeves [27] have presented a similar refinement approach
for user interface design. Their work specifically targets the de-
sign of user interface layouts. Presentation Interaction Models
(PIMs) are used to describe the user interface layout in terms
of its component widgets. A mixture of formal and informal
refinement is used to transform the initial specification into its
implementation.

III. MODELING AND ANALYSIS APPROACH

The process of proving regulatory requirements described in
this paper involves a sequence of steps. These are as follows.

1) Developing a model of the user interface. This model
captures the states of the device’s user interface, the
available user and internal actions, and how these change
the device’s state. These models are expressed as state
machines. The concrete choice of modeling language
depends on the type of formal user interface analysis to
be carried out.

2) Validating the model. This is done using both model
checking and simulation. The validation process involves
generating witnesses for properties p that should be true
of the device. This is done by creating invalid assertions
in the form always not p, and using the model checker to
find counter-examples for these invalid assertions. The
generated counter-examples are witnesses for property p,
in the sense that they identify sequences of actions that
satisfy p. These sequences can be compared with logs
from the actual device, to assess the plausibility of the
identified actions and device behaviors. This technique
is similar to that used in [28] for generating test cases.
Simulation of the model provides an opportunity for
analysts who are not formal methods experts to explore
the behavior of the user interface interactively. This
enables verification that the model reflects the design
of the real system, or discussion of the significance
of a given requirement. Whether model checking or
simulation is used as validation methodology depends
on the analyst (e.g., formal methods experts are likely
to prefer model checking), and the model (e.g., complex
models may exceed the capabilities of model checking

tools, therefore simulation is the only option). Concrete
examples are discussed in Section VI.

3) Formalizing the requirements. This involves two stages.
The first disambiguates the requirements so that they
can be translated more easily into a device-specific
property. This is described in more detail in [29]. These
precise requirements are designed to be implementation
independent, and can be used over a range of devices.
The second stage involves refining each formalized
requirement so that it is specifically about the device
under analysis. Both stages are typically interactive
and can involve discussion with both human factors
specialists, checking the validity of the interpretation of
the requirement, and regulator to check that the spirit
of the original requirement is correctly captured by the
developed property.

4) Proving the formalized requirements. The property rep-
resenting the formalized requirement is proved of the
model by model checking or theorem proving. In the
example, all the formalized requirements were proved
using both technologies except those that involve full
number entry, which could only be proved efficiently
using theorem proving.

5) Iterating the process. The steps of the analysis process
may be iterated as the model is successively refined
or may trigger the generation of arguments as to why
the design, as modeled, satisfies or fails to satisfy the
requirements.

Whilst the described process assumes a model-based view
of development, the same methodology can also be applied
retrospectively to existing devices. For already developed
devices, the process of building the model involves reverse
engineering the device implementation. A white box view of
the system may be taken by reverse engineering the code, or a
black box view of the system can be developed by modeling
the system based on user manuals and experience of the device
itself. In the present paper, this retrospective application of
the methodology has been used to perform the analysis of the
example medical device.

IV. THE MEDICAL EXAMPLE

Intravenous infusion pumps are used in many contexts
in hospitals, for example intensive care and oncology. They
are designed to infuse prescribed doses of medication in-
travenously over specified periods of time. Use error is a
particular concern in such devices. Nurses program them,
often under pressure, from paper prescriptions provided by
doctors or pharmacies. The format of prescriptions can vary
in terms of presentation, legibility, units used and whether
the prescription focuses on volume and rate, or volume and
time — two alternative ways of describing a prescription.
The chosen device (see Figure 1) is an existing commercial
product [30] that has characteristics that are common to many
devices that control processes over time. The clinician user sets
infusion pump parameters and monitors the infusion process
using the device. The values and settings can be changed using
a combination of function and chevron keys (see Figure 1).

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 4

Fig. 1. Actions and attributes used to model the pump. Actions define
functionalities provided by the device to enable user interaction (e.g., the
fup key) and to handle device internal events (e.g., a function for handling
alarms). Attributes define the characteristics of display elements used to
present feedback to the user (e.g., the top-line display), as well as internal
state variables necessary to represent the device behavior.

Chevron keys are used to increase (using specified actions fup
or sup), or decrease (using fdown or sdown), entered numbers
incrementally. Holding the chevron key down accelerates the
size of the increment or decrement.

Because the device is small it is reliant on modes to make
effective use of the screen and available action keys. The mode
structure first distinguishes whether the device is infusing (i.e.,
pumping medication into the patient) or holding (i.e., paused).
Additional modes are offered by the device for changing
therapy settings and pump configuration options. For example,
data entry modes govern whether the chevron keys change
infusion rate, vtbi or time, or alternatively allow the user to
move between options in a menu. Menus are available to select
predefined settings in bag mode and in query mode. Bag mode
allows the user to select from a set of infusion bag options,
thereby setting vtbi to a predetermined value. Query mode,
invoked by the query button, generates a menu of options
configured by the manufacturer. Options include: locking the
infusion rate; disabling the locking of it; setting vtbi and time
rather than vtbi and infusion rate; and changing the units
of volume and infusion rate. The device allows movement
between display modes via three function keys (key1, key2
and key3). Each function key has a display associated with it
indicating its present function (fndisp1, fndisp2 and fndisp3).

In the analysis of the requirements that follows, further
details of the device and modes will be provided as necessary,
particularly when the analysis of a requirement leads to
interesting consequences.

V. DEVELOPING A MODEL OF THE DEVICE

Neither a process of developing and refining models satis-
fying requirements nor producing models from program code
was feasible in the present case. The device had already been
developed, and the program code was not available to us. The
model was therefore developed by hand using a combination
of user manuals, simulations and the device itself.

At the stage of the analysis described in this paper, a model
of the particular pump had already been developed as part of
a general analysis of usability properties of the device [31],
and without the particular FDA requirements considered in the
present paper in mind. It had been used to analyze properties
of the interactive modes, such as whether device modes were
presented by the device without ambiguity. This initial model
was analyzed using the NuSMV model checking tool [32].

