
 
 
 
 
 
 
 

 

IVY 
A model-based usability analysis environment 

(POSC/EIA/56646/2004) 
 
 
 
 
 
 

 
 
 

Um Visualizador de Traços de 

Comportamento para a Ferramenta IVY 
 

IVY-TR-5-03 
 

Outubro, 2006 
 
 
 
 
 

 
 
 
Nuno Miguel Eira de Sousa 
José Creissac Campos 

 
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RELATÓRIO DE ESTÁGIO DA 

LICENCIATURA EM 

ENGENHARIA DE SISTEMAS E INFORMÁTICA 

- 

UM VISUALIZADOR DE TRAÇOS DE 

COMPORTAMENTO PARA A FERRAMENTA IVY 

Nuno Miguel Eira de Sousa 

Nº 27643 

Universidade do Minho, 2006 

Departamento de Informática da Universidade do Minho 

 

Supervisores:  

 

José Creissac Campos 

António Ramires Fernandes 



 

 i 

Acknowledgements 

I would like to thank my supervisor, José Creissac Campos, for all the support that he has 

offered me, and for the constant suggestions he gave to improve the tool, IVY Trace Visualiser, 

which is the subject of this report. Without the weekly reunions we had, the tool would not have 

achieved the desired performance and functionality. In these reunions, we did small usability 

analysis of the functionality of the tool to try to find problems and to discover more useful 

functionalities to add. 

 I would like to thank my adviser, José Ramires Fernandes, for suggesting the creation of 

markers. It was a great idea to provide a more useful analysis of the visual representations 

generated by the tool. 

 I also would like to thank Alexander de Ridder and Francisco Martinez Posadas for the 

work developed in early versions of the tool (see [Ridder05] for more detail on their work).       

 The development of the IVY Trace Visualiser tool is supported by Fundação para a Ciência 

e a Tecnologia (FCT, Portugal) and by the European Regional Development Fund (FEDER) 

under contract POSC/EIA/56646/2004. So, I would like to thank them for funding the 

traineeship.   

 

    



 

 ii 

Contents 

Acknowledgements i 

Contents ii 

Figure Index iv 

1. Introduction 1 

1.1. Contextualisation 1 

1.2. Objectives 3 

1.3. Structure of report 4 

Part I – Theory and Early Trace Visualiser 6 

1. Theoretical Beddings of the Work 7 

1.1. IVY 7 

1.2. CTL (Computational Tree Logic) 8 

1.3. Analysis of MCP example 9 

2. Early Trace Visualiser 11 

2.1. Architecture 11 

2.1.1 Parser 12 

2.1.2 Structure 12 

2.1.3 Graphics 13 

2.1.4 Shared 16 

2.2. Graphical Interface 16 

2.3. Diagram Representation 17 

2.4. Tabular Representation 18 

2.5. Tree Representation 19 

2.6. User Input in Filters 20 

2.7. Bridge between early and final Trace Visualiser 21 

2.7.1 Implications in the Code 21 

2.7.2 Implications in the Graphical Interface 21 

2.7.3 Changes in the Visual Representations 22 

2.7.4 New Functionalities 23 

Part II – User Manual of the Final Trace Visualiser 24 

1. Introduction 25 

2. Graphical Interface 26 

2.1. Visual Representations 32 



 

 iii 

2.1.1 Tree 32 

2.1.2 Tabular 34 

2.1.3 Physical States 35 

2.1.4 Logical States 38 

2.1.5 Activity Diagram 39 

2.2. MCP Example Analysis 40 

2.2.1 Markers 41 

2.2.2 Filters 44 

Part III – Technical Manual for the Final Trace Visualiser 46 

1. Introduction 47 

2. High Level View 48 

2.1. Class  Design 49 

2.1.1 Visualiser 49 

2.1.2 Parser 49 

2.1.3 Structure 50 

2.1.4 Graphics.shared 51 

2.1.5 Graphics.visualisation 54 

2.1.6 Graphics.elements 56 

2.1.7 Util 56 

2.2. How to make a new visual representation? 57 

Part IV – Conclusions and Future Work 64 

1. Conclusions and Future Work 65 

References 67 

Acronyms 69 



 

 iv 

Figure Index 

Figure 1 – IVY architecture with description of each component task. 2 

Figure 2 – Trace. 3 

Figure 3 – The MCP (adapted from Honeywell Inc., 1988). 9 

Figure 4 – Extract of trace counterexample. 10 

Figure 5 – Package View. 11 

Figure 6 – CommonGraphics Diagram. 14 

Figure 7 – FiniteStateCommonGraphics Diagram. 15 

Figure 8 – GUI of Early Trace Visualiser. 16 

Figure 9 – Diagram representation. 17 

Figure 10 – Diagram representation with labels. 17 

Figure 11 – Filter “Get values of state 5”. 18 

Figure 12 – Tabular representation. 18 

Figure 13 – Filter “States where main.pitchmode=IAS or plane.altitude=1”. 19 

Figure 14 – Tree representation. 19 

Figure 15 – Filter “States where ALTDial.needle changed to 2”. 19 

Figure 16 – First and second panels. 20 

Figure 17 – Input with state number. 20 

Figure 18 – GUI of Final Trace Visualiser 22 

Figure 19 – Main frame. 26 

Figure 20 – Visual Representations ComboBox. 27 

Figure 21 – File Menu. 28 

Figure 22 – View Menu. 28 

Figure 23 – Markers menu. 28 

Figure 24 – Filters menu. 28 

Figure 25 – About message. 29 

Figure 26 – Markers conditions. 30 

Figure 27 – Marker ColorChooser. 30 

Figure 28 – Filter conditions. 32 

Figure 29 – Tree representation with filter and markers. 33 

Figure 30 – Collapsing states. 34 

Figure 31 – Showing marker condition. 34 

Figure 32 – Tabular representation with filter and markers. 35 



 

 v 

Figure 33 – Tabular animation. 35 

Figure 34 – Physical States representation with filter and markers. 36 

Figure 35 – Physical States animation. 37 

Figure 36 – Showing marker information with popups option. 37 

Figure 37 – Logical States representation with filter and markers. 38 

Figure 38 – Activity Diagram. 39 

Figure 39 – Activity Diagram animation. 40 

Figure 40 – Verification of property in Physical States representation. 41 

Figure 41 – Verification of the property using Physical States. 42 

Figure 42 – Verification of the property using Activity Diagram. 43 

Figure 43 – Verification of the property conditions using Logical States. 44 

Figure 44 – Verification of the property using Logical States. 45 

Figure 45 – Package View. 47 

Figure 46 – Data structure. 50 

Figure 47 – Representation class diagram. 52 

Figure 48 – Markers class diagram. 52 

Figure 49 – Filters class diagram. 53 

Figure 50 – Visualisation class diagram. 54 



 

 

 

1 

1.   Introduction 

This report describes the development of a component (Trace Visualiser) for a modular tool 

named IVY (Interactors VerYfier). The context in which the IVY tool appeared is explained in 

section 1.1, with text adapted from [Campos04]. Section 1.2 describes the objectives to be 

achieved in the current work. Finally section 1.3 describes the structure of the current report.   

1.1.   Contextualisation 

In the development of interactive systems, the areas of Human-Computer Interaction (HCI) 

and Software Engineering join. Studies have shown that the success of those systems depend 

largely on usability. The ISO DIS 9241-11 standard identifies the relevant factors to the usability 

of a system by defining it as the effectiveness, efficiency and satisfaction with which specified 

users achieve specified goals in specified environments. Effectiveness has to do with the 

possibility (or not) that the user can achieve his goals using the system on a given context. 

Efficiency has to do with the amount of effort that the user has to spend to achieve a goal. 

Satisfaction is a subjective measure of degree of agreeability in the utilization of the system.        

The analysis of the quality of an interactive system, with respect to usability, must take into 

consideration the users of the system and the context in which it is used. The Software 

Engineering Book of Knowledge [SWEBOK01] considers the design of user interfaces as an 

area related to but distinct from software engineering, not mentioning the area of HCI. In 

practice, the areas of software engineering and HCI have been living relatively apart. Therefore 

it is necessary to establish contact bridges between the two areas.  

In the context of the IVY project (A model based development environment - 

POSC/EIA/56646/2004) techniques and tools are being developed to facilitate the incorporation 

of usability concerns into the development of software, promoting the communications between 

the two communities. The approach is model based and aims at giving a greater autonomy to 

software engineers when aspects of usability, related width the behaviour of the system, need 

to be taken into consideration. It also aims at helping software engineers in identifying the points 

at which help of HCI experts is needed.             

The main goal of the project is the development of a modelling and analysis tool, for the 

detection of potential usability problems early in development of any interactive system. The tool 

will enable the automated inspection of interactive systems models. The models are obtained by 



 

 

 

2 

a modelling process based on an editor or by reverse engineering of user interface code 

[Silva06]. Analysis is performed using the SMV model checker [McMillan93].  

 

The architecture of the tool (see figure 1) consists of the following components:  

• Model editor; 

• Properties editor; 

• i2smv compiler; 

• Reverse engineering component (XTRMSwing); 

• Trace Visualiser.  

 

Figure 1 – IVY architecture with description of each component task. 

Given an interactive system’s model and a property about its behaviour expressed in CTL 

(for example, some state of the user interface can be reached), the i2smv compiler will produce 

a specification suitable for analysis by the SMV model checker. 

When a property does not hold, the SMV model checker tool usually produces a trace 

showing behaviour that falsifies the property in question. A SMV trace consists of a sequence of 

states of the model (see figure 2). In terms of the analysis of interactive systems, this trace can 

be seen as a usage scenario that falsifies the property under consideration. These scenarios 

must then be analysed in terms of their cognitive plausibility, and impact on the design. 

The Trace Visualiser component is responsible for presenting the results of the verification 

process to the IVY user in a manner that facilitates understanding the meaning of the trace. 



 

 

 

3 

As stated above the subject of this report is the description of the development of the Trace 

Visualiser component. This report contains its technical and user manuals. The starting point of 

development was an early version of the component developed by me, in a previous work, in 

the context of the course “Opção III – Projecto” (see [Sousa06] for more details). That early 

component was improved in several ways, more functionalities were added and corrections of 

small errors were made. The objective was finishing the component, which will be integrated in 

the IVY tool. 

1.2.   Objectives 

The Trace Visualiser has three main goals: 

 

• pre-process the traces produced by SMV to make them consistent with the notation 

used in the writing of the model (invert the compilation step performed by i2smv); 

• supply visual representations of the traces to facilitate their comprehension; 

• supply a trace’s analysis mechanism. 

 

 

Figure 2 – Trace.   

