
Models for the Reverse Engineering of
Java/Swing Applications

João Carlos Silva1,2, José Creissac Campos1, and João Saraiva1

1 Departamento de Informática/CCTC, Universidade do Minho, Braga, Portugal
{jose.campos,jas}@di.uminho.pt

2 Grupo de Sistemas e Tecnologias de Informação, IPCA, Barcelos, Portugal
jcsilva@ipca.pt

Abstract. Interest in design and development of graphical user interface (GUIs)
is growing in the last few years. However, correctness of GUI’s code is essential
to the correct execution of the overall software. Models can help in the evaluation
of interactive applications by allowing designers to concentrate on its more im-
portant aspects. This paper describes our approach to reverse engineering abstract
GUI models directly from the Java/Swing code.

1 Introduction

The correctness of the user interface is essential to the correct execution of the overall
software [1]. Regarding user interfaces, correctness is expressed as usability: the ef-
fectiveness, efficiency, and satisfaction with which users can use the system to achieve
their goals [7]. In order for a user interface to have good usability characteristics it must
both be adequately designed and adequately implemented.

Tools are currently available to developers that allow for fast development of user
interfaces with graphical components. However, the design of interactive systems does
not seem to be much improved by the use of such tools. Interfaces are often difficult to
understand and use for end users. Moreover, the code produced by such tools is dificult
to understand and maintain. In many cases users have problems in identifying all the
supported tasks of a system, or in understanding how to reach them.

Model-based design helps to identify high-level models which allow designers to
specify and analyse systems. Different types of models can been used in the design and
development of interactive systems, from user and task models to software engineer-
ing models of the implementation. The authors are currently engaged in a R&D project
(IVY – A model-based usability analysis environment3) which aims at developing a
model-based tool for the analysis of interactive systems designs. In the context of the
project we are investigating the applicability of reverse engineering approaches to the
derivation of user interface’s abstract models amenable for verification of usability re-
lated properties.

In this paper we present the initial results of work on investigating the application
of strategic programming and slicing to the reverse engineering of Java/Swing [5] user
interfaces. Our goal is to produce a fully functional reverse engineering prototype tool.

3 http://www.di.uminho.pt/ivy



The tool will be capable of deriving user interface abstract models of interactive appli-
cations.

Section 2 explains the technique applied in the reverse engineering of graphical user
interfaces. Section 3 describe the diferent kinds of models extracted by the prototype.
Finally, in sections 4 and 5 we present some limitations, conclusions and our plans for
future work.

2 A Technique for Reverse Engineering Graphical User Interfaces

The technique explained in this section aids in identifying a graphical user interface
abstraction from legacy code. The goal is to detect components in the user interface
through functional strategies and formal methods. These components include user in-
terface objects and actions.

In order to extract the user interface model from a Java/Swing program we need to
construct a slicing function [8, 6] that isolates the Swing sub-program from the entire
Java program. The straightforward approach is to define a explicit recursive function
that traverses the Abstract Syntax Tree (AST) of the Java program and returns the Swing
sub-tree. We use strategic programming wich contains a pre-defined set of (strategic)
generic traversal functions that traverse any AST using different traversal strategies (e.g.
top-down,left-to-right, etc).

Strategic programming is a form of generic programming that combines the notions
of one-step traversal and dynamic nominal type case into a powerful combinatorial style
of traversal construction. Strategic programming has been defined in different program-
ming paradigms. In this paper we will use the STRAFUNSKI library [4]: a Haskell [3]
library for generic programming and language processing.

Fig. 1. The reverse engineering process



3 Models for Reverse Engineering Graphical User Interfaces

In order to define the slicing functions mentioned above, we defined a small set of
abstractions for the interactions between the user and the system. These are the abstrac-
tions that we look for in the legacy code:

– User input: Any data inserted by the user;
– User selection: Any choice that the user can make between several different options,

such as a command menu;
– User action: An action that is performed as the result of user input or user selection;
– Output to User: Any communication from application to user, such as a user dia-

logue;

Through the user interface code of an interactive system and this set of abstrac-
tions, we can generate its graphical user interface abstraction. To execute this step
we combine the STRAFUNSKI library with formal and semi-formal methods, which
are mathematically-based languages, techniques, and tools for specifying and verifying
systems.

This section shows the application of the prototype to a small example: the JBank
transfers system. Basically, the JBank system is a simple JAVA/SWING ”toy” example
allowing for account transfers (see figure 2).

Fig. 2. JBank system

Applying the prototype to the JBank’s code, enables us to extract information about
all widgets presented at the interface, such as JButton, JLabel, JComboBox, JTextField,
JPanel, etc. Once the AST for the application code is built we can apply different slicing
operations as needed.

Currently the prototype enables the extraction of diferent kinds of models wich are
described in the following sections.



3.1 Event-Flow Graph Model
The prototype is capable of generating the JBank’s partial event-flow graph (see figure
3). All widgets and their relationship are abstracted to this graph. As an example, blue
nodes specify JButtons abstractions, arrows specify methods calls from one widget to
another.

In this graph, we can see all graphical user interface widgets and their relationships.

Fig. 3. JBank system’s partial GUI event-flow graph

3.2 GUI abstract behaviour models
GUI metamodel - From the swing slice of the source java code, we extract an abstract
GUI behavioural model of the interface. Next we present the mathematical model Gui



that allows us to abstract from any GUI’s behaviour.