This model was further extended to facilitate analysis of the
number entry system of the device as required to prove various
FDA requirements. One effect of this extension was that the
size of the model increased significantly, making the use of
the NuSMV model checker infeasible. We therefore changed
verification technology when analyzing the extended model.
Our option was theorem proving, which is less automated
than model checking, but can handle the analysis of more
complex models (compare [8]). The specific theorem prover
is PVS [33], which offers an expressive specification language
that made it easy to translate and extend the initial model.
NuSMV uses symbolic model checking. Alternative model
checking technologies exist (e.g., bounded model checking),
also available within the NuSMV toolset, that might have
been able to analyze efficiently the extended model for the
considered properties, possibly at the expense of completeness.
Another key reason for the adoption of PVS was its ability to
generate the prototypes that enabled validation of the model
and broader discussion of the requirements.

A. Initial model of the device

The model of the device has two main elements: a generic
“pump” component modeling the pumping mechanism con-
trolled by the device; and an “interface” component that is
specific to the particular user interface of the device. The pump
component has been reused in other models. For example, an
infusion pump developed by another manufacturer has also
been studied in detail in [31] which uses this component. The
initial model focused on features of the device that involved
interaction with the user. This model used the underlying pump
process but focused on the effect of actions insofar as they
change the basic modes of the device (infusing, paused, off),
the interaction modes of the device and the information that
is displayed.

To ease the modeling process, a first order notation oriented
around actions was used to describe user actions that were
provided by the infusion pump. The notation that was used
(Modal Action Logic or MAL), and its mapping to SMV and
analysis using NuSMV is supported by the IVY tool [7], [34].
MAL is a simple state transition language, easily translated
from state transition diagrams or the SCR tabular format [21].
The notation is used because it is of a type that is more
readily acceptable by developers, making the actions and
state transitions explicit in their description. The properties
that translate the requirements are expressed in Temporal
Logic. Both CTL and LTL logics (see [35]) are supported
by IVY and NuSMV. LTL model checking is implemented by
NuSMV in terms of CTL model checking, and is typically less
efficient [36]. In practice, CTL is used unless the property can

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 5

only be expressed in LTL. To facilitate tractability using model
checking, token values were used for the pump variables vtbi,
infusion rate, time and volume infused. They were assumed
to be integers in the range [0 . . . 7]. These simplifications were
considered to be valid when limiting the analysis to the modal
behavior of the device.

The following MAL modal axiom describes the conditions
in which key1 (see Figure 1) has the effect of confirming a
device reset (Figure 2 shows the pump display at this step).

topline = clearsetup ! [key1]
topline0=holding & middisp[drate]0 &
middisp[dvtbi]0 & !middisp[dtime]0 &
middisp[dvol]0 & !middisp[dbags]0 &
!middisp[dquery]0 & !middisp[dkvorate]0 &
fndisp10=fvol & fndisp20=fvtbi &
fndisp30=fnull & entrymode0=rmode &
effect(device.reset) & keep(bagscursor, rlock)

This axiom describes (after [key1]) the effect of action
key1. The expression to the left of the action, namely
(topline = clearsetup), states the condition under which the
behavior described for the action is enabled. This specifies
that when the top line of the display shows “clear setup”,
and the action is invoked, then the expression after [key1]
describes the behavior. The rule describes changes to visible
attributes middisp, topline, fndisp1, fndisp2, and fndisp3. The
priming of an attribute (topline0, for example) indicates that
the action changes the value of that attribute. The action key1
also changes the mode of the device (entrymode) to allow
entry of infusion rate (rmode). Finally the rule describes how
the action further invokes an action in the pump component
(device.reset) that initializes all the pump variables. The action
reset is accessed in the reusable pump component by using
the pump’s identifier device in the MAL specification. The
keep(. . .) expression specifies which attributes are not affected
by the action and remain unchanged.

This example shows how the MAL model focuses on
interface features and the modes of the device, describing
concretely how actions change the display and modes of the
device. It has a simple discrete model of time. An action tick
increments time as the infusion process continues, or while
the device is paused. In the latter case the value of time is
used to determine how long the pause has been. This model,
even without full number entry, requires substantial processing
for analysis in NuSMV, around 90 minutes for the subset of
properties that are tractable. The analysis was performed on
an Apple MacBook Pro 2.9 GHz Intel core i5 with 8GB of
RAM. A detailed discussion of the challenges related to model
checking realistic user interface models can be found in [8].

B. Detailed model of the device

The second model of the device, which includes additional
details needed for the analysis of various FDA requirements,
was developed by translating the MAL systematically into
the PVS [33] theorem proving system, and then extending
it with details related to the data entry system. PVS allows
the analysis, in principle, of models and properties involving

infinitely many states. The equivalent specification for the
MAL fragment described in the previous sub-section is:

key1_case_clearsetup(st: (per_key1)): state =
st WITH [topline := holding,

middisp := LAMBDA(x: imid_type):
(x = drate) OR (x = dvtbi) OR
(x = dvol),

device := reset(device(st)),
fndisp1 := fvol,
fndisp2 := fvtbi,
fndisp3 := fnull,
entrymode := rmode]

The PVS theory captures all the characteristics of the
MAL model, including time, but also includes a full number
entry model and other specific details. The PVS features that
correspond to MAL elements can be seen in the specification.
This function key1 case clearsetup is invoked in the more
general key1 function when the condition topline(st) =
clearsetup is true. The function has domain (per key1),
where per key1 is a predicate that restricts the function
domain to the set of states for which the action is accessible
to the user. This information is used by PVS to ensure well-
formedness of the model.

VI. VALIDATING THE MODEL AGAINST THE REAL DEVICE

Fidelity of the model to the implemented device was
first demonstrated using the NuSMV [32] model checker by
proving a range of properties. This validation of the model
inevitably included state abstractions required to reduce the
state space for the model checking analysis. The sequences
generated as witnesses provided structural details such as a
sequence of mode transitions, rather than the details of entry
of a particular value for the infusion rate.