 



 

 

 

4 

The main objective of the work was the development of a Trace Visualiser component to 

integrate in the IVY tool. The specific objectives were the following: 

 

• to analyse the architecture of the early Trace Visualiser, in order to see if 

alterations on the code structure were needed; 

• to improve the visual representations that were implemented in the early version of 

the component; 

• to implement additional trace analysis mechanisms; 

• to improve the functionality of filters; 

• to improve the animation in all the visual representations; 

• to improve the graphical user interface; 

• to study the possibility of implementing sub-filtering; 

• add more standard visual representations. 

 

To fulfil the objectives the means used were: 

  

• Borland JBuilder 2006 Enterprise Evaluation Version to make the implementation in 

the Java language;  

• Visual Paradigm for UML 5.3 Community Edition to create UML diagrams that 

describe the architecture of the visualiser component.  

1.3.   Structure of report 

The report is divided into four parts: Theory and Early Trace Visualiser, Technical Manual 

of Final Trace Visualiser, User Manual of Final Trace Visualiser and Conclusions and Future 

Work.  

Part I has the following chapters:  

• Theoretical Beddings of the Work – describes some concepts needed to easily 

understand the rest of the report. 

• Early Trace Visualiser - describes an early trace visualiser (developed by me in a 

previous work) that was the starting point for the current final visualiser.  

Part II has the following chapter: 

• User Manual of the final Trace Visualiser – intends to be a manual for users of the 

Trace Visualiser. This manual will explain to users which functionalities they have 

at their disposal to easily analyse the meaning of a trace.   

Part III has the following chapter:  

• Technical Manual of the final Trace Visualiser – intends to be a manual for 

programmers that in the future may want to modify the implementation or add more 

functionality to the Trace Visualiser. It is expected that it will be sufficient clear to 



 

 

 

5 

help programmers understand the implementation and easily maintain the 

application. 

Part IV has the following chapter: 

• Conclusion and Future Work – describes the conclusions and future work that can 

be done to improve the Trace Visualiser.   



 

 

 

6 

Part I – Theory and Early Trace 

Visualiser 



 

 

 

7 

1.   Theoretical Beddings of the Work 

1.1.   IVY 

The IVY tool supports an approach based in the utilization of models and their verification 

with model checking. The models are developed using the MAL Interactors language 

[Campos01, Campos04]. For a better understanding of what will be presented its necessary to 

have in mind the notion of interactor. An interactor can be seen as an object capable of 

presenting (part of) its state through some presentation medium. An interactor is defined by:  

 

• a set of typed attributes that define its state;  

• a set of actions that can change the interactor’s state; 

• a set of axioms written in MAL (Model-Action Logic) [Ryan91] that defines the 

semantics of the actions in terms of its effect in the interactor’s state. 

 

A model is constructed composing interactors hierarchically. This way, a model can always 

be represented by a state machine in which the states are defined by the values of its attributes 

and the transitions labelled by the actions that cause changes in the attributes. The stage of 

verification consists in testing properties of this state machine’s behaviour. 

The properties are written in CTL (Computational Tree Logic) [Clarke86] (see section 2.2). 

For details of the application of this logic in the present context see [Campos01]. To the 

discussion that follows the important point is that when one given property does not hold, the 

SMV tries to supply a trace behaviour that demonstrates the falseness of the property in 

question (see figure 2 for an example). That trace represents one sequence of states of the 

machine that violates the property. 

To allow for their verification, the MAL interactor models are compiled to the SMV 

language. Because the expressivity of SMV language is limited, when compared with the MAL 

language of interactors, the process of compilation to SMV introduces a series of auxiliary 

variables. It deserves particular mention the introduction of the attribute ‘action’, used to model 

the actions because the SMV does not use that concept. 

To the discussion that will follow, another important aspect has to do with the execution 

models. At the level of MAL interactors the actions of the different interactors can happen in an 

asynchronous way. So, one interactor can execute one action while the others remain inactive. 

At the level of SMV, however, the state transitions occur in a synchronous way. To model 



 

 

 

8 

asynchronous state transitions, it is necessary to introduce a special action nil that at the level 

of MAL interactors (logic level) corresponds to nothing happening, but at the level of SMV 

(physical level) represents a state transition (to a state with the same attribute values). In this 

way, the SMV module corresponding to an interactor can suffer one state transition associated 

with a given action, while the others execute the transition associated to nil (that is, they stay in 

the same logical state).  

The traces produced by the verification process do, as we can expect, make reference to 

the variables and states existing at the level of SMV code. Thus, it is necessary to revert the 

process so that the entities referred to by the visualiser are the ones that exist at the level of 

abstraction of the original model.        

These traces, however, can achieve sizes in the order of tens or hundreds of states, 

depending on the model's complexity. The visualiser component of the IVY tool, through visual 

representations and trace analysis mechanisms, will facilitate its comprehension as well as give 

a better idea of its relation with the model, in order to more clearly show which problem is point 

out by the trace, and possible solutions to it.      

1.2.   CTL (Computational Tree Logic) 

The following description of CTL was taken from [Campos01]. 

CTL is used to express properties of the behaviour of the system specified in SMV. A 

formal description of CTL is given by [Clarke99]. An informal account of the operators is given 

here. Beside the usual proposition logic connectives CTL allows for operators over the 

computation paths that emanate from a state: 

 

• A - for all paths (universal quantifier over paths); 

• E - for some paths (existential quantifier over paths). 

 

and over states in a computation state: 

 

• G - used to specify that a property holds at all the states in the path (universal 

quantifier over states in a path); 

• F - used to specify that a property holds at some state in the path (existential 

quantifier over states in a path); 

• X - used to specify that a property holds at the next state in the path; 

• U - used to specify that a property holds at all states in the path prior to a state 

where a second property holds. 

 

These operators allow us to express concepts such us: 

 

• universally: AG(p) - p is universal (for all paths, in all states, p holds); 



 

 

 

9 

• inevitability: AF(p) - p is inevitable (for all paths, for some state along the path, p 

holds); 

• possibility: EF(p) - p is possible (for some path, for some state along that path, p 

holds).  

 

1.3.   Analysis of MCP example  

In this section we introduce an example that will be used throughout this report. 

The MCP (Mode Control Panel) of an aircraft is one element of the interface between the 

pilot and the aircraft autopilot.  

 

 

Figure 3 – The MCP (adapted from Honeywell Inc., 1988). 

 

In [Palmer95] a case study is put forward which deals with a problem relating to altitude 

acquisition in a real aircraft, the MD-88. In the present case the issue is how automation and 

user interact during altitude acquisition. A reasonable expectation for the pilot to have of the 

system is that: 

 

Whenever the pilot sets the automation to climb up to a given altitude, the aircraft will climb 

until such altitude is acquired and then maintain it. 

 

 The design of the MCP panel interface has been based on the plausible assumption that if 

the altitude capture (ALT) is armed the aircraft will stop at the desired altitude (selected in 

ALTDial). This can be expressed as the CTL formula: 

 

AG((plane.altitude < ALTDial.needle & ALT) -> 

AF(pitchMode=ALT_HLD & plane.altitude=ALTDial.needle)) 

 

which reads: it always happens (AG)  that if the plane is below the altitude set on the MCP and 

the altitude capture is on then eventually (AF) the altitude will always be reached and the pitch 

mode be changed to altitude hold. 



 

 

 

10 

A model of the MCP was built using [Palmer95], and the manual of the aircraft as 

reference. When the SMV model checker is used to check a specification, the checker answers 

whether or not the test succeeds. When we check the model that was developed against the 

formula above a trace is returned as counterexample (see figure 4 for an extract of the trace). 

 

 

Figure 4 – Extract of trace counterexample. 

 

Now, the Trace Visualiser can be used to analyse the generated trace, using trace visual 

representations and analysis mechanisms. In the following chapters, the manner in which we 

can perform that analysis will be described in detail. 

The full example can be seen in [Campos01] (without trace visualiser analysis). 



 

 

 

11 

2.    Early Trace Visualiser 

In this section a description of the architecture of an early Trace Visualiser is given (see 

[Sousa06] for its full description) and the visual representations that it had are described. These 

representations are the following: Diagram representation, Tabular representation and Tree 

representation. The last section makes the bridge between the early and the final Trace 

Visualiser.  

2.1.   Architecture   

To more easily explain the individual components, their class diagrams and a description of 

their responsibilities are given in the following sections. The architecture of the early component 

is provided in the package view in figure 5. Now each package will be described in detail. 

 

 

Figure 5 – Package View. 



 

 

 

12 

 

2.1.1   Parser 

SMVReader reads the trace file and then calls SMVParser to create the SMVSrutucture. 

SMVParser is responsible for parsing the trace file and calls the methods of the SMVStructure 

to create a data set.  

2.1.2   Structure  

SMVStructure is responsible for the storage and manipulation of a trace’s parsed data. It 

performs queries on datasets using a QueryManager.  

QueryManager performs queries on a dataset. The following queries are supported: 

 

• getActionsState() – returns all the interactor’s actions in a given state. 

• getState() – returns all the interactor’s attributes on a given state.  

• getValues(); -- returns all the values for given interactor’s attributes. 

• getChangeStatesValue() – returns all states where a set of interactor’s attributes 

changed to given values1 (the final set of states result is the union of the sets of 

states returned by each individual interactor attribute).     

• getAllChangedStatesValue() -- returns all states where a set of interactor’s 

attributes changed to given values (the final set of states result is the intersection 

of the sets of states returned by each individual interactor attribute). 

• getStatesValue() -- returns all states where a set of interactor’s attributes are 

equal to given values (the final set of states result is the union of the sets of 

states returned by each individual interactor attribute). 

• getAllStatesValue() -- returns all states where a set of interactor’s attributes are 

equal to given values (the final set of states result is the intersection of the sets of 

states returned by each individual interactor attribute). 

 

The queries use the functionality provided by the BasicData class to access the data which 

is stored in a hashtable. Since such basic methods are provided, adding new queries should be 

easy.  

BasicData is the most low-level part of the program. It stores the parsed data and allows 

for simple manipulation of the data. The data store consists of the names of the variables and 

the values they have. If a variable does not have a value in a state (in the trace), the value of 

the previous state is used. Furthermore a list of state IDs is kept. These are needed to identify 

                                                      
1  By “changes to a given value” we mean that the value of the attribute in the previous state must be different from the 

value we are looking for. Consider a sequence of states [<a=1,b=1>,<a=2,b=2>,<a=2,b=1>], if we were looking for state 

were attribute ‘a’ changes to 2, then the second state would be in the result but not the third. 



 

 

 

13 

to which states the values in the table belong, as states can be collapsed (if two consecutive 

states have the same values, the second state can be removed).          

2.1.3   Graphics 

Visualiser contains the main routine which starts the MainWindow.                 

MainWindow is responsible for creating the actual visualiser and starting all the 

representations. It allows the user to load trace files, switch between them and to end the 

program.  

