
The modelling gap between software engineering and
human-computer interaction

José Creissac Campos
Departamento de Informática

Universidade do Minho, Campus de Gualtar
4710-057 Braga, Portugal.
Jose.Campos@di.uminho.pt

Abstract

The theories and practices of software engineering
and of human-computer interaction have, to a great ex-
tent, evolved separately. It seems obvious that the de-
velopment of an interactive system would benefit from
input from both disciplines. In practice, however, the
communication between the two communities has been
difficult. Models can be a particularly good tool for
communication. For that to happen the differences be-
tween the models used by each community must first be
identified and understood. This paper looks at the gaps
between the models used by the software engineering
and the human-computer interaction communities. It
identifies where differences between these models can be
found, and some aspects that need addressing in order
to promote better communication.

1 Introduction

Developing quality interactive systems is still a dif-
ficult and complex endeavour.

One of the leading banking institutions in Portu-
gal has recently released the latest version of its e-
banking site announcing a much richer set of features
available to costumers. One particular feature that
was implemented was a search mechanism over trans-
actions which allows costumers to search according to
a very flexible set of criteria. Unfortunately the sim-
ple task of checking the last few transaction of an ac-
count has been complicated. The users must now al-
ways go through the more powerful (but more com-
plex) search interface. Any reasonable usability analy-
sis would most probably suggest maintaining some sort
of quick access to the latest transactions, keeping the
power search as an option to the user.

One well known car manufacturer has spent a con-
siderable amount developing a completely new version
of its middle range car. Despite all effort put into
the car’s development, the air conditioning controls
have obvious usability problems. This happens due to
two main reasons: lack of appropriate feedback on the
system’s state in its user interface (the user interface
presents the automatic mode as having two possible
states — on or off — when in fact it has two additional
semi-automatic modes); difficulties in undoing some ac-
tions (it suffices to press a button to turn the system
on in the special mode to clear windscreen condensa-
tion; pressing the button again, however, switches off
the condensation clearing mode only, leaving the sys-
tem functioning on the previous mode used — this also
means that the effect of pressing the button becomes
unpredictable under these circumstances). These are
obvious usability pitfalls that seem to have gone unno-
ticed during design and development of the system.

For the two systems just mentioned costumers’ per-
ception of quality is particularly relevant. Nevertheless,
they both suffer from obvious usability problems. This
shows that there is a way to go in better integrating
usability issues into systems development.

This paper stems from work that is under way to-
wards an approach to incorporate usability issues into
software development from the very early stages of de-
sign (see [3, 4]). The applicability of automated rea-
soning tools to the identification of potential usability
problems has, in particular, been studied [4]. In this
context we have been in contact with both software en-
gineering and human-computer interaction practition-
ers/scientists. The difficulties in communication be-
tween the two communities have quickly become ap-
parent.

In our proposal communication between software en-
gineers and HCI experts is based around models. This



paper reflects on the gaps between the two communi-
ties and on approaches to reduce them. In particular,
in the gaps that can be identified when it comes to the
use of models to design and reason about systems.

2 Software Engineering vs. Interactive
Systems development

The theories and practices of software engineering
and those of human-computer interaction (HCI) have,
to a great extent, evolved separately. Software engi-
neering deals with the construction of software systems.
Despite its infancy, from programming technology to
software development process, a large body of tools
and knowledge has been produced (cf. [9]). However,
developing software is still a mostly difficult and com-
plex process. A study by Eason, cited in [18], concluded
that only 20% of deployed systems were considered suc-
cessful, while 40% were actually rejected. Other stud-
ies have shown that one third of software development
projects is abandoned before completion.

HCI is concerned with the process of communica-
tion between humans and computer systems. For the
purpose of this discussion we will consider the case of
software interactive systems. This field is younger than
software engineering , but also in this case a consider-
able body of knowledge has been developed (see, for
example, [6, 14]).