NuSMV accepts a finite state model (translated from the
MAL model illustrated above) and analyzes it exhaustively to
prove or disprove a property. An example of such a property is
that, once relevant pump variables had been entered, infusion
would lead to a state in which the volume infused was equal
to the entered vtbi:

AG(device.infusionrate = 1 & device.vtbi = 7
) AG(device.volumeinfused != 7))

The property is expressed as a negation. It asserts that it is
always the case, for all paths, that if infusion rate is set to
1 (a token value) and vtbi is set to 7, then a state cannot be
reached in which volume infused is 7. This particular property
is generic in the sense that it would be a desirable characteristic
of any programmable infusion pump. It does not depend on
the details of the device user interface, depending only on
the generic pump model, but produces results that enable
an analysis of the interface, making possible a comparison
between alternative interfaces. As expected, the property fails
when checked and produces a trace of steps (a witness) in
which the infusion rate is set to 1 and vtbi is set to 7. It
indicates that once this has happened, eventually the device
is set to infuse, and then after more steps a state is reached
where the volume that has been infused becomes 7. The trace
can be compared with the actual device logs.

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 6

Fig. 2. Simulating the PVS model of the pump

This model was used to validate a set of plausibility prop-
erties before translating it into the fuller PVS model. For each
action specified in the first model, a function was described
that transformed PVS descriptions of states, and for each
permission describing when the action was enabled, a PVS
predicate was produced. Texture was then added to provide
a more detailed description of the user interface behavior, in
particular related to the data entry system of the pump. A set
of informal rules were used to achieve this translation. The
correctness preserving properties of the translation were not
however checked formally. A prototype was also produced
automatically from the PVS model to obtain an interactive
simulation with the “look and feel” of the actual device (see
Figure 2). The traces and simulations were indistinguishable
from the behavior of the physical device. The only difference
between the logs and traces obtained in the simulation and
those of the real device was that the precise timings differed.
The simulations were generated with the aim that they could
be explored by regulator, manufacturer or for training purposes
by the user. These simulations only allow, of course, an
exploration of the paths that the user (for example, regulator)
chooses to explore. Simulation can also be used to illustrate
what the failure of a property means. Part of the argument that
a failure is acceptable may then involve a demonstration of the
features of the device that fail the requirement, showing that
they do not present a risk. Validation of the PVS model was
checked in this case not by proving the equivalence of the PVS
and MAL models, though this is feasible, but by simulating
the PVS model using PVSio-web [37]. Both MAL sequences
and PVSio-web simulations were explored by hand with the
help of expert users and the user manual of the real device.

The remainder of the present paper focuses on the PVS
model and the theorems that were generated to prove use-
related requirements. Relevant snippets of the developed mod-

els and theorems will be presented. The full MAL model with
CTL properties, and the full PVS theory and theorems with
proofs can be found in the specification repository1. All proofs
can be reinvoked using the IVY and PVS tools.

VII. FORMALIZING AND PROVING REQUIREMENTS

In this section, we demonstrate how the process of formaliz-
ing and proving use-related safety requirements can encourage
a constructive dialog between the analyst and the other experts
involved in the development of a user interface.

The developed device model was used to analyze two small
but representative sets of requirements. The FDA requirements
described in [5] are considered first. They are designed to
mitigate use hazards that could lead to mis-programming of
the infusion pump and, consequently, delayed therapy or even
patient harm. A further set of requirements is then considered
based on the property templates described in [38], [39]. These
additional requirements capture best practice in user interface
design. Note that, whilst the process is demonstrated for a
specific device, the applicability of the methodology is general,
and can help design better user interfaces.

A. Formalization process

To formalize the requirements given in natural language, it
is necessary to consider their precise interpretations (see [29]).
A way to develop a precise interpretation is to translate the
requirements into logic properties. These properties are ex-
pressed using the PVS language, which combines a functional
notation, similar to that used in programming languages, with
logic connectives such as AND (conjunction), OR (disjunction),
IMPLIES (implication). Precision is achieved by defining
abstractions that can be more readily understood by different
stakeholders. Also, this process makes it easier to construct
properties that match the requirements as PVS theorems. The
formalization must capture the essence of the requirements
as understood both by the regulator, who developed them in
the first place, and the human factors specialists, who can
comment on the user aspects of the requirements and whether
they are fulfilled by the specific properties of the device.

B. The FDA Requirements

The FDA requirements are specific to the safety of infusion
pumps. For each requirement, the following information
is presented: the original formulation described in FDA
documentation; the safety concerns addressed by the
requirement; a formalization of the requirement and a proof
of compliance with the requirement for the example device.

R1: Clearing the pump settings and resetting of the pump shall
require confirmation.

Safety concerns. This requirement is designed to check
whether there is a barrier (in this case confirmation) to reduce
the risk that infusion settings will be cleared or will revert to
predefined settings inadvertently.

1http://hcispecs.di.uminho.pt/m/2

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 7

Formalization. To formalize this requirement, a logic
property needs to be constructed that requires that relevant
pump variables are not cleared until a confirm action
has occurred. The property needs to specify also that no
other action (no confirm) will change the specified pump
variables. For the sake of clarity, the formalization is described
for each pump variable separately. The requirement, for pump
variable vtbi, can be expressed as follows:

ready_to_clear(vtbi)(st) IMPLIES
(clear_setting(vtbi)(st) = x AND

confirm_action(clear_setting(vtbi)(st)) = 0
AND no_confirm(clear_setting(vtbi)(st)) = x)

In the above formula, ready to clear(vtbi) is a pred-
icate that identifies the states in which the device is ready
to clear the vtbi value. The action clear setting(vtbi)
specifies the first step, prior to possible confirmation, in which
the settings are cleared. This action does not clear the setting
itself but must precede the confirmation action.

Interpretation for the specific pump. The process of further
refining the terms in the abstract property is valuable in
reaching agreement about how the requirement applies to
the specific pump. It leads to consideration as to what, for
example, should be the state of the device when it is “ready to
clear” and how the state of the device should be communicated
to the user. Further, it leads to consideration of what the
confirmation should be and how it should be signaled to the
user. The actions captured by no confirm are also a matter
of concern, as they define what actions should be permitted
to abandon the clearing of the setting. For example, in the
example device, vtbi can be cleared when the device is turned
on and is in the holding state. The action of clearing the pump
variable is only possible if its value is non-zero. Relevant
state attributes for expressing whether the pump is infusing
and turned on are infusing? and powered on, respectively.
Predicate ready to clear can therefore be expressed as:

ready_to_clear(vtbi)(st) =
NOT device(st)‘infusing? AND
device(st)‘powered_on? AND
device(st)‘vtbi = x AND x /= 0

where x is a parameter representing a generic, but given,
vtbi value. Normally, a specification of ready to clear is
necessary that includes visual attributes of the user interface.
For example, in this case the device should be ready to clear
unless the top line of the display indicates that it is infusing. It
was felt unnecessary however to include this in the formulation
– other requirements were considered in the analysis that
demonstrate the visibility within the user interface of operating
modes. The required clearing of the pump variables is achieved
by switching the pump off and then switching it back on again.
When the settings are cleared in this way, as the device is
switched back on, a request is made for confirmation. This
confirmation can be given by the user through action key1.
The request for confirmation is indicated by a top line display
of “clear setup”.