When a file is opened, the TraceFileFilter class ensures that instead of all types of files, 

only files which end on .trace are shown. 

All graphical representations have to extend the abstract CommonGraphics class. By 

casting these representations to CommonGraphics objects it is still possible to use the API 

defined by the CommonGraphics class. At each instant several graphical representations can 

be present at the interface. By keeping track of the currently activated (static) CommonGraphics 

object, filtered data can be given to the correct graphics class. For example, if the user is 

working with a Tabular Representation, the currentGraphic object is set to that representation, 

ensuring that when a filter is applied, it is applied to that object. 

In order to correctly set the commonGraphics object, the abstract method 

setCurrentGraphic() must be implemented (see [Ridder05]). 

The CommonGraphics class is also responsible for the internal frame ensuring that new 

graphical representations can be added and removed correctly. The class diagram is shown in 

Figure 6. 



 

 

 

14 

  

Figure 6 – CommonGraphics Diagram. 

 

CreatePopUp is a class which creates simple popups for the GraphicsActionListener 

class.  

GraphicsActionListener is used by CommonGraphics. It is used to determine which 

action to take when a filter is selected from the menu.  

TabListener does the listening of the tabbed pane, ensuring that tabs are added and 

deleted correctly. It also ensures that the currentGraphic object (in CommonGraphics) is set 

properly.  

VariablesTree is used for the selection of variables for certain filters. The sub-class 

CreateComboBox allows for dynamic creation of combo boxes that are used to interact with 

the user when the user selects the parameters for the filters. 



 

 

 

15 

FiniteStateGraphics is responsible for diagram representation and to do that extends the 

CommonGraphics class and implements the abstract filter routines. It also creates the State 

and Transition objects and calculates their placement on the screen.  

PlainTextGraphics shows the original trace. It extends the CommonGraphics class, but 

the abstract methods concerning the filtering are kept empty.  

TableGraphics creates the tabular representation of the trace file extending 

CommonGraphics and implementing the filters. It creates and colors the table and cells.  

Tree creates the tree representation. It extends the CommonGraphics class and 

implements the abstract methods to allow for filtering. 

FiniteStateCommonGraphics contains what the State and Transition class share, such 

as coloring and storage of displayable data for labels and mouseover events. It has the abstract 

method “hit”, used to define when a mouse is inside the graphical object. All classes extending 

the FiniteStateCommonGraphics must implement this method. The class diagram is shown in 

Figure 7. 

 

 

Figure 7 – FiniteStateCommonGraphics Diagram. 

 

State has methods which are typical for the state object, mainly concerning the coordinates 

of the rectangle that represents the state in the graphics. Since it extends the 

FiniteStateCommonGraphics, it must implement the abstract “hit” method defined there.  

Transition has methods which are typical for the transition object, mainly concerning the 

coordinates of the arrow that represents the transition in the graphics.  Since it extends the 

FiniteStateCommonGraphics, it implements the abstract “hit” method defined there.  

DrawingPane does the actual drawing of the diagram. It defines how arrows and 

rectangles are drawn and draws them in the proper color. Also is responsible for the animation 

of the trace when using play, step forward, step backward, etc, buttons.  

DrawingMouseListener is responsible for the mouseover showing the data. Currently the 

mouseover only shows data for the states, since the data for the transitions is always shown. 



 

 

 

16 

2.1.4   Shared 

PatternHelper contains pattern methods which are used by classes of other packages. 

Essentially these are methods for working with strings. 

2.2.   Graphical Interface 

The early Trace Visualiser had a JDesktopPane with internal frames. The internal frames 

are created when a trace file is opened (one internal frame by trace file). In an internal frame it 

is possible to see four visual representations (clicking in the tabbedPane) and a filters menu 

with all the filters available.  

The diagram representation has buttons to play, pause, go forward, go back and reset its 

animation. There exists also a clean button to clean filtering operations. The Tabular and Tree 

representations only have the clean button, because the animation is not implemented on them. 

The Trace visual representation does not have any such button, which means that animation 

and filtering is not possible there.   

Figure 8 shows the GUI of the Early Trace Visualiser.  

 

 

Figure 8 – GUI of Early Trace Visualiser. 

 

Labels 

Option 

Animation Buttons TabbedPane of Visual Representations 

Clean 

Filters 

Button 



 

 

 

17 

2.3.   Diagram Representation 

In this representation (see figure 9), for each interactor there is a column with a state 

diagram-like representation showing the respective variables and their values, and also their 

actions. The global state (GLOBAL in figure 9) with all the variables of all interactors is also 

represented to act as an index. In the case of interactors, the variables and their values are 

shown near the rectangle. The actions are shown as labels on the arrows between consecutive 

states. The arrows are shown only if there exists an action between states. When no arrow is 

shown, the nil action is performed (see section 1.1, for a discussion on physical states). In the 

case of loops two more arrows are created representing the beginning and the end of the loop.  

  

 

Figure 9 – Diagram representation. 

 

If the Trace Visualiser user selects the labels option, the diagram is reduced and only the 

rectangles of the states and the arrows with actions are shown. The interactors and Global state 

variables and their values are shown as popup labels when the mouse passes over the states. 

In this way, the user can see more states in the screen and choose to see the variables and 

respective values of a specific interactor in some state. In this option of representation the 

arrows of the loop were not correctly shown because their coordinates are wrongly transformed 

when switching between boxes and labels. Figure 10 presents the diagram representation with 

the labels option enabled.  

 

 

Figure 10 – Diagram representation with labels. 

 

When using filters some of them return states as result and others return variables from 

interactors. In the first case the lines corresponding to states belonging to the result are 

highlighted in yellow (see figure 11).  

 



 

 

 

18 

 

Figure 11 – Filter “Get values of state 5”. 

 

In the second case only the columns of interactors with variables in the result are 

highlighted. 

Having the labels option disabled is the default when showing the initial diagram 

representation. This option shows the information of variables near the rectangles representing 

states. If the labels option is enabled information on variables is hiden and a listener is 

activated. It listens for mouse over state events. In the case of a hit (mouse coordinates inside 

the rectangle of state) a popup label with the information of that state is shown. 

The animation of the diagram representation is done by highlighting the color of states 

when passing by them, and changing the position of the scrollbar of the pane that includes the 

diagram to keep the highlighted states visible at all times.  

2.4.   Tabular Representation 

In a tabular representation data is shown in a table (see figure 12). The columns headers 

show the state numbers. The beginning of a loop is shown adding a * to the respective state 

number. A cell in white shows that the value of that variable in that state changed when 

compared to the previous state. A cell in grey shows that the value of variable remained the 

same when compared to the previous state.   

 

 

 Figure 12 – Tabular representation. 

 

In Figure 13 the result of a filter that returns the states where two variables have the values 

selected by the user, with the syntax “OR”, is shown. States which have at least one variable 

with the value selected are highlighted, for example state 10. 

 



 

 

 

19 

 

 Figure 13 – Filter “States where main.pitchMode=IAS or plane.altitude=1”.  

2.5.   Tree Representation    

In a tree representation data is shown in several trees, one for each state. The interactors’ 

variables are shown in red and their actions in blue. Initially all the trees are expanded but the 

user can collapse states or interactors if he desires. Using the clean button, on the top of the 

pane, all the trees are again expanded. This representation is shown in Figure 14.    

 

 

Figure 14 – Tree representation. 

  

  

Figure 15 – Filter “States where ALTDial.needle changed to 2”. 



 

 

 

20 

In the case of filters that return interactor’s variables as result, those variables are 

highlighted with magenta color, in all the states. 

In the implementation of filtering, the filters that return states were implemented with the 

idea of expanding the states in the filter’s results and collapsing the other ones. In figure 15, we 

can see an example of that. To expand or collapse all nodes of the JTrees, the code from 

[Chan02] was used.  

2.6.    User Input in Filters 

When using filters, the input from the user is read with a VariablesTree class that contains 

all the variables of the interactors. A variables wizard with two consecutive panels is used. The 

first panel shows the tree with all the variables (see figure 16) and the user can select which 

variables will be used in the filtering criteria. The second panel shows the possible values on the 

selected variables (see figure 16). Then, the finish button gives the results of the filter.  

In some cases the input is done asking only for a state number (see figure 17). 

 

                     

Figure 16 – First and second panels. 

 

 

 

Figure 17 – Input with state number. 



 

 

 

21 

2.7.   Bridge between early and final Trace Visualiser 

We will now highlight the main changes introduced in the final Trace Visualiser.  

2.7.1   Implications in the Code 

The size of the code from the early Trace Visualiser was reduced both in the number of 

lines needed, and in its complexity. The classes that implement the visual representations were 

made independent of the structural code by, for example, eliminating shared variables. This 

way, it is possible to integrate them in the rest of the structure, without having the need to 

understand the rest of code. For example, we now have a JFrame with a JSplitPane, wich hold 

the visual representation and trace analysis mechanisms areas. The code used for doing that 

construction and management is independent from the code used for any visual representation. 

A visual representation is done implementing a set of methods which represent its functionality 

in terms of animation, popups, markers and filters. The impact, on the architecture of the Trace 

Visualiser, of adding a new visual representation is minimal (adding of a total of thirteen lines of 

code, which are of simple understanding, in two classes).     

 The code from the classes was studied to eliminate its unnecessary complexity and it was 

possible to reduce, significantly, the number of lines needed. Also, the code is now more 

documented with useful comments.  

 The structure of packages was reformulated to better structure the classes and their 

responsibilities.  

2.7.2   Implications in the Graphical Interface 

In the graphical aspect, all the buttons used were put on two toolbars and are now 

independent of each visual representation. The first toolbar holds a comboBox for switching 

between visual representations and a textArea to hold the formula of the trace. The second 

toolbar holds buttons for animation and closing of tabs, a checkbox for the popups functionality 

and a textArea for filter description. The contentPane of the mainframe now holds a SplitPane 

only, which is divided in two areas. The left area is for showing the current visual representation 

and the right area is for adding markers (trace analysis mechanisms similar to filters but more 

powerful) and filters. To all buttons, icons were added in order to provide a more pleasant 

application appearance.   

Regarding menus, a new menu was added to enable users to choose the LookAndFeel of 

the application. Also two new menu options on the File menu were added to close a trace and 

to export a visual representation to an image file.  

 



 

 

 

22 

 

Figure 18 – GUI of Final Trace Visualiser 

2.7.3   Changes in the Visual Representations 

Two new visual representations were created: Logical States and Activity Diagram. The first 

one is similar to Diagram representation (in current Trace Visualiser it is called Physical States) 

and the last one is based on UML 2.0 Activity diagrams.  

In all the visual representations based on states (Physical States, Logical States and 

Activity Diagram), the interactor names were placed on a separate panel from the visual 

representation panel to enable interactor names to always be visible at the top. In the previous 

visualiser, if the representation is scrolled down they disappear.  