Since the focus is on the interaction between system
and users, the techniques developed within HCI for in-
teractive systems development deal mainly with what
can be called the interface layer of systems. Despite
all progress, it is also true for interactive systems that
developing them is a difficult and complex process. It
is estimated that 60% to 90% of all system failures can
be attributed to problems in the interaction between
the systems and their users [8]. The problems with
interactive systems development are not particularly
surprising since interactive systems are a special case
of software systems with the added complexity of hav-
ing to cope with human activities, goals, capabilities
and limitations.

Practitioners from both fields have developed dis-
tinct skills. It seems obvious that the development of
an interactive system will benefit from the input from
both fields of knowledge. Decisions regarding the user
interface design can have serious implications on the
implementation of the whole system, not just the user
interface implementation. Even in the case of non-
interactive systems, input from the HCI community
can help in understanding the impact of the system in
the overall context when this context involves humans.

In practice, however, the cooperation between the

two communities has been difficult. This can be at-
tributed to a number of factors. Two such factors are:

• different views on where the development focus
lies — software engineers are mainly interested in
solving the technical difficulties faced when imple-
menting a given functionality, HCI practitioners
are mainly interested in solving the problem of
which functionality should be provided and how to
optimise the way in which it is provided to users;

• communication difficulties — not always the same
terms are used to describe the same concepts in the
two communities; this hinders communication, at
best can make it difficult and at worst can mislead
the two parties into thinking that they are talking
about the same thing when in fact they are not.

3 Software engineering methods vs. in-
teractive systems development meth-
ods

In order to understand why the differences above
exist we can look at typical development processes used
by each community. This enables us to identify how the
above identified two factors manifest themselves.

3.1 Development focus

Doing this we find that software engineering meth-
ods (for example, the Unified Process [11]) are mostly
concerned with building the system. Typically the re-
quirements gathering phase attempts to determine the
functionality the system should provide and the focus
quickly shifts to the issue of how to better implement
that functionality. The main concerns are the quality
and maintainability of the code produced. Usability
issues are seldomly mentioned, if at all.

Interactive systems development methods (for ex-
ample, human-centered design [10]) on the contrary,
are more concerned with the design of the interaction
between the system and its users. The focus of atten-
tion in on how best to support the users in performing
specific activities with the aid of the system in concrete
contexts of usage.

3.2 Communication

In [12] a brief comparison between the ISO 13407
standard for human-centred design (HCD) [10] and the
Rational Unified Process (RUP) [11] is made. Both
methods are based on prototyping and iteration. How-
ever, these terms do not necessarily mean exactly the



User interface layer

Business logic layer

Data base layer

Figure 1. 3-tier architecture

same in both contexts. In RUP, prototypes are exe-
cutable code and mostly seen as intermediate steps in
the development of the final system (a partially imple-
mented system). Iterations are then steps in the direc-
tion of a more deeper coverage of the requirements for
the system.

In HCD prototypes are simulations or models of the
user interface of the system. They are developed for
usability testing purposes, and need not necessarily be
executable. In this context, iterations are seen as pro-
ducing new/refined interface designs, in response to the
usability testing results. In fact, in HCD there is no ex-
plicit mention of producing the final system [12].

3.3 Different perspectives on development

From the above we can conclude that the two disci-
plines have different perspectives on development. HCI
is primarily interested in developing the “outside” of
the system. That is, the interaction of the system with
its users. Software engineering is primarily interested
in the “inside” of the system. That is, how the system
is actually implemented. We will say that HCI has a
black box view of the system, while software engineer-
ing has a white box view of the same system.

Software engineers think of the system in terms of its
architecture. It is common for this architectural view
to be organised in a succession of layers. An example
of this is the 3-tier architecture presented in figure 1.
Note that in this architectural model there is no men-
tion of the user. In fact, despite mentioning the user
interface, most of the initial development effort usually
goes into the business and data layers, and concerns
about the user interface, when present, are geared to-
wards its implementation.

A usability practitioner will typically talk of users’
goals, tasks, and user interface designs, without deeper
consideration of the architectural issues and tradeoffs
“behind the scene”. The focus is on the interaction

between user and artifact, not on the artifact by itself.
It is usual to see references to the “interactive system”
as the composition of human + system (system, in a
software engineering sense).