Proving the requirement. The requirement can be proved
in PVS with no human intervention by using the predefined
proof strategy grind (which performs quantifier elimination,

expansion of definitions, and propositional simplification) to
prove each sub-goal.

R2: The pump shall issue an alert if paused for more than t
minutes.

Safety concerns. This requirement aims to ensure that the
user is alerted if the device is left unattended.

Formalization. The requirement can be formalized using a
predicate user input strictly overdue, which indicates
whether the device has been paused without activity for a
specified period, and a predicate alert, which describes an
appropriate alert produced by the device:

user_input_strictly_overdue(st)
IMPLIES alert(st)

Interpretation for the specific pump. The generic
formulation can be refined to capture specific scenar-
ios relevant for the device, for example if the device
is left unattended when paused. In this case, predicate
user input strictly overdue can be expressed in more
detail as:

user_input_strictly_overdue(st) =
paused(st) AND elapsed(st) > timeout

where paused and elapsed will have specific meanings for
the particular infusion pump. In this case, the pump is paused
when the device is powered on and not infusing:

pause(st) = device(st)‘powered_on? AND
NOT device(st)‘infusing?

Attribute elapse specifies the time since the device was last
used when in holding mode. This attribute is incremented each
tick action (which simulates the evolution of time in the
developed model) when the device is paused.

Proving the requirement. This requirement can be proved
for all reachable states through structural induction. That
is, the PVS theorem contains the following two parts: the
first part proves that the formalized requirement (denoted as
R2assertion in the theorem) is true of the initial device
state; the second part proves that, given a generic state pre
for which the requirement is true, it is always the case that
the requirement is also true for any state post reached from
pre by any available action:

R2: THEOREM
FORALL (pre, post: state):
(init?(pre) IMPLIES R2assertion(pre)) AND
(R2assertion(pre) AND

state_transitions(pre, post) IMPLIES
R2assertion(post))

In the theorem, predicate state transitions is used as
a means to relate states st1 to st2 if st2 can be reached
by any available action from st1. This requirement can be
proved in PVS by splitting the theorem into sub-goals based
on the available actions, and then using grind to complete
the proof of each sub-goal.

R3: If the pump is in a state where user input is required, the
pump shall issue periodic alerts/indications every t minutes
until the required input is provided.

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 8

Safety concerns. This requirement aims to mitigate sit-
uations where the clinician has entered incomplete infusion
parameters. This might occur, for example, if the clinician is
interrupted while programming the device.

Formalization. The formalized requirement includes the
following elements: alert, a predicate describing an ap-
propriate alert produced by the device; ready, a predicate
identifying the device state before the alert was issued; and
user confirm, an action that clears the alert:

user_input_strictly_overdue(st) IMPLIES
(alert(st) AND ready(user_confirm(st)))

Interpretation for the specific pump. Providing an interpre-
tation for these abstract terms challenges the designer and the
human factors specialist to consider the features of the design
that need to be considered in the requirement. For example,
user input strictly overdue should be true when the
device has been paused without activity for a specified period
(compare requirement R2). The formalization also challenges
the analysis team to consider how this device state is com-
municated to the user, and which key is used as confirmation
key. In the specific pump, alert is indicated by an appropriate
top line display (attention) which is characterized also by
an audible alarm. Action user confirm is defined as key3.
Note that the confirm does nothing if key3 is not enabled.
Finally, predicate ready needs to be defined. It checks that
the device returns to a pause state and the elapsed time is set
to a value less than the time out.

Proving the requirement. This requirement can be proved
in PVS with minimal human intervention, using a structural
induction similar to the previous example.

R4: The flow rate for the pump shall be programmable.
Safety concerns. This requirement aims to ensure that the

clinician can program the pump with the flow rate values
indicated in the prescription provided by the pharmacy.

Formalization. This requirement is more challenging to
make precise. It requires a description of what is meant by
“programmable” in this context. The requirement is designed
to ensure that any flow rate value indicated in a prescription
can be programmed in the pump. A reasonable interpretation
is that there is always an available action (when in a relevant
mode) that will change the flow rate programmed in the pump
so that it is closer to the target rate. The requirement can be
reformulated therefore as follows: “If the device is ready to
enter the flow rate, then there is always an action that will
take the flow rate closer to the expected rate, and eventually
the intended rate will be reached.” This reformulation can be
translated into the following logic property:

entry_ready(rate)(st) AND
(rate(st) > e IMPLIES

rate(st) - e >= rate(a1(st)) - e) AND
(rate(st) < e IMPLIES

e - rate(st) >= e - rate(a2(st)))

where e is a target value for the flow rate, a1 is an action that
reduces the rate, and a2 is an action that increases the rate.

Interpretation for the specific pump. This requirement, as
expressed, raises questions about the nature of the actions a1

and a2, how the target rate is made visible to the user, and how
the device indicates the progress that is being made to reaching
it. For the specific pump, the device is ready to accept a rate
value (rate entry ready) when: the device is switched on,
infusion rate is not locked, and the top line display shows
“holding” or “infusing”. The two actions that provide the
expected programmability are single chevron up (sup) and
single chevron down (sdown). Note that the requirement is not
concerned with how efficient the programmability is. Rather
it aims to check that there exists a sequence of actions for
entering a given value. A separate requirement needs to be
defined to address efficiency of programming.

Proving Requirement R4. The PVS prover completes the
proof of this theorem unaided, using grind.

R5: To avoid accidental tampering of the infusion pump’s
settings such as flow rate/vtbi, at least two steps should be
required to change the setting.

Safety concerns. This requirement is designed to mitigate
hazards resulting from accidental tampering of pump settings,
as a result for example of a single erroneous button click.