In the Tabular representation, the cells are now drawn with 3D rectangles to make them 

more perceptible. The two colors used to show the change (or not) of state have changed to 

dark gray and dark yellow, to provide a bigger contrast. 

In the new Tree representation, we have only one tree, in which the children are nodes with 

state information (interactor’s attributes). It was changed in this way to provide a stronger bound 

between all the states. 



 

 

 

23 

2.7.4   New Functionalities 

In the tree representation listeners, to provide new functionality on collapsing/expanding 

states or interactors (all at once), were added.  

Also, it is now possible to annotate visual representations with markers (trace analysis 

mechanisms), which appear as coloured circles or semicircles in the visual representation area. 

In all the visual representations (except the Trace representation) the animation was 

standardized. 



 

 

 

24 

Part II – User Manual of the 

Final Trace Visualiser  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

25 

1.   Introduction 

This is a user manual for the IVY’s Trace Visualiser component.  

When a property does not hold, the SMV model checker tool usually produces a trace 

showing behaviour that falsifies the property in question. A SMV trace consists of a sequence of 

states of the model. In terms of the analysis of interactive systems, this trace can be seen as a 

usage scenario that falsifies the property under consideration. These scenarios must then be 

analysed in terms of their cognitive plausibility, and impact on the design. 

The Trace Visualiser component is responsible for presenting the results of the verification 

process to the IVY user in a manner that facilitates the understanding of meaning of the trace. 

This user manual intends to be sufficient clear so that any kind of user (users with different 

qualifications) can understand how to use the Trace Visualiser. First the graphical interface of 

the tool will be explained in detail (menus, buttons, toolbars and panels). Next the visual 

representations of the visualiser will be fully described. Finally an example of utilization will be 

provided to explain how the Trace Visualiser can be used to discover the problems pointed out 

on a trace file.   



 

 

 

26 

2.   Graphical Interface 

 

 

Figure 19 – Main frame. 

 

The Trace Visualiser main frame has the following components:  

 

• Toolbars � used to hold animation controls, text information areas and the 

comboBox for switching between visual representations;  

 

o Visual Representation ComboBox � this sub-component is used for 

switching between visual representations. All the visual representations 

that the Trace Visualiser has are shown and the user can select any one 

of them. If filters or markers were applied, the new visual representation 

applies them to; 

 



 

 

 

27 

 

Figure 20 – Visual Representations ComboBox. 

 

o Formula Area � is a JTextArea in which the formula, written in CTL, is 

displayed. This is the formula that was proved to be false because the 

trace file is only generated when a formula is false. This information helps 

to detect the problem because it is possible to add markers related to sub-

conditions present on it.    

 

o Buttons for Animation of visual representations:  

�  � stops the animation; 

�  � plays the animation; 

�  � pauses the animation; 

�  � goes one step backward in the animation; 

�  � goes one step forward in the animation; 

�  � cleans markers, filter and animation operations. 

 

o Popups checkbox � is used to switch between two modes: popups (hides 

some information and shows it as popup labels), or no popups (all the 

information is shown directly on the representation). In some visual 

representations the checkbox is disabled because popups are always used 

or not used at all (this last situation happens only in the case of textual 

representations - Trace). The state of the checkbox is preserved when 

switching between representations.  

 

o Filter TextArea � area to place information on what filters were applied. If 

more than one filter was applied to the visual representation, then the 

conjunction of all the filters is shown.   

 

• Menus ���� used to provide operations on files (open, close and export), on the 

LoookAndFeel, on filters and markers and to display information about the 

application. In all menu operations hot keys are provided to speed up acess to the 

operations, and enable use of the application without the mouse (the hot keys are 

presented in the images that follow);  

  



 

 

 

28 

o File � used to open and close trace files and for export the visual 

representations to image files.  

 

 

Figure 21 – File Menu. 

 

o View � to choose the LookAndFeel of the main frame; 

 

                                   

    Figure 22 – View Menu. 

 

o Markers � to use the marker operations. These operations are used to 

analyse the trace and can all be accessed through the buttons on the 

Markers tab on Analysis Mechanisms Area also, see figure 19;  

 

    

Figure 23 – Markers menu. 

 

o Filters � to use the filter operations. All the filter queries to analyse the 

trace are available here (as with the markers these operations can all be 

accessed trough the buttons on Filters tab on Analysis Mechanism Area 

also, see figure 19);  

 

    

Figure 24 – Filters menu. 



 

 

 

29 

 

o About � to show information about the application. 

 

                         

Figure 25 – About message. 

 

• Visual representation area � is a panel that shows the current visual 

representation. It is the main area of the application because it is where the 

analysis is done and the visual representations shown. If the visual representation 

cannot be fully shown on screen, scrollbars (at the top and right of the panel), are 

used to allow scrolling the representation.  

 

• Analysis Mechanisms Area ���� is a tabbedPane that holds two analysis 

mechanisms, each one in a different tab. They are: Markers and Filters.  

 

o Markers ���� is a panel that holds the conditions that will generate markers. 

The markers are used to mark states in relation to criteria defined over 

state attributes. The criteria are defined over states establishing relations 

(=,> and <) between attribute pairs or between values and attributes. A 

color is associated to each criteria, and all states that verify one given 

criteria are annotated with the colour associated to it. In the case of 

attributes comparison two filled semicircles are drawn, with the chosen 

color. Each semicircle is drawn near each of the attributes, this way the 

attributes are visibly related by the condition. In the case of comparison 

between values and attributes, filled circles with the chosen color are 

drawn. If the popups option is enabled it is possible to see the condition 

represented by each marker placing the mouse over it. At the bottom there 

are buttons to add, remove, apply and clean marker conditions to the visual 

representation.                                

 



 

 

 

30 

                                

                                  Figure 26 – Markers conditions.              

 

• Markers conditions� the first comboBox is used to choose the 

attribute of an interactor, the second comboBox is used to choose 

the comparison operator (=, < and >), the third comboBox is to 

choose a value or an attribute of an interactor (see figure 26). The 

checkbox Next State is used to choose if we want to compare 

attributes of interactors in two consecutive states (the first attribute 

on the first comboBox is associated with the current state and the 

second attribute on the third comboBox is associated with the next 

state). The Next State checkBox is enabled only if the parameter in 

third comboBox is an attribute and not a value. The Color button is 

used to choose the color to be associated with the condition and its 

respective marker. It makes a JColorChooser appear wich includes 

a recent colors panel to choose desired colors.   

 

                                 

                                 

Figure 27 – Marker ColorChooser. 

 

 

o Markers buttons : 

�  � to add a condition marker; 



 

 

 

31 

�  � to remove a condition marker; 

�  � to apply to the visual representation area the necessary 

changes; that is, annotate the visual representations with the 

markers generated from the conditions; 

�  � to clean all the conditions markers on the panel. 

 

o Marker types : 

�  � marker originated from a condition with syntax 

<attribute><op><value>; 

�  � markers originated from a condition with syntax 

<atribute1><op><atribute2>. Each semicircle will be, in the visual 

representation, near the attribute it is associated with; 

�  � markers originated from a condition with syntax 

<atribute1><op><atribute2>, but with the Next State checkbox 

ticked. This means that we will make a comparison between 

attributes in two consecutives states. Also placed near the 

attributes. 

 

o Filters ���� is a panel that holds the conditions that will generate a filter 

result. The filters are used to highlight the states in relation to criteria 

defined over state attributes. The criteria are defined over states 

establishing relations (= and “changed to”) between attributes and values. 

A default color (orange) is used to highlight all the states in a filter’s result. 

The states of interactors that are in filter result and that have an attribute in 

the condition that generated the result, are highlighted with a different color 

(blue). The bottom of the panel holds the buttons to add, remove, apply, 

clean and undo filters applied to the visual representations.  

              

• Filter conditions� the first comboBox is used to choose the 

attribute of an interactor, the second comboBox is used to choose 

the operator of comparison (= or ‘changed to’) and the third 

comboBox is used to choose a value or the attribute (see figure 

31). The fourth comboBox is used to choose the type of relation of 

all the conditions, “AND’ or ‘OR’. If ‘AND’ is chosen then all the 

states have to respect all the input conditions. If ‘OR’ is chosen, it 

means that a state that respect at the least one of the set of 

conditions belongs to the filter’s result. 

 



 

 

 

32 

                                               

                                 Figure 28 – Filter conditions. 

  

o Filter buttons : 

�  � to add a filter condition; 

�  � to remove a filter condition; 

�  � to apply to the visual representation area the necessary 

changes; that is, highlight the states, returned by the filter; 

�  � to undo the last filter applied;  

�  � to clean all the filter operations on the panel. 

2.1.   Visual Representations 

The images of the following visual representations were generated by the Trace Visualiser 

and exported to image files (with export option on File Menu) or captured directly from the 

screen. To all of them a filter and markers were applied.  

The markers used can be seen in figure 26. They have the three usual comparison 

operators (=,< and >). The markers are more generic that the filters because filters only have 

comparisons of equality with the syntax <attribute>=<value> and the operator ‘changed to’ 

(used to return the states when the attribute of an interactor changed to a given value, 

comparing to the previous state). 

The filter used can be seen in figure 28. It returns all states where main.ALT=1 and 

main.pitchMode=ALT_HLD. 

2.1.1   Tree 

In a tree representation data is shown in several trees, one for each state. The interactors’ 

variables are shown in red and their actions in blue. Initially all the trees are expanded but the 

user can collapse states or interactors if he desires.  

In this representation the states that are in the filters result are expanded and the other 

collapsed. For example, the states 4 and 5 are not present in the filter’s result, and because of 

that they are collapsed. 

The markers are put near the attributes of an interactor.  



 

 

 

33 

 

Figure 29 – Tree representation with filter and markers. 

 

 If, in a given state, the user right clicks with the mouse on an interactor node (for 

example ALTDial), then all interactors in that state are collapsed and the markers at the 

attributes level go up to the interactors level (see state 1 in figure 29). If the user right clicks 

again the nodes are expanded. The mouse right button fires collapse/expand events at the 

level of interactor in the whole state (collapses or expands all the interactors inside a state. 

This functionality is provided also for the states level (see figure 30). 

 

 



 

 

 

34 

 

Figure 30 – Collapsing states. 

 

To see what condition the marker represents it is possible to place the mouse over the 

marker circle or semicircle to make the desired information appear as a tooltip text. The popup 

label shows the information for the condition represented by the marker. Two semicircles in the 

visual representation mean that we are making a comparison between two attributes. In figure 

31 the comparison is plane.altitude<ALTDial.needle and a semicircle exists in cell needle=2 and 

other in altitude=0. If each marker condition uses a different color, the relation between markers 

is easily identified by the color of the markers. 