These different views of the system (development)
lead to differences on how the different available tools
are applied. Different approaches to the use of proto-
types, and to the notion of iteration step during devel-
opment have already been discussed. Another relevant
issue is the differences in the use of models.

4 Model based analysis and develop-
ment

The use of models has become a standard technique
when dealing with complexity. Models have two main
purposes:

• helping understand a complex problem/solution
— a good model represents a adequately simplified
version of the problem/solution, making it easier
to grasp what is essential about it;

• helping in communicating complex prob-
lems/solutions — once the model is produced it
can be used to communicate information to others
(assuming they will be able to understand it).

We can see a prototype as a special kind of model that
can be executed or in some way used to simulate the
system.

The term model is used for many different artifacts
at different levels of abstraction. Models can vary in:

• formality — they can range from very informal
“back of the envelope” sketches to very formal
mathematical models of specific aspects of the sys-
tem; typically, as the level of detail increases, so
does decrease the range of features that can be
expressed in the model;

• view — different models will address different as-
pects of the system, the UML [2] modelling lan-
guage alone identifies 12 different diagram types;
a typical distinction is between structural and be-
havioural models, in this case, however, it will also
be useful to distinguish between models that take
a black box view of the system, and models that
take a white box view of the system;

• purpose — different needs will typically demand
different types of models; a common distinction
is that made between conceptual models (used
for describing the problem domain), specification
models (use for describing what the solution to the



problem is), and implementation models (used for
describing how the solution is implemented).

In any case a process of abstraction is used to fo-
cus the attention on the relevant issues that must be
considered. One of the consequences of the abstraction
process is that models will reflect a partial view of the
system. This view is determined by the combination
of the factors just described.

5 Gaps in the modelling

Having developed (more or less) independently, and
with different needs in mind, software engineering and
HCI have developed different styles of modelling.

Models are a means of communication, so we can try
to analyse to each extent the models in each community
can serve the purpose of helping the other community.

For the purpose of this discussion we will consider
that models from both disciplines can be divided into
two broad categories: architectural models and be-
havioural models.

5.1 HCI models

In the present context we use the term architectural
model to refer to those models that define the repre-
sentation side of the interface. That is, how the infor-
mation is presented to the user (the View in the MVC
architecture). This make take the form of paper mock-
ups of the envisaged interface, or might be developed
resorting to current day IDE tools. Typically the mod-
els are developed with a specific type of interface in
mind. This causes problems when the interface might
be deployed in different platforms, using different in-
teraction paradigms.

Behavioural HCI models typically define the tasks
the system is supposed to support. These models cap-
ture how the system is to be used. It is well known,
however, that once developed systems tend to be used
in unforeseen ways and/or for unforeseen purposes.
These models help shape how the interface should be-
have, but are of little help when considering how to
implement it.

Models from the HCI community define what the
(user interface of the) systems should be, but give lit-
tle guidance on how to build them. This should be ex-
pected since their main purpose is helping the analysis
of the systems’ usability, not the analysis of their im-
plementation. Unfortunately it creates problems when
discussing the system with software engineers since
they will be thinking in terms of implementation.

Interestingly this can also be a problem for the HCI
practitioner. In fact, the models describe the design of

the system but little knowledge/information is present
regarding its usability. That type of knowledge resides
mostly in the head of the usability experts that perform
the analysis. Hence the models do not actually capture
all the relevant knowledge about usability issues.

An exception to this are the approaches that de-
velop user models in an attempt to capture how a user
would behave in front of the system. Of particular in-
terest here are syndectic approaches [7] that develop a
model of both the system and the user. In theory they
should enable the characterisation of usability concepts
directly in the model. It is not clear whether develop-
ing adequate user models for this is feasible. In [1], for
example, only a very simple form of behaviour (rational
behavior) is considered in order to make the approach
feasible.

5.2 Software engineering models

Models from the software engineering community
capture how the system is built. Architectural mod-
els capture how the system can be constructed from
different components. Behavioural models capture the
interaction between those components in order to im-
plement the intended functionality.