Formalization. This requirement is useful to further illus-
trate the role of abstraction as a means of communication with
different stakeholders. Whilst this requirement shares similar-
ities with requirement R1, it is interesting to note the different
safety mechanism indicated in the requirement: R1 requires a
“confirmation action”; R5 requires “at least two steps”. This is
done intentionally, because a confirmation action can be per-
formed automatically by the user without further thought, e.g.,
after a timeout. In R5, the requirement is that two user actions
are performed — a safety mechanism based on timeouts can
be easily defeated in the case of accidental key presses. To
ease the formalization, the requirement can be reformulated
as follows: “For any value x of a given pump setting, if data
entry is ready (vtbi entry ready) for that pump setting (in
this example vtbi), then the pump setting cannot be updated
to x in a single step.” This property needs to be proved for
all possible actions (state transitions xkey1) with the
exception of key1 which does update the pump setting:

(vtbi_entry_ready(pre) AND
vtbi_value(pre) = x AND
newvtbi(pre) /= x AND
state_transitions_xkey1(pre, post))

IMPLIES vtbi_value(post) = x

Interpretation for the specific pump. The example pump
is ready to accept a vtbi value when the pump is turned on
and in a relevant data entry mode. Specifically, the top line
display needs to be either dispvtbi (i.e., when entering vtbi
and rate) or vtbitime (i.e., when entering vtbi and time).

Proving the requirement. PVS is able to prove the require-
ment unaided for vtbi and time, using grind. For infusion
rate, on the other hand, the requirement fails. Based on the
counter-example provided by PVS, it can be shown that the
requirement can be satisfied for the infusion rate only if it
is assumed that the clinician always locks the rate before
starting the infusion. Whilst there is always a reminder to lock
the rate when starting the infusion, the assumption needs to

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 9

be validated against clinical practice adopted in the hospital
within which the pump is to be used.

C. Requirements from Property Templates
The second route to generating use-centred safety require-

ments is to adopt a set of property templates based on
usability design principles. The templates are designed to
help developers to construct requirements appropriate to the
analysis of user interface features. They can be instantiated
to the particular details of the device, and provide indications
of how to develop user interfaces that are easier to use and
promote more transparency of the effect of actions.

Three property templates will be used to illustrate the ap-
proach: “feedback”, “consistency”, and “reversibility”. Further
property templates and detailed examples can be found in [39].

Feedback template
When certain important actions are taken, a user needs to

be aware of whether the resulting device status is appropriate
or problematic [40]. Feedback can be considered conveniently
as action feedback, requiring that an action always has an
effect that is visible to the user, and state feedback, requiring
that a change in the state (usually specific attributes of the
state rather than the whole state) is visible to the user. Two
example requirements are now illustrated that are based on
this template.

R6: Whenever a pump variable is being entered, the variable
should be clearly identified and its current value visible to the
user.
The instantiation of the general form of action feedback (as
described in [39]) requires that entry of the relevant variable
is enabled (i.e., the device is in the appropriate data entry
mode), and that the variable relevant to the mode is visible.
This requirement can be formalized as follows:

entry_ready(entrymode)(st) IMPLIES
visible_variable(mode)(st)

Proving the requirement. The requirement can be proved
automatically in PVS for all reachable states through structural
induction (compare requirement R2).

R7: The current mode should be clearly identified, and
changes in mode should have perceivable feedback.
This requirement is an example of state feedback. It requires
that, in any situation, if the mode changes then the mode is
visible. For the considered pump, top line is the indicator of the
entry mode. The formulation can be further refined therefore
as follows: “When the entry mode changes then the top line
changes.” The requirement expressed as logic formula is:

entrymode(pre) /= entrymode(post) IMPLIES
topline(pre) /= topline(post)

Proving the requirement. The proof of this requirement
illustrates the type of human intervention that is necessary to
complete an interactive proof attempt. The theorem prover fails
to prove the theorem, and generates a first counter-example at

the point of failure when the device is in bag mode, which
allows standard bag volumes to be assigned to vtbi. The
counter-example shows that:

• The top line indicates “volume to be infused”
• Action key1 can be used to exit the mode
• The new mode, after performing action key1, has a top

line which also indicates “volume to be infused”, but in
this mode chevron keys change the value of vtbi through
up and down adjustments rather than by navigating the
infusion bag menu.

The fact that the prover identifies this counter-example leads
the analyst, along with domain and human factors experts,
to consider whether this ambiguity is likely to be an issue.
Further discussion might suggest that the format of the display
as a whole between the two modes is significantly different,
and therefore enough to prevent mode confusion. This case
can be therefore excluded by introducing the following guard
in the theorem:

entrymode(pre) /= bagmode

When the proof is attempted again with the guard, the theorem
prover throws up another similar situation for another data en-
try mode, where a top line “vtbi over time” is displayed in two
different modes. As in the previous case, this counter-example
can be considered a false positive because the overall format
of the two displays is significantly different. An additional
guard is therefore added to the theorem to exclude this new
situation:

entrymode(pre) /= ttmode

This further refinement of the theorem is sufficient to complete
the proof of the requirement.

Consistency template

Users quickly develop a mental model that embodies
their expectations of how to interact with a user interface.
Because of this, the overall structure of a user interface
should be consistent in its layout, screen structure, navigation,
terminology, and control elements [40]. The consistency
template is formulated as a property of a group of actions, or
it may be the same action under different modes, requiring
that all actions in the group have similar effects on specific
state attributes. The following requirement for example can
be constructed based on this template.

R8: When entering numbers, a given action will always
confirm the value entered.
This requirement aims to check that the same key can be used
across different data entry modes to confirm user input. A
general formulation of the requirement includes the following
elements: a predicate guard em ok restricts the set of relevant
entry modes where a given confirmation action confirm
is available; predicate temp em filter extracts the state
attributes that have been changed “temporarily” because of
the mode; and predicate real em filter extracts the state
attributes that are changed as a result of exiting from the mode.
All predicates have device data entry mode em as parameter,

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 10

as the precise definition of the predicates depends on the data
entry mode in the general case.
guard_em_ok(em, st) IMPLIES

temp_em_filter(em, st) =
real_em_filter(em, confirm(st))

For the example pump, key1 is typically associated with the
ok function during data entry. The verification effort therefore
aims to ensure that, whenever key1 is enabled and associated
with function display ok, the confirmation action behaves in a
similar way in all data entry modes.