 

 

                                            Figure 31 – Showing marker condition. 

 

It is also possible to see an animation of this representation. It consists on collapsing all the 

states and expanding in sequence the states with a constant time. For example, collapse all the 

states, expand state 1, collapse state 1, expand state 2 and so on to the final state. If a loop is 

present, then when reaching to the final state the animation begin again from the initial point of 

the loop and enters on a cycle until the stop button is pressed. 

2.1.2   Tabular 

In a tabular representation data is shown in a table (see figure 32). The columns headers 

show the states numbers. The beginning of a loop is shown adding a * to the respective state 

number.  



 

 

 

35 

In the states in which the value remains unchanged comparing to the previous state, the 

background color of the cell is dark gray. When an attribute value of an interactor changes, then 

the background color of the cell used is dark yellow. The cells are drawn as 3D Rectangles to 

make them more perceptible. The cells in yellow are the filter results. If an attribute has a 

marker, the marker is placed in the cell. To see marker conditions the same approach as for the 

Tree representation is used.  

 

 

Figure 32 – Tabular representation with filter and markers. 

 

 The animation on this representation is done highlighting the current state column, using a 

color with inferior alpha component to make it look different from the others column states (see 

state 4 in figure 33). The loop behaviour is also reproduced here. 

 

 

Figure 33 – Tabular animation. 

2.1.3   Physical States 

In this representation (see figure 34), for each interactor there is a column with a state 

diagram-like representation showing the respective variables and their values, and also their 

actions. In the case of interactors, the variables and their values are shown near the rectangle. 

The actions are shown as labels on the arrows between consecutive states. The arrows are 



 

 

 

36 

shown only if there exists an action between states. When no arrow is shown, the nil action is 

performed (see below for a discussion on physical states). In the case of loops two more arrows 

are created representing the beginning and the end of the loop. 

This representation shows the states of interactors at physical level. At the level of MAL 

interactors (logical level) the actions of the different interactors can happen in an asynchronous 

way. So, one interactor can execute one action while the others remain inactive. At the level of 

SMV (physical level), however, the state transitions occur in a synchronous way. To model 

asynchronous state transitions, it is necessary to introduce a special action nil that at the level 

of MAL interactors corresponds to nothing happening, but at the level of SMV represents one 

state transition (to a state with the same attribute values). This way, the SMV module 

corresponding to an interactor can suffer one state transition associated with a given action, 

while the others execute the transition associated to nil (that is, stays in the same logical state).  

The states highlighted in yellow color are present on the filter’s result and therefore drawn 

in a different way. The first column Global is the global state (includes all values of interactors 

attributes in each state) and acts as an index. 

 

 

Figure 34 – Physical States representation with filter and markers. 

  

The animation on this visual representation is done by sequentially placing a large 

rectangle, with a background color with a minor alpha component to be a little transparent, 

behind states or transitions. 

  



 

 

 

37 

 

Figure 35 – Physical States animation. 

 

This strategy of animation is used in all of the following visual representations except on the 

Activity representation.  

With popups option selected it is possible to hide states information and see that 

information only if the mouse passes over the states or markers. 

 

 

Figure 36 – Showing marker information with popups option. 



 

 

 

38 

2.1.4   Logical States 

This representation is similar to the previous visual representation with the difference that it 

shows the logical states instead of physical states (see section 2.1.3 for an explication on 

logical and physical states). This means that sequences of states without transitions between 

them disappear. Instead of that, a singular state that covers all the physical states that happen 

at SMV level is presented.  

The states highlighted in yellow and blue are present on the filter’s result. The markers are 

represented by the lines, circles and semicircles. 

 

 

Figure 37 – Logical States representation with filter and markers. 



 

 

 

39 

The colored lines are the representation of the markers at the level of states. They 

complement the circles (representing the same marker) that are near the attributes and show 

where in the state the marker is active.    

The animation is done with the strategy used in Physical States. This representation uses 

the popups behaviour of Physical States representation.  

2.1.5   Activity Diagram 

This representation is centred on actions and makes used of UML 2.0 Activity Diagrams 

[OMG05] (for one introduction on UML see [Fowler04]). The rectangles with yellow color are 

present on the filter result.    

In each activity (represented by a round rectangle with the activity name) two small 

rectangles exist that represent the state before and after it occurs.   

In this representation, the information of states is always hided, but can be shown using the 

popups functionality. Lines before and after sync bars contain information that will be shown 

when the mouse passes over. These lines contain the information of the global state of all 

interactors.    

 

 

Figure 38 – Activity Diagram. 



 

 

 

40 

 

The animation on this visual representation (see figure 39) is done putting one large 

rectangle with a background color, which has a minor alpha component to be a little 

transparent, behind the space between the two sync bars of a transition (if in a state we have 

only a transition then only it’s space is used for the rectangle). The current state is changed 

sequentially by a time interval.   

 

 

Figure 39 – Activity Diagram animation. 

2.2.   MCP Example Analysis 

To illustrate the application of the Trace Visualiser, it will now be applied on an example 

presented in [Campos01].  

Describing the example in full is not relevant in the present context. Only the analysis 

phase will be described here. After editing and compilation of the model, one of the properties 

that were checked in the model was the following: whenever the automatic pilot is programmed 

to achieve a desired altitude, the plane will fly to that altitude and maintain it.   

 This property can be expressed in CTL as:  

  

AG(plane.altitude<AltDial.needle & ALT -> AF(plane.altitude=AltDial.needle &  

pitchmode=ALT_HLD)) 

 

It is important to mention that the IVY tool will provide a properties editor that will allow 

writing of properties without the need of using CTL directly. 

 When the verification of the formula is tried, SMV informs that it is false and produces a 

counter-example (in this case with 13 states). 



 

 

 

41 

 Now, using the visualiser, we will try to discover what problem is pointed out by the trace.  

Two different trace analysis mechanisms (Markers and Filters) will be used to analyse the trace. 

We will do that to have an idea of which mechanism is better for doing the analysis.    

2.2.1   Markers 

In a first phase, an attempt was made to identify which states verified the conditions of the 

property (plane programmed to achieve a desired altitude – plane.altitude<AltDial.needle & 

main.ALT). For that, marking criteria for the sub-formulas of that conjunction were created and 

the green color associated with them.  

 The result of the marking showed that the condition holds soon in the second state. The 

best representation to show that fact was revealed to be the one based on state diagrams. The 

figure 40 shows the resulting diagram. 

 

 

Figure 40 – Verification of property in Physical States representation.  

  

In the initial phase of the model (see top of diagram) only the semicircles resulting from the 

first criterion (relating two attributes) appear. After the toggleAlt action, the marking starts to 

contain not only the semicircles of the first criterion, but also the circle related to the second 

criterion.  



 

 

 

42 

After this we wanted to confirm that in fact a state with the plane stabilized at the intended 

height doesn’t happens in the trace. Two new markings were created for the expressions 

plane.altitude=AltDial.needle and main.pitchmode=ALT_HLD, both associated with the red 

color. As it would be expected (see figure 41) none of the states was annotated with two red 

marks (sign that the conjunction of the two expressions doesn’t occur in the trace).  

 

       

Figure 41 – Verification of the property using Physical States. 

 

 Finally, to understand the reason for the problem, the attribute ALT was investigated. This 

attribute models the fact of the altitude capture of the automatic pilot is armed. The color of the 

criterion on ALT with was changed to orange. This distinguishes it from the criterion related to 

altitude.  

 In this case we opted for a Activity Diagram representation (see figure 42). The analysis of 

the resultant markings called the attention to what happens when the enterAC event occours 

(event that occurs in an automatic manner and that is responsible for the activation of an 

intermediate mode – ALT_CAP – of final approximation to the desired altitude).   



 

 

 

43 

 In fact, after that event, the altitude capture (ALT) is turned off, despite that the plane still in 

an approximation phase to the programmed altitude and the flight mode is not ALT_HLD yet 

(the orange marking disappears, but the red markings are not present). 

 What the trace shows is that if in that moment the vertical velocity is modified (event set(1)) 

the automatic pilot changes to maintaining vertical velocity mode, losing the ALT_CAP mode 

and the altitude capture. After that moment it is possible that the plane exceeds the altitude 

initially programmed in the automatic pilot (see figure 42) because the automatic pilot is no 

longer programmed to stop in the altitude indicated in the MCP panel.  

 

 

Figure 42 – Verification of the property using Activity Diagram. 



 

 

 

44 

2.2.2   Filters 

We will now perform the same type of analysis with filters. As before, in a first phase an 

attempt was made to identify which states verified the initial conditions of the property (plane 

programmed to achieve a desired altitude – plane.altitude<AltDial.needle & main.ALT). For 

that only one filter criterion was created. This criterion regards main.ALT. Because the filters 

don’t implement the ‘<’ operator, the expression plane.altitude<AltDial.needle had to be 

verified visually by the user. The result of the marking showed that the condition exists soon in 

the second state. Now a Logical States representation was chosen because it appeared to be 

more useful when used together with the filters. Figure 43 shows the resultant diagram. 

 

 

Figure 43 – Verification of the property conditions using Logical States. 



 

 

 

45 

A lesson that is possible to learn is that the expressiveness of filters is very limited because 

they place on the user (in this example), the work of detecting one of the assumptions of the 

property (plane.altitude<AltDial.needle). This is a very negative point, especially when 

comparing filters’s expressive power to markers’ support for more comparison operators. The 

analysis with that limitation is very time consuming and not very useful, the user has to spend a 

lot of time searching for the states that meet the two conditions at the same time.    

An idea to improve the filters is to implement all the comparison operators that markers 

implement. Other improvement is to associate to each filter condition a different color in order to 

differentiate between filter conditions (at the moment users cannot associate colors to filter 

conditions). The last improvement would enable the analysis performed on the previous section 

on ALT attribute to be performed using filters. 

After the first step above, it was necessary to check that in fact a state with the plane 

stabilized at the intended height does not happen in the trace. Again, because filters do not 

allow for comparisons between attributes, only one new filter criterion on 

main.pitchmode=ALT_HLD was created. To analyse the result (see figure 44) it is necessary 

to visually check, in each of the states of the result, if plane.altitude=AltDial.needle occurs in 

any state. This is a time-consuming task.   

 

 

Figure 44 – Verification of the property using Logical States. 

  

Concluding, the comparison between markers and filters is favourable to the first. Filters 

have many limitations that make an analysis with them very difficult and time-consuming. 



 

 

 

46 

Part III – Technical Manual for 

the Final Trace Visualiser  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

47 

1.   Introduction 

In this manual the architecture of the final Trace Visualiser is discussed (see figure 45). 

First a high level view and then the class design is explained. Also a small tutorial to teach how 

to make a new visual representation is provided. 