Gui ≡ 2
(AtributesV alues×ActionName×Parameters×Conditions×AtributesV alues)

AtributesV alues ≡ AtributeName ↪→ V alue

Parameters ≡ ParameterName ↪→ ParameterType

Conditions ≡ String

V alue ≡ String

ParameterType ≡ String

ParameterName ≡ String

ActionName ≡ String

AtributeType ≡ String

AtributeName ≡ String

Basically this metamodel specify a set of transition states:

2
(AtributesV alues×ActionName×Parameters×Conditions×AtributesV alues)

Each state is abstracted by AtributesV alues wich is a parcial finite mapping from
atributes names to values. In other hand, the relation between diferent state is abstracted
by ActionName, Parameters and Conditions attributes. These atributes allows us
to represent all actions that can be executed from a particular state.

The Modal Action Logic Interactors - The Modal Action Logic (MAL) interactors is
a domain specific language for (????????????????????) structuring the use of standard
specification techniques in the context of interactive systems specification. In IVY the
MAL interactors language from [2] is used.

The definition of a MAL interactor contains a state, actions, axioms and presentation
information. This language allows us to abstract both static and dynamic perspectives
of interactive systems. The static perspective is achieved with attributes and actions
abstractions which aggregate the state and all visible components in a particular instant.
The axioms abstraction formalizes the dynamic perspective from an interactive state to
another.

Applied to the code of the JBank application, the tool automatically generates an
interactor specification including the initial application state and dynamic actions. This
interactor contains a set of attributes (cf. figure 4) - one for each information input
widget, and one for each button’s enabled status.

The interactor also contains a set of actions (cf. figure 5) - one for each button, and
one for each input widget (representing user input).
And, finally axioms like the following wich define the effect of the add button in the
interface. Similar axioms are generated for all other set actions, for brevity we include
only one here.

[add]
newEnabled’=newEnabled & consultEnabled’=true &
transferEnabled’=transferEnabled &



Fig. 4. Interactor’s attributes abstraction

Fig. 5. Interactor’s actions abstraction



clearEnabled’=clearEnabled & exitEnabled’=exitEnabled &
accountId’=accountId & holderName’=holderName &
transferTo’=transferTo & balance’=balance &
transferValue’=transferValue

Finite State Machine - Currently, we are working on the extraction of a finite state
machine (FSM) model of the interface. Next we present an example of the FSM that we
can automatically induce from the GUI model.

Figure 6 contains part of the FSM obtained from the JBank application. In this state
machine each state defines an abstraction of the GUI window in one particular period
of time. The arrow specifies an action moving from one state to another.

Fig. 6. Part of the JBank state machine

The action displayed in this machine defines that a bank transfer can only occur if
the balance of the source account is greater or equal than the value to be transfered.

balance = 0 ?????

4 Limitations

We have developped a tool, named Java Swing Reverse (JSR), that extracts the three
models presented from a java/swing application. The current version of the tool has
several limitations: First, it does not handle all the large set of Swing graphical objects.
Second, we consider only the java applications produced by NETBEANS, wich produces
a particular Java/Swing structured code. However, we can easily update JSR to handle
any Java GUI code. Third, coputanional level ??????

Finally, we do not consider GUIs such as web-user interfaces that have synchroniza-
tion/timing constraints among objects, movie players that show a continuous stream of
video rather than a sequence of discrete frames, and non-deterministic GUIs in which
it is not possible to model the state of the software in its entirety.



5 Conclusions and Future Work

Currently the tool automatically extracts the software’s windows, and a subset of their
widgets, properties, and values. The execution model of the user interface is obtained
by using a classification of its events.

The approach has also proven very flexible. From the Abstract Syntax Tree repre-
sentation we are already able to derive both GUI metamodel, interactor based model,
event flow graphs and state machines. Theses models enables us to reason about both
usability properties of the design, and the quality of the implementation of that design.

Our objective has been to investigate the feasibility of the approach. In the future,
we will extend our implementation to handle more complex user interfaces.

Acknowledgments

This work is partially supported by FCT (Portugal) and FEDER (European Union) un-
der contract POSC/EIA/56646/2004.

References

1. Shneiderman B. Designing the User Interface: Strategies for Effective Human-Computer
Interaction (3nd Edition). Addison wesley edition, 1997.

2. José C. Campos and Michael D. Harrison. Model checking interactor specifications. Auto-
mated Software Engineering, 8(3-4):275–310, August 2001.

3. Simon Peyton Jones, John Hughes, Lennart Augustsson, et al. Report on the Programming
Language Haskell 98. Technical report, February 1999.

4. R. Lammel and J. Visser. A STRAFUNSKI application letter. Technical report, CWI, Vrije
Universiteit, Software Improvement Group, Kruislaan, Amsterdam, 2003.

5. Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian Cole. Java Swing, 2nd
Edition. OReilly, 2002.

6. Andrea De Lucia. Program slicing: Methods and applications. IEEE workshop on Source
Code Analysis and Manipulation (SCAM 2001), 2001.

7. ISO/TC159 Sub-Commitee SC4. Draft International ISO DIS 9241-11 Standard. International
Organization for Standardization, September 1994.

8. Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
september 1995.