Proving the requirement. When attempting the proof in
PVS, a counter-example is found by the theorem prover. The
use of the confirmation key is not consistent in data entry mode
“vtbi over time”. This particular data entry mode involves
setting vtbi and time. The theorem fails because when vtbi
has been entered, and key1 is pressed with the ok function
display, the pump value of vtbi is not changed. It is only
changed after the next step when time has been changed.
The failure, identified while proving the theorem, may require
further scrutiny to demonstrate that the system’s safety is not
affected. The device in fact assumes that vtbi and rate are the
standard mechanisms for setting up the infusion rate. There
may therefore be issues when a prescription is received that
presents vtbi and time.

Reversibility template
Users may perform incorrect actions, and the device needs

to provide them with functions that allow them to recover
by reversing the effect of the incorrect action. In [41], it has
been shown that lack of compliance to this requirement could
lead to data entry errors. An example requirement based on
this template is as follows.

R9: Any data entry action should be reversible.
To facilitate the formalization process, this requirement can
be reformulated as follows: “For any particular action a1,
there is a reversing action a2 which returns the device to its
original state.” This reformulation can be easily translated into
the following generic formula:
data_entry_ready(st) IMPLIES

pump_variable(a2(a1(st))) = pump_variable(st)

For the example pump, the formula needs to consider all
the chevron keys and entry of infusion rate, time and vtbi.
For the sake of clarity the example is given only for the case
of entering infusion rate and the single chevron up (sup) key
with inverse single chevron down (sdown) key. The example
pump is designed so that the user can accelerate the size
of the increment by holding the chevron key down. This
possibility is reflected in the specification but is simplified
here for illustration.
click_sdown(st: state): state =

release_sdown(sdown(st))
click_sup(st: state): state =

release_sup(sup(st))

The formulation for the other chevron keys and data entry
modes is identical. The generic version of the requirement is

therefore instantiated as follows:

rate_entry_ready(st) IMPLIES
infusion_rate(click_sdown(click_sup(st)))

= infusion_rate(st)

Proving the requirement. This final proof example further
shows how feedback from the theorem prover can be used
constructively to refine the understanding of the interaction
design of the device. Proof of the theorem fails, and the
theorem prover returns counter-examples indicating anoma-
lies for certain specific values. An example counter-example
identified by the theorem prover occurs at 99.9: pressing sup
and then sdown produces 99 (instead of 99.9). This happens
because of “step boundaries” where the size of the increment
or decrement changes. Up to, but not including, 100, both the
single chevron up key and the single chevron down key make
a step of 0.1. From 100 upwards (up to 1000), the increment
is 1. Therefore, to prove that sup can be reversed by sdown,
the theorem must take account of these step boundaries. The
additional conditions necessary to prove the theorem for the
range 0 to 100 for the sup and sdown keys are illustrated
here. The first condition ensures that the analysis is performed
within a range of values where the same increment step (in
this case, 0.1) is always maintained:

infusion_rate(device(st)) >= 0 AND
infusion_rate(device(st)) + 0.1 < 100

A second condition is necessary to further restrict the domain
of values considered in the proof to those handled by the
device: numbers below 100 can have only one decimal place:

infusion_rate(st) =
(floor(10 * infusion_rate(st)) / 10) AND

infusion_rate(st) =
(ceil_rate(10 * infusion_rate(st)) / 10)

where floor returns the largest integer less than or equal to
the specified number, and ceil returns the smallest integer
greater than or equal to the given number. Wrapping all these
constraints together, for all step boundaries, and for all chevron
keys, the property to be proved for requirement R9 becomes
much more complex. Proof of this requirement, with all its
qualifications, provides limited assurance that number entry
actions are easily reversible by users. Clearly the process was
valuable in understanding the characteristics of the number
entry system, and identify precisely in the design space where
the property fails. Formulating and proving the theorem raised
practical questions about whether the data entry system of the
device is acceptable, or whether it is likely to lead to use error.
It should be noted that later releases of the firmware for this
device have fixed these issues with step boundaries.

VIII. DISCUSSION AND CONCLUSIONS

Demonstrating that the design of a medical device is com-
pliant to relevant safety and usability requirements is a serious
problem. The techniques described in this paper are designed
to address this issue. It is estimated that there were 56,000
adverse event reports relating to infusion pumps between 2005
and 2009 in the United States including at least 500 deaths
[42]. This has resulted in 87 infusion pump recalls to address

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 11

identified safety concerns, according to FDA data. Of these
adverse event reports, use error has been a significant factor.
The documentation provided by manufacturers to regulators
as part of a safety argument is usually substantial. The scale
of the argument inevitably makes it difficult for regulators
to comprehend them and to be confident that the evidence
provided is of satisfactory quality. The use of formal tech-
niques has advantages. (1) It is precise and concise, potentially
avoiding the documentation explosion generated by a typical
deposition. (2) Tools like model checkers and theorem provers
enable mechanical and exhaustive verification. (3) The use
of simulation techniques combined with formal modeling can
clearly demonstrate how potential problems are addressed that
can be of value to regulators, human factors and domain
specialists.

There are well known obstacles to the immediate take-up
of these facilities. They are not routinely part of a typical
developer’s suite of tools. They are not routinely used in
product development. However there are signs of interest in
these techniques. For example, the FDA has developed generic
PCA models [43] using Simulink. It is not however a feasible
option to expect regulators to construct models after the fact.
An ideal option would be that manufacturers produce models
as part of their design process demonstrating that a submitted
product adheres to safety requirements. The regulators would
then use tools to validate the models provided as part of the
developer’s submission.

We have used model checking combined with simulation
to support the process of validation of models by generating
traces to be validated on the device. However, manufacturers
have access to source code, and even if they do not develop
their devices using models, they can create faithful models
systematically. A further important issue, not addressed here,
is how to validate that the considered safety requirements
correctly address the usability and safety of the device for
the context in which the device is to be used. This problem
is orthogonal to the techniques presented in this paper. Safety
aspects can be addressed with a human factors emphasis using
a hazard analysis such as the one presented in [44].