 

 

Figure 45 – Package View. 



 

 

 

48 

2.   High Level View  

At the highest level, the program must perform the following steps when used:  

 

1. Read and parse a trace file; 

2. Store the parsed data in a structure; 

3. Visualise the data (visual representations). 

 

The high level view of the architecture has three main components: Parser, Graphics and 

Structure and a secondary one: Util. For a package view see figure 45.  

The Visualiser package is the starting point of the application. It creates the main window 

that will contain all the visual representations.  

The Parser package is responsible for doing the parsing of the trace file. 

The Structure package is responsible for storing the information, resulting from the parsing 

of the trace file. 

The Graphics component is responsible for the visualization of the information, obtained by 

the other components and used by the different visual representations (for example: activity 

diagram, physical states diagram, etc). It is composed by three sub-components:  

 

• Visualization � is responsible for the visual representations of the traces;  

• Shared � is responsible for providing common functionalities to all visual 

representations;  

• Elements � is responsible for the implementation of the graphical objects that are used 

by the visual representations, for example: Transition (which can be drawn as an 

arrow).  

 

The Util component provides services that are used by the main components of the Trace 

Visualiser. 

 

 

 

 

 

 



 

 

 

49 

2.1.   Class Design  

To more easily explain the individual packages, we now give their class diagrams and a 

description of their responsibilities. 

2.1.1   Visualiser 

The Visualiser class contains the main routine which creates an instance of the subclass 

MainWindow .   

Class MainWindow is responsible for the creation of the main window and for starting the 

initial representation. It allows the user to load trace files (creating the initial representation for 

them), use the menuBar and end the program. After the initial representation appears the user 

can switch to the visual representation he wants on a comboBox with the available options. It 

calls the Reader class to construct an instance of Trace that stores the data extracted from the 

input trace file.  

When a file is opened, the TraceFileFilter subclass ensures that instead of all types of 

files, only files which end on .trace are shown. If the option Export on File menu is selected, the 

TraceFileFilterJPG subclass ensures that instead of all types of files, only files which end on 

.jpg are shown. 

There is also a LookListener subclass that listens to View menu selections and changes 

the LookAndFeel of main window, according to the selection made.  

Also an instance of the class CreatePopUp is created to be used when showing error 

messages (for example: file not found).  

The class ScreenImage is used for exporting the current visual representation to an image 

file. 

2.1.2   Parser 

Class Reader reads the trace file and then calls Parser to create the Trace structure. It is 

responsible for the parsing of the trace file and initialization of the Trace structure, which will 

hold the information retrieved from the file. 

The Parser subclass has methods to parse all possible declarations on a trace file. The 

method parseLine parses one line of the file and tests the declaration present on it to see which 

pattern it matches. After doing that, it adds to the Trace structure the information obtained from 

the declaration. For example, the method mainActionFound adds the action of the interactor 

main to the Trace structure. After parsing all the lines of the file, the Trace structure is complete 

and ready to be used by the visual representations.  



 

 

 

50 

2.1.3   Structure  

Class Trace is responsible for the storage and manipulation of a trace’s parsed data.  It 

functions as a factory, when a new visual representation is needed the Trace class creates it 

and gives it a copy of the original BasicData generated from the trace file.  

The BasicData class is the most low-level part of the application. It stores the parsed data 

and allows for simple manipulation of the data. The data stored consists of the names of the 

variables and the values they have. Furthermore a list of state IDs is kept. These are needed to 

identify to which states the values in the table belong, as states can be collapsed (if two 

consecutive states have the same values, the second state can be removed).   

The BasicData class has its data stored in a hashtable that holds the values for all the 

interactor’s attributes (each interactor attribute has a vector). The key used in the hashtable is 

the complete name of the interactor attribute. Figure 46 shows the vector in which the state 

names are stored, and one element of the attributes hashtable (a vector with all the state 

ordered values of an interactor attribute – for example, in state 1.1 ALTDial.needle has value 5, 

in state 1.2 has value 1, and so on).  

 

States: [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13] 

Hashtable Element: ALTDial.needle=[5, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1] 

 

                 Figure 46 – Data structure. 

 

BasicData provides the following methods for querying it: 

 

• getActionsState() – returns all the interactor’s actions in a given state. 

• getState() – returns all the interactor’s attributes in a given state.  

• getValues() -- returns all the values for given interactor’s attributes. 

• getChangeStatesValue() – returns all states where a set of interactor’s attributes 

changed to given values (the final set of states is the union of the sets of states 

returned by each individual interactor attribute).     

• getAllChangedStatesValue() -- returns all states where a set of interactor’s 

attributes changed to given values (the final set of states is the intersection of the 

sets of states returned by each individual interactor attribute). 

• getStatesValue() -- returns all states where a set of interactor’s attributes are 

equal to given values (the final set of states is the union of the sets of states 

returned by each individual interactor attribute). 

• getAllStatesValue() -- returns all states where a set of interactor’s attributes are 

equal to given values (the final set of states is the intersection of the sets of 

states returned by each individual interactor attribute). 

 

BasicData has also some other query methods that are: 



 

 

 

51 

 

• getAtribInteractor() � returns a vector with all attribute names of an interactor; 

• getInteractors() � returns a vector with all interactor names present on a trace; 

• getAtribsStateInteractor() � returns a vector with all attributes of an interactor, 

and their respective values, in a given state.  

• getVariables() � returns a vector with all attributes names on a trace in the 

following form: <interactor>.<attribute>; 

• getRow() � returns a vector with the values  in all states of an interactor attribute; 

• getColumn() ���� returns all the values for all attributes of interactors in a state.  

 

The update() method is used to update the BasicData information to reflect a filter’s 

result. For example, if a filter returns states 1, 2 and 3 as result and the update() method is 

executed, the following queries to the BasicData instance will only return results if they are 

related with those three states. This method is used to implement subfiltering.  

PatternHelper class contains pattern methods which are used by some classes. 

Essentially contains methods for working with strings.     

2.1.4   Graphics.shared 

All the instances of the Representation class have to extend the abstract 

CommonGraphics class. By keeping track of the currently activated (static) 

CommonGraphics object, filtered data can be given to the correct graphics class. For example, 

if the user is working with a Tabular Representation, the currentGraphic object is set to that 

representation, ensuring that when a filter is applied, it is applied to that object.  

The CommonGraphics class creates the toolbars used for animation, switching between 

visual representations and formula and filter textAreas. It also creates an instance of JSplitPane 

class that has on the left a panel (which holds the current visual representation) and on the right 

a tabbedPane (to use markers, which will be explained later on this chapter, and filters). 

The Representation class (see figure 47) extends CommonGraphics class and is 

responsible for showing the visual representation that the user has chosen in the comboBox for 

that effect. To do that it has an instance of an abstract Visualisation class which has seven 

concrete classes that represent each of the visual representations. It also receives the calls to 

filter methods and calls the relevant method on the current visual representation.  

A listener of the comboBox with all the possible visual representations, changes the current 

visual representation, according to the selection by the user. In the new visual representation, 

all filter and marker operations previously selected by the user are applied. 

 



 

 

 

52 

      

Figure 47 – Representation class diagram. 

 

Figure 48 – Markers class diagram. 

 



 

 

 

53 

The Markers class (see figure 48) is responsible for creating the markers (see section 

graphics.elements), which are trace analysis mechanisms. To do that it has a panel in which it is 

possible to add conditions and choose a color to be associated with them. The conditions can 

be of type: <attribute><op><value> or <attribute1><op><atribute2>. In the first case the method 

setColorsNum() is used to generate the respective markers, in the other case method 

setVarColors() is used. The markers are created and stored on a static data structure located 

on State class to be accessible to all the visual representations that use them. 

For selecting colors a subclass ColorUtil is used. It’s a re-implementation of 

JColorChooser.showDialog() that remembers recently used colors between invocations of the 

chooser dialog. The native component does not do that. This class was made by The 

Cytoscape Consortium (www.cytoscape.org) to correct that bug. 

The Filters class (see figure 49) is responsible for generating filter’s results. To do that it 

has a panel in which it is possible to add conditions. The conditions can be of type: 

<attribute><{=,’changed to’}><value>. It is also necessary to choose the type of relation 

between the conditions ( ‘AND’ or ‘OR’). If ‘AND’ is selected then all the states in the filter’s 

result have to fulfil all the conditions. If ‘OR’ is selected then each state in the filter’s result will 

fulfil at least one of the conditions of the set of conditions.  

 

 

 

 

Figure 49 – Filters class diagram. 

 

 



 

 

 

54 

The DrawingPaneMouseListener class is used to show popups with state or marker 

information, when the popups option is enabled. The information is shown when the user places 

the mouse over the graphical objects representing the states or the markers. It is used on all 

visual representations based on states. These are: Activity Diagram, Physical States and 

Logical States.  

2.1.5   Graphics.visualisation 

The abstract Visualisation class is the “mother” of all visual representations. It provides 

services related with filters that all the representations use. To implement a new visual 

representation for the visualiser it is necessary to extend this class, and in the Trace class add 

one method that returns an instance of the visual representation with a copy of the original 

BasicData instance (all the information from the trace file without filters applied).   

 

   

Figure 50 – Visualisation class diagram. 

 



 

 

 

55 

The abstract Visualisation class (see figure 50) has abstract methods to work with filters 

that must be implemented to create a new visual representation. In the remaining of this section 

these will be enumerated.  

 The method build() has to be implemented to create the component that will hold the visual 

representation (for example a panel, a tree, a table, etc.). To draw a visual representation that 

uses a panel, it is necessary to implement the paint(Graphics g) method.  

 The abstract method getScroll() has to be implemented and it should return the component 

(inside a scrollPane) that the Representation class will use. This method is needed to make the 

visual representation scrollable.   

  The method getPanel() has to be implemented and it should return the JComponent, 

which contains the visual representation, that will be exported to an image file.  

The abstract method actionPerformed(ActionEvent e) has to be defined to implement the 

functionality associated to animation controls. 

The abstract method itemStateChanged(ItemEvent e) has to be implemented to deal with 

the popups functionality.  

 The method interactorsPane(Graphics g) is used to show interactors names when 

exporting the visual representation to an image file. 

 A BasicData class instance is used to perform queries on it. This instance is needed to 

construct the visual representations, and to work with filters. This BasicData instance is 

updated when a filter is applied. 

The following visual representations, available in the Trace Visualiser, implement all the 

necessary methods:  

 

• Trace ���� the textual representation originally produced by the SMV; 

• Tree ���� tree representation of trace states; 

• Tabular ���� tabular representation similar to the one existing on the SMV from 

Cadence Labs; 

• Physical States ���� graphical state-based representation of trace states; 

• Logical States ���� similar representation to the previous where the trace states are 

pre-processed to eliminate artificial states introduced by the compilation process; 

• Activity Diagram ���� representation centred on actions based on UML 2.0 Activity 

Diagrams [OMG05] (for one introduction on UML see [Fowler04]).     