We have illustrated how formalizing the requirements pro-
vides benefits in addition to the ability to prove them. It has
led to much more detailed thinking about the precise nature
of the requirements, both in general and for a specific device,
than was possible in the informal natural language version.
The pragmatic and informal combination of model checking
and theorem proving provided powerful tools for analysis. By
using each flexibly for requirements they were suited to, rather
than ideologically favoring one for all requirements, or trying
to combine them into a single tool applying both, it was pos-
sible to prove the requirements with relatively low effort. One
potential drawback of this approach is the need to master the
two verification techniques. Indeed, both verification methods
currently require significant skills for analysis. However, we
have observed recurrent patterns in the structure of the formal
models of devices from different manufacturers, and in the
strategies needed to complete verification of several types of
safety requirements. Therefore there are clear opportunities to
create automated proof strategies that can be used to reduce

the analysis effort.

REFERENCES

[1] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety (Engineering Systems). MIT Press, 2011.

[2] D. Arney, R. Jetley, P. Jones, I. Lee, O. Sokolsky, A. Ray, and Y. Zhang,
“Generic infusion pump hazard analysis and safety requirements,”
University of Pennsylvania, Tech. Rep. MS-CIS-08-31, February 2009.

[3] US Food and Drug Administration, “General principles of software
validation; final guidance for industry and FDA staff,” Center for
Devices and Radiological Health, Tech. Rep., January 2002, available at
http://http://www.fda.gov/medicaldevices/deviceregulationandguidance.

[4] Y. Rogers, H. Sharp, and J. Preece, Interaction Design: Beyond Human
Computer Interaction, 3rd ed. J. Wiley and sons, 2011.

[5] R. Jetley, S. Purushothaman Iyer, and P. Jones, “A formal methods
approach to medical device review,” Computer, vol. 39, no. 4, pp. 61–67,
2006.

[6] M. Bolton, N. Jiménez, M. van Paassen, and M. Trujillo, “Automatically
generating specification properties from task models for the verification
of human-automation interaction,” IEEE Transactions on Human Ma-
chine Systems, vol. 44, no. 5, pp. 561–575, 2014.

[7] J. C. Campos and M. D. Harrison, “Interaction engineering using
the IVY tool,” in Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, G. Calvary, T. Graham, and
P. Gray, Eds. ACM Press, 2009, pp. 35–44.

[8] M. L. Bolton and E. J. Bass, “Formally verifying human-automation
interaction as part of a system model: limitations and tradeoffs,” Inno-
vations in System and Software Engineering, vol. 6, no. 3, pp. 219–231,
2010.

[9] ——, “Generating erroneous human behavior from strategic knowledge
in task models and evaluating its impact on system safety with model
checking,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 43, no. 6, pp. 1314–1327, 2013.

[10] L. de Moura, “SAL: Tutorial,” SRI International, Computer Science
Laboratory, 333 Ravenswood Avenue, Menlo Park, CA 94025, Tech.
Rep., 2004.

[11] G. Mori, F. Paternò, and C. Santoro, “CTTE: Support for developing and
analyzing task models for interactive system design,” IEEE Transactions
on Software Engineering, vol. 28, no. 8, pp. 797–813, 2002.

[12] R. E. Fields, “Analysis of erroneous actions in the design of critical sys-
tems,” Ph.D. dissertation, Department of Computer Science, University
of York, Heslington, York, YO10 5DD, 2001.

[13] J. Berstel, S. Reghizzi, G. Rouseel, and P. Pietro, “A scalable formal
method for the design and automatic checking of user interfaces,” ACM
Transactions on Software Engineering and Methodology, vol. 14, no. 2,
pp. 124–167, 2005.

[14] J. Bowen and S. Reeves, “Design patterns for models of interactive
systems,” in Software Engineering Conference (ASWEC), 2015 24th
Australasian. IEEE, 2015, pp. 223–232.

[15] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang,
and R. Jetley, “Safety-assured development of the GPCA infusion
pump software,” in Proceedings of the ninth ACM international
conference on Embedded software, ser. EMSOFT ’11. New York,
NY, USA: ACM, 2011, pp. 155–164. [Online]. Available: http:
//doi.acm.org/10.1145/2038642.2038667

[16] G. Behrmann, A. David, and K. Larsen, “A tutorial on UPPAAL,” in
Formal methods for the design of real-time systems, ser. Lecture Notes
in Computer Science, M. Bernardo and F. Corradini, Eds. Springer-
Verlag, 2004, no. 3185, pp. 200–236.

[17] T. Li, F. Tan, Q. Wang, L. Bu, J. Cao, and X. Liu, “From offline
toward real time: A hybrid systems model checking and CPS codesign
approach for medical device plug-and-play collaborations,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 25, no. 3, pp. 642–652,
2014.

[18] F. Tan, Y. Wang, Q. Wang, L. Bu, and N. Suri, “A lease based
hybrid design pattern for proper-temporal-embedding of wireless CPS
interlocking,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 26, no. 10, pp. 2630–2642, 2015.

[19] A. L. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees,
R. Jetley, P. Raoul, P. Jones, and S. Weininger, “An open test bed for
medical device integration and coordination.” in ICSE Companion, 2009,
pp. 141–151.

[20] B. Larson, J. Hatcliff, S. Procter, and P. Chalin, “Requirements specifi-
cation for apps in medical application platforms,” in Proceedings of the
4th International Workshop on Software Engineering in Health Care.
IEEE Press, 2012, pp. 26–32.

JOURNAL OF LATEX CLASS FILES FEBRUARY 2016 12

[21] C. Heitmeyer, J. Kirby, and B. Labaw, “Applying the SRC requirements
method to a weapons control panel: an experience report,” in Proceed-
ings of the Second Workshop on Formal Methods in Software Practice
(FMSP ’98), 1998, pp. 92–102.

[22] G. Gelman, K. Feigh, and J. Rushby, “Example of a complementary use
of model checking and agent-based simulation,” in Systems, Man, and
Cybernetics (SMC), 2013 IEEE International Conference on, Oct 2013,
pp. 900–905.

[23] M. van Paassen, M. L. Bolton, and N. Jiménez, “Checking formal
verification models for human-automation interaction,” in Systems, Man
and Cybernetics (SMC), 2014 IEEE International Conference on. IEEE,
2014, pp. 3709–3714.

[24] D. Billman, C. Fayollas, M. Feary, C. Martinie, and P. Palanque,
“Complementary tools and techniques for supporting fitness-for-purpose
of interactive critical systems,” in International Conference on Human-
Centred Software Engineering. Springer, 2016, pp. 181–202.

[25] P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby,
“Model-based development of the generic PCA infusion pump user in-
terface prototype in PVS,” in Computer Safety, Reliability, and Security,
ser. Lecture Notes in Computer Science, F. Bitsch, J. Guiochet, and
M. Kaâniche, Eds. Springer-Verlag, 2013, vol. 8153, pp. 228–240.

[26] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[27] J. Bowen and S. Reeves, “Refinement for user interface designs,” Formal
Aspects of Computing, vol. 21, pp. 589–612, 2009.

[28] G. Hamon, L. De Moura, and J. Rushby, “Generating efficient test sets
with a model checker,” in Software Engineering and Formal Methods,
2004. SEFM 2004. Proceedings of the Second International Conference
on. IEEE, 2004, pp. 261–270.

[29] P. Masci, A. Ayoub, P. Curzon, M. Harrison, I. Lee, O. Sokolsky, and
H. Thimbleby, “Verification of interactive software for medical devices:
PCA infusion pumps and FDA regulation as an example,” in Proceedings
ACM Symposium Engineering Interactive Systems (EICS 2013). ACM
Press, 2013, pp. 81–90.

[30] Cardinal Health Inc, “Alaris GP volumetric pump: directions for use,”
Cardinal Health, 1180 Rolle, Switzerland, Tech. Rep., 2006.

[31] M. Harrison, J. Campos, and P. Masci, “Reusing models and properties
in the analysis of similar interactive devices,” Innovations in Systems
and Software Engineering, vol. 11, no. 2, pp. 95–111, June 2015.

[32] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An Open Source
Tool for Symbolic Model Checking,” in Computer-Aided Verification
(CAV ’02), ser. Lecture Notes in Computer Science, K. G. Larsen and
E. Brinksma, Eds. Springer-Verlag, 2002, vol. 2404.

[33] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in Eleventh International Conference on Automated Deduction
(CADE), ser. Lecture Notes in Artificial Intelligence, D. Kapur, Ed., vol.
607. Springer-Verlag, 1992, pp. 748–752.

[34] J. C. Campos, M. Sousa, M. C. B. Alves, and M. D. Harrison, “Formal
verification of a space system’s user interface with the IVY workbench,”
IEEE Transactions of Human Machine Systems, vol. 46, no. 2, pp. 303–
316, 2016.

[35] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[36] E. M. Clarke, O. Grumberg, and K. Hamaguchi, “Another look at
LTL model checking,” Formal Methods in System Design, vol. 10,
no. 1, pp. 47–71, 1997. [Online]. Available: http://dx.doi.org/10.1023/A:
1008615614281

[37] P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby, PVSio-web 2.0: Joining PVS to HCI. Cham: Springer
International Publishing, 2015, pp. 470–478. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21690-4 30

[38] J. C. Campos and M. D. Harrison, “Systematic analysis of control panel
interfaces using formal tools,” in Interactive systems: Design, Speci-
fication and Verification, DSVIS ’08, ser. Lecture Notes in Computer
Science, N. Graham and P. Palanque, Eds., no. 5136. Springer-Verlag,
2008, pp. 72–85.

[39] M. Harrison, J. Campos, and P. Masci, “Patterns and templates for
automated verification of user interface software design in PVS.” School
of Computing Science, Newcastle University, Tech. Rep. TR-1485, 2015.

[40] AAMI, “Medical devices - application of usability engineering to
medical devices,” Association for the Advancement of Medical Instru-
mentation, 4301 N Fairfax Drive, Suite 301, Arlington VA 22203-1633,
Tech. Rep. ANSI AMI IEC 62366:2007, 2010.

[41] H. Thimbleby, “Safer user interfaces: A case study in improving number
entry,” IEEE Transactions on Software Engineering, vol. 41, no. 7, pp.
711–729, 2015.

[42] J. T. James, “A new, evidence-based estimate of patient harms associated
with hospital care,” Journal of Patient Safety, vol. 9, no. 3, pp. 122–128,
2013.

[43] A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. P. E. Heimdahl,
“Compositional verification of a medical device system,” in Proceedings
ACM High Integrity Language Technologies HILT’13. ACM Press,
2013.

[44] P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon, “A Generic
User Interface Architecture for Analyzing Use Hazards in Infusion Pump
Software,” in 5th Workshop on Medical Cyber-Physical Systems, ser.
OpenAccess Series in Informatics (OASIcs), V. Turau, M. Kwiatkowska,
R. Mangharam, and C. Weyer, Eds., vol. 36. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 1–14.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2014/4518

Michael D. Harrison is Emeritus Professor and
Senior Research Investigator at Newcastle University
and research fellow at QMUL (funded to work on
the analysis of medical devices). He is a visiting
researcher at the University of Minho, Portugal.
His research focuses on the systematic analysis of
the functional behavior of interactive systems using
a combination of model checking and automated
theorem proving techniques.

Paolo Masci is Senior Researcher at
HASLab/INESC TEC, and visiting researcher
at the US Food and Drug Administration (FDA). In
the past, he has been visiting researcher at Stanford
Research Institute (SRI), NASA Langley, and
University of Pennsylvania. His research focuses
on the development of tools and methods for the
analysis of human-machine interfaces in medical
cyber-physical systems.

José Creissac Campos is an Assistant Professor at
the Department of Informatics of the University of
Minho, and a senior researcher at HASLab/INESC
TEC, in Braga, Portugal. His research focuses on the
application of software engineering techniques and
tools to the modeling and analysis of interactive sys-
tems, aiming at bringing closer software engineering
and human-computer interaction (HCI).

Paul Curzon is a Professor of Computer Science in
the School of Electronic Engineering and Computer
Science at Queen Mary University of London. His
research focuses on the application of interactive
theorem proving to interaction design and human-
computer interaction. He has a particular interest
in modeling and verification approaches to detect
design flaws that lead to systematic human error.