 

The three visual representations, based on states, have a similar structure. These 

representations are: Physical States (FiniteStates class), Logical States (SLogicalStates 

class) and Activity diagram (Activity class). They all have a subclass DrawingPane, that 

extends JPanel, and implements the paint() method to draw the specific representation. They 

also have an instance of BasicData to do the queries needed to build the representation or to 

work with filters. 



 

 

 

56 

The VisualTree class implements the tree representation. The tree is constructed with the 

BasicData information and uses cell renderers and tooltips to implement the filters and markers 

functionality.  

The Tabular class implements the tabular representation and is similar to the previous 

representation on its structural design (also uses cell renderers and tooltips). The only 

difference is that the component that holds the representation is a JTable instead a JTree.  

2.1.6   Graphics.elements 

The abstract Element class is extended by State, Transition and Marker classes and 

contains shared methods for coloring and storage of displayable data for labels and mouse over 

events. It also has the abstract method “hit”, used to define when a mouse is inside the 

graphical object.  

Class State has methods which are typical for the state object, mainly concerning the 

coordinates of the rectangle (or other graphical object) that represents the state in the graphics.  

Class Transition has methods which are typical for the transition object, mainly concerning 

the coordinates of the arrow (or other graphical object) that represents the transition in the 

graphics. 

Class Marker has methods to draw itself in a given panel in any visual representation. The 

markers are used to mark states with relation to criteria defined over state attributes. The criteria 

are defined over states, establishing relations (=,> and <) between attribute pairs or between 

values and attributes. A color is associated with each criterion, and all states that verify one 

given criterion are annotated with the colour associated with it. 

In the case of attributes comparison two filled semicircles are drawn, with the chosen color. 

Each semicircle is drawn near each of the attributes, this way the attributes are visibly related 

by the condition. In the case of comparison between values and attributes, filled circles with the 

chosen color are drawn. If the popups option is enabled it is possible to see the condition 

represented by each marker putting the mouse over it (using the hit() method). 

2.1.7   Util 

Class PatternHelper contains pattern matching methods which are used by some classes. 

These are essentially methods for working with strings. 

Class CreatePopUp creates simple popups to show any desired information such as state 

or error messages information. 

Class ScreenImage creates a BufferedImage for any Swing component and is used to 

export the visual representation to an image file.  



 

 

 

57 

2.2.   How to make a new visual representation? 

To create a new visual representation we have to answer the following questions: Which 

geometric shapes to associate with a state or a transition? How to show a filter’s result? How to 

perform the animation of the representation? How to add the markers to the representation? 

Which behaviour do we want in the popups functionality? 

With the answers to the previous questions and a simple analysis of the implementation 

code, we can easily make a new visual representation. It is possible to do complex visual 

representations as well as simple ones. The difference is the time and effort we want to dispend 

on it.     

The visual representation that will be created, in this section, is the Activity Diagram 

representation (Activity class). To create it there are some alterations and implementations to 

make. These are the following: 

 

• Class Representation 

o Add some lines in the ItemStateChanged() method to make it possible to 

choose the new visual representation in the comboBox used for that 

effect;   

 

• Class Trace 

o Implement the getActivity() method that returns a instance of the Activity 

Diagram representation, including one copy of the original basicData. 

 

• Class Activity 

o Implement the id() method that returns the name of the visual 

representation; 

o Implement the build() method,  which constructs the visual representation. 

It uses a JSwing visual component to hold the visual representation, and 

creates graphical objects to represent the states and actions of an 

interactor; 

o Implement the getPanel() method, which returns the JComponent that 

holds the visual representation. It is used to export the visual 

representation to an image file; 

o Implement the getScroll() method, which gives the JComponent that 

holds the visual representation, inside a JScrollPane. It is used to add the 

visual representation to the Visual Representation Area (left panel of a 

JSplitPane) ,and to make it possible to use the scrollbar because normally 

the visual representations area is larger than the screen size. 

o Implement the filterStates() method, which reflects the results of the filter 

in the visual representation. For example, it can colorize the graphical 



 

 

 

58 

objects (representing the states) that are on a filter’s result with a different 

color. 

o Implement the setPopups() method, which is used to know what 

behaviour to have, in the visual representation, when popups checkbox is 

selected; 

o Implement the repaint() method, which is used to repaint the JComponent 

that holds the visual representation. Its task is reflecting the changes in the 

visual representation, when using filter, marker or animation 

functionalities. 

o Implement the actionPerformed() method to know what action to perform 

when a animation button is pressed. Also the action related to clean 

button, used in filters cleaning, is implemented here; 

o Implement the itemStateChanged() method, which is used to know what 

action to take when the popups’ checkbox state changes. Normally, the 

visual representation has two sub representations that are related with the 

state of the popup checkbox. 

o Implement all the filter methods (see 2.1.3 for a description of each filter 

method), which are the following:  

� getValues();  

� getStatesWhereValueAndVariable(); 

� getStatesWhereAllVariableValue(); 

� getStatesWhereAllVariableValueChanged(); 

� getStatesWhereVarChangedToValue(). 

 

• Class <Name of the New Graphical Object> the implementation of this class is 

optional, but if implemented has to extend Element class. 

 

o Implement the hit() method (to use on Popups functionality), which tells 

when the mouse is inside this new graphical object;  

o Implement the draw() method to draw the new graphical object in any 

JComponent. 

 

Now, a more detailed description of how to do the enumerated changes and 

implementations is provided. 

First the new representation is added to the set of choices provided by the Trace Visualiser. 

To do that some lines must be added in the Representation class. The lines are added in the 

itemStateChanged(ItemEvent e) method. These lines are to make it possible to switch to the 

Activity representation in the comboBox used for switching between visual representations. The 

lines are:     

  

Line 1: else if (item.compareTo("Activity Diagram") == 0) { vis = 7; } 



 

 

 

59 

 

switch (vis) { 

… 

Line 2: case 7: 

Line 3: visual = structure.getActivity(screenY);  

    Line 4: buildLState("Activity Diagram");  

    Line 5: varcolor.enableButtons(); 

    Line 6: popups.setSelected(true); 

    Line 7: popups.setEnabled(false); 

    Line 8: varcolor.apply(); 

    Line 9: jc.setSelectedItem("Activity Diagram"); 

       break; 

} 

 

Line 1 associates the name of the visual representation with a number, to use in the switch 

instruction. 

Line 2 adds, to the switch instruction, a new case holding the necessary code for switching 

to the new visual representation. 

Line 3 gets, from the Trace class, an instance of the new visual representation (in this 

example Activity diagram), which includes a copy of the original BasicData, obtained from the 

trace file. For that the implementation of the method get<NameVisualRepresentation> is 

needed. That method can have parameters that the new visual representation needs to do its 

drawing. The following lines in Trace class are needed to do that. 

 

public Visualization getActivity(int sc) {  

return new Activity(original.getBasicData(), sc);  

} 

 

 Line 4 calls a method that creates a JComponent that holds the visual representation (from 

variable visual obtained before). This method can also construct a JPanel that contains the 

names of the interactors if it is needed.  

 Line 5 enables the markers buttons, available on the right panel.  

 Lines 6 and 7 tell that popups will be always enabled in the new visual representation. 

 Line 8 is used to apply the markers to the new visual representation. 

 Line 9 tells the comboBox for selecting between visual representations that the currently 

selected representation is the new one. 

 Now the class of the new visual representation must be created. This class has to extend 

the Visualization class. Class Visualization has the abstract methods that Activity must 

implement to be a concrete visual representation. 

 The first method to implement is the id() method, which returns the name of the visual 

representation. It is used to identify the visual representation because some behaviour is shared 

by visual representations, but some times it is needed to distinguish between them and 

implement small differences on it. For example, the code to save the visual representations to 

an image file is equal in all of them except on Tabular representation. 



 

 

 

60 

  

public String id() { 

       return "Activity Diagram"; 

    } 

  

The second method to implement is the build() method, which draws the visual 

representation. It can create a JPanel and redefine it’s paint() method to do the drawing of the 

representation. It is also possible to use other JSwing component such JTree or JTable to hold 

the representation. DrawingPane in the following code is a class that extends JPanel and uses 

information obtained with the buildDiagram() method. That method creates the graphical 

objects representing the states and transitions and the class DrawingPane uses these on its 

paint method.    

 

public void build() {  

inter = bd.getInteractors(); 

buildDia gram(); 

       drawingPane = new DrawingPane(); 

    … 

drawingMouseListener = new DrawingPaneMouseListener(drawingPane, stat); 

       drawingPane.addMouseMotionListener(drawingMouseListener); 

} 

 

The third method to implement is the getPanel() method, which returns the JComponent 

that holds the visual representation. It is used to save the visual representation (inside the 

JComponent) to an image file. 

  

    public JComponent getPanel() { return drawingPane; } 

  

The fourth method to implement is the getScroll() method, which returns the JComponent 

that holds the visual representation, inside a JScrollPane. It is used to add the visual 

representation to the left component of the JSliptPane on the main frame. The implementation 

is: 

 

  public JScrollPane getScroll() { return drawingPane.scroller(); } 

 

The next methods to implement are the filter methods:  

 

• getValues(Vector<String> selection); 

• getStatesWhereValueAndVariable(Vector<String> variables, 

      Vector<String> values); 

• getStatesWhereAllVariableValue(Vector<String> variables, 

      Vector<String> values); 

• getStatesWhereAllVariableValueChanged(Vector<String> 

      variables, Vector<String> values); 

• getStatesWhereVarChangedToValue(Vector<String> variables, 



 

 

 

61 

      Vector<String> values); 

• filterStates(Vector<Vector<String>> stat). 

  

One example of the implementation of one of the filter methods is the following code: 

 

public void getStatesWhereValueAndVariable(Vector<String> variables, 

       Vector<String> values) { 

      getStates(1, variables, values); 

      filterStates(); 

   }   

 

The other methods are implemented similarly. The getStates() method (implemented in the 

Visualization class) is used to fill the vector of strings filter_states (each string representing a 

state number) that holds the filter result. The filter result is obtained calling specific methods in 

the BasicData instance. The states() method (implemented on the Activity class) is used to 

reflect the result in the visual representation and for that uses the filter_states vector. 

 

Visualization 

 

  public Vector<Vector<String>> getStates(int f, Vector<String> variables, 

      Vector<String> values) { 

    Vector<Vector<String>> states = new Vector<Vector<String>> (); 

    String s; 

    switch (f) { 

      case 1: 

        for (int i = 0; i < variables.size(); i++) { 

          s = variables.elementAt(i); 

          Vector<String> st = bd.getStatesValue(s, values.elementAt(i)); 

          states.add(st); 

        }  

break; 

      …  

}  

    filter_states = states; 

    bd.update(states, vf); 

    return states; 

  } 

  

Activity 

 

private void states() { 

    cleanModel(); 

    String ID; 

    Integer na; 

    Vector<String> vta; 

 

    for (int m = 0; m < filter_states.size(); m++) { 

      vta = filter_states.elementAt(m); 



 

 

 

62 

      for (int j = 0; j < vta.size(); j++) { 

        ID = vta.elementAt(j); 

        ID = ID.substring(ID.lastIndexOf('.') + 1); 

        na = new Integer(ID); 

        allValuesForState(na.intValue()); 

      } 

    } 

 

    drawingMouseListener.enabled = true; 

    drawingPane.boxs = false; 

    drawingPane.repaint(); 

  } 

 

The method filterStates() is implemented to know how to reflect, in the visual 

representation, the results of the filter. The implementation of filterStates() method in this case 

is: 

  

  public void filterStates(Vector<Vector<String>> stat) { states(); } 

 

The next method to implement is setPopups(), which is used to know what behaviour to 

implement, in the visual representation, when popups checkbox is selected. In the present 

example of Activity diagram, a MouseMotionListener is activated to listens mouse over events 

from the states representations and present the state information as a popup label.   

 

public void setPopups() { 

      drawingMouseListener.enabled = true; 

      drawingPane.boxs = false; 

   } 

 

The next method to implement is repaint(), which is used to repaint the JComponent that 

holds the visual representation. Its task is reflecting the changes in the visual representation, 

when using filter, marker or animation functionalities.    

 

    public void repaint() { drawingPane.repaint(); } 

  

Other method to implement is actionPerformed(), which is used to know what action to 

take when animation buttons are pressed. Also the action related to clean button, used in filters 

cleaning, is implemented here. The method implementation is the following: 

  

    public void actionPerformed(ActionEvent e) { 

       String status = e.getActionCommand(); 

       if (status.compareTo("stepBackward") == 0) { 

         drawingPane.stepBackward(); 

       } 

       else if (status.compareTo("stepForward") == 0) { 

         drawingPane.stepForward(); 



 

 

 

63 

       } 

       … 

       drawingPane.repaint(); 

    } 

 

Finally the last method to implement is itemStateChanged(), which is used to know what 

action to take when popups checkbox state changes. Normally, the visual representation has 

two sub representations that are related with the state of the popup checkbox.  In this example 

nothing changes if the checkbox is selected or not. But in other visual representations it may be 

desirable to hide some information, when popups checkbox is selected, and show it as popup 

labels. In this case the implementation of the method is empty.   

By implementing all these methods we have a new visual representation ready to be used.  

If new graphical objects are needed, for a new visual representation, the Element class 

needs to be extended by the class that will represent the graphical object.  Two methods must 

be implemented: the hit() method, which tells when the mouse is inside this new graphical 

object; and a draw() method to draw the new graphical object in any JComponent. The creation 

of new graphical objects can also be made in an easier way, using the classes already 

implemented (State, Transition and Marker) and drawing them in different shapes. For 

example, the State class may have different methods to be drawn as a rectangle, square, circle, 

oval, etc.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

64 

Part IV – Conclusions and 

Future Work 

 



 

 

 

65 

1.   Conclusions and Future Work 

The Trace Visualiser is responsible for presenting the results of the verification process to 

the IVY user in a manner that facilitates the understanding of the meaning of the trace. In the 

present work, new visual representations were added to an early Trace Visualiser, developed 

by the present author, in a previous work. The idea was to create standard visual 

representations, to allow everyone to easily understand the problems pointed at by a trace. To 

achieve that, a new visual representation based on Activity Diagrams of UML 2.0 was created.     

Also, an important analysis mechanism was added, the markers. This powerful mechanism 

helps in the identification of undesirable scenarios, which the engineers can use to obtain 

information on how they impact on the system’s design, and know how to correct problems. The 

markers proved to be more generic and useful comparing to the other mechanism, filters. For 

example, they can work with conditions of the types (>,=,<) and the filters only work with 

equality conditions.    

The objectives fulfilled in the present work were: 

• to analyse the implementation code of the early version of the Trace Visualiser. 

• to improve it’s visual representations; 

• to add to it more traces analysis mechanisms; 

• to improve it’s filters functionality; 

• to improve the animation in all the visual representations; 

• to improve it’s graphical interface; 

• to implement sub-filtering on it’s functionality of filters; 

• to add more standard visual representations to the visualiser. 

Now the graphical aspect of the Trace Visualiser is more appealing. This was done by 

adding icons to buttons and also toolbars to include the buttons. The internal frames were 

replaced by one JSplitPane that holds only a visual representation at each time. Also, it is 

possible to dynamically change the LookAndFeel of the application.  

In terms of future improvements, the visualiser should be able to provide type validation for 

attributes comparison, when we are adding markers from conditions based on them. For doing 

that a file, with information oo the types of all attributes, is needed. The idea is for the i2smv 

compiler to create a XML file with all the information of interactors’s attributes. Then, queries to 

the file will obtain the necessary information for doing the validation.  

Finally I want to refer that a paper was submited to the Interacção'2006 Conference and 

approved for publishing [Sousa06a]. The article describes the present Trace Visualiser (without 



 

 

 

66 

some improvements currently implemented because the work proceeded after the submission 

of the paper) and shows how it can be used to analyze an example of an interactive system 

(using markers). It also describes each visual representation and discusses there advantages 

and disadvantages in terms of graphical representation. The article was a way to present to the 

academic community the work made on the Trace Visualiser and to know what kind of 

acceptance the IVY tool may have when fully implemented.     



 

 

 

67 

References 

[Campos01] Campos, J. C., Harrison, M. D. Model Checking Interactors Specifications. 

Automated Software Engineering, 8(3-4): 275-310, August, 2001.  

[Campos04] Campos, J. C. Análise de Usabilidade Baseada em Modelos, Interacção 2004, 1ª 

Conferência Nacional em Interacção Pessoa-Máquina, 171-176, Grupo Português de 

Computação Gráfica, July, 2004.  

[Chan02] Chan, Patrick. The Java(TM) Developers Almanac 1.4, Volume 1: Examples and 

Quick Reference (4th Edition), 2002. 

[Cheaney91] Cheaney, E. ‘ASRS Introduces…’. ASRS Directline (1), 1995.  

[Clarke86] Clarke, E. M. Emerson, E. A., Sistla, A. P. Automatic Verification of finite-state 

concurrent systems using temporal logic specifications. ACM Transactions on Pogramming 

Languages and Systems, 8(2): 244-263, 1986.  

[Clarke99] Clarke, E. M. Grumberg, O., Peled, D. Model Checking. MIT Press, Cambridge, 

Massachusetts, U.S.A, 1999.  

[Dwyer97] Dwyer, M. B., Carr, V., and Hines, L. Model Checking Graphical User Interfaces 

Using Abstractions. In: M. Jazayeri and H. Schauer (eds.): Software Engineering – 

ESEC/FSE, 97, Nº 1301 in Lecture Notes in Computer Science. Springer, pp. 244-261, 

1997.    

[Fowler04] Fowler, M. UML Distilled, third edition. Object Technology Series, Addison-Wesley, 

2004. 

[Heitmeyer98] Heitmeyer, C., Kirby , J., and Labaw, B. Applying the SRC Requirements Method 

to a Weapons Control Panel: An Experience Report. In: Proceedings of the Second 

Workshop on Formal Methods in Software Practice (FFMS ’98). pp. 92-102, 1998. 

[McMillan93] McMillan, K. L. Symbolic Model Checking: An Approach to the State Explosion 

Problem, Kluwer Academic, 1993. 

[OMG05] Object Management Group, Unified Modelling Language: Superstructure, v. 2.0. OMG 

Specification: formal/05-07-04, August, 2005. 

[Palmer95] Palmer, E. “Oops, it didn’t arm.” – A case study of Two Automation Suprises. In: R. 

S. Jensen and L. A. Rakovan (eds.): Proceedings of the Eighth International Symposium on 

Aviation Psychology. Columbus, Ohio, pp. 227-232, 1995.  

[Ridder05] de Ridder, A., Posadas, F. M., Campos, J. C. Technical Guide for the Visualiser 

Component. IVY technical report IVY-TR-5-01, June, 2005.  



 

 

 

68 

[Roever98] de Roever, W.-P. The Need for Compositional Proof Systems: A Survey. In: W.-P. 

de Roever, H. Langmaack, and A. Pnueli (eds.): Compositionality: The Significant 

Difference, Vol. 1536 of Lecture Notes in Computer Science. Springer, pp. 1-22, 1998.   

[Ryan91] Ryan, M., Fiadeiro, J., Maibaum, T. Sharing actions and attributes in modal action 

logic. Theoretical aspects of Computer Science, Vol. 256 of Lecture Notes in Computer 

Science, Springer-Verlag, pp. 569-593, 1991. 

[Silva06] J. C. Silva and J. C. Campos and J. Saraiva. Combining Formal Methods and 

Functional Strategies Regarding the Reverse Engineering of Interactive Applications. In 

Gavin Doherty and Ann Blandford, editors, Interactive Systems: Design Specification and 

Verification, vol. 4323 of Lecture Notes in Computer Science, Springer-Verlag, 2006 (in 

press). 

[Sousa06] Sousa, Nuno M. E. IVY Trace Visualiser, Relatório de Opção III, DI/UM, February, 

2006. 

[Sousa06a] Sousa, Nuno M. E., Campos, J. C. IVY Trace Visualiser, In Chambel, Nunes, 

Romão and Campos (eds.): Interacção 2006 – Actas da 2ª. Conferência Nacional em 

Interacção Pessoa-Máquina, Grupo Português de Computação Gráfica, pp. 181-190, 

Outubro, 2006.  

[SWEBOK01] Guide to the Software Engineering Book of Knowledge, trial version 1.0, IEEE, 

May, 2001. 

[Woods94] Woods, D. D., L. J. Johannesen, R. I. Cook, and N. B. Sarter. Behind Human Error: 

Cognitive Systems, Computers, and Hindsight. State-of-the-Art Report SOAR 94-01, 

CSERIAC, 1994. 

 



 

 

 

69 

Acronyms 

CTL  Computacional Tree Logic 

MAL Modal-Action Logic 

IVY        Interactors VerifYier 

SMV      Symbolic Model Verifier 

HCI        Human-Computer Interaction  

ISO        International Organisation for Standardisation 

DIS        Draft International Standard 

POSC    Programa Operacional Sociedade do Conhecimento 

FEDER  Fundo Europeu de Desenvolvimento Regional 

FCT       Fundação para a Ciência e Tecnologia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