Unfortunately it is rare to have software engineering
type models for the user interface layer of the system.
Current day IDE tools help maintaining this problem
since they are misleading. Apparently they help model
the user interface, and establish a link between the two
types of models. A mockup of the user interface can
be used to visually design the interface, and the appli-
cation code is automatically generated. Unfortunately,
these tools cover a small fraction of what is needed.
Graphical layout can be described, but little support
is given to describing the behavioural part. On top of
that, they are developed at a level that is close to the
actual code, lacking abstraction.

When models are developed, they represent how the
system should be built. This makes it possible to
reason about the quality of the implementation. For
example, whether all functionality is accessible, or if
pressing some specific button causes some specific func-
tionality to be executed. However, establishing a link
between such type of models and more generic usability
properties is usually not easy.

This becomes a problem, for example, when at-
tempting to perform reverse engineering of interactive
systems to reason about usability issues. The models
that are produced from the code are not adequate for
that style of reasoning.

Abstraction is needed to get away from actual de-
tails of implementation and into the concepts that are



Figure 2. User interface (HCI architectural
view)

relevant for usability. While the structural view of a
user interface is easily apparent when using a IDE to
model a user interface, the behavioural view is usu-
ally lost in a tangle of interdependent listeners objects.
Hence, software engineering models are of little help
when reasoning about the usability of a system.

5.3 An example

Consider, for example, the user interface in figure 2.
What type of models would we use for both HCI and
software engineering activities?

From an HCI perspective we would be interested in
analysing the usability of the system. One technique we
could use is heuristic evaluation [15]. In order to do this
we would need a model describing the user interface of
the system. As stated before, that might simply be
a paper mockup of the intended design. The actual
image on figure 2 could be part of that model.

From a software engineering point of view we would
be concerned with how to best implement the system.
To this end we would resort to architectural and/or
behavioural models of the code implementing the sys-
tem. For example, we could represent different appli-
cations of the Observer-Observable pattern to achieve
user interface code/application code separation using
the models in figure 3. Using these models we could
discuss the relative merits of each approach.

Note that the models in figure 3 are already archi-
tectural models with strong emphasis on the user in-
terface. A typical software engineering model would

JPanel

JPanel

DiagramUI CodeUI

DiagramUI CodeUI

Observable

InteractorModel

InteractorModel

Observable

Observer
Observer

Alternative b)

Alternative a)

AbstractUI

Observer

Figure 3. Observer-Observable pattern (soft-
ware engineering architectural view)

probably be more concerned with specific details of the
InteractorModel class.

In the case of the HCI model, details of information
representation at the user interface will be included. In
the case of the software engineering model the focus is
on the internal architecture of the system.

If we wanted to think in terms of behaviour different
types of models would also be used. From a HCI per-
spective we could develop task models depicting how
the system is supposed to be used. Figure 4 presents
an excerpt of one such model in the ConcurTaskTrees
notation [13].

From an software engineering perspective we could
focus on the communications between the different ob-
jects in the system using, for example, sequence dia-
grams. Figure 5 presents a sequence diagram showing
how objects communicate in the Observer-Observable
pattern.

5.4 Software engineering models vs. HCI models

Figure 6 sums up the discussion above. Software
engineering models are usually white box models bi-
ased towards implementation. These are models that
ultimately describe how a system is coded. The speci-
fication level is usually point out as the most appropri-



Figure 4. Task model (HCI behavioural view)

:AbstractUI :Object :InteractorModel

notifyObservers(o)

update(self,o)

addObserver(self)

Figure 5. Sequence diagram (software engi-
neering behavioural view)

ate level to use, but experience shows that software
engineers tend to lean towards implementation very
quickly.

One example of a software engineering black box
model is the Use Case diagram of UML [2]. These
diagrams are used to capture all the functionality that
the system should implement, and are not developed
from user interface perspective.

HCI models are usually conceptual models that pro-
vide a black box view of the system. They are typically
used to support analysis of the usability of the sys-
tem that is being designed. Some models will describe
how the system will look and/or feel to the user. This
means that information about the usability of the sys-
tem is not explicitly modeled. This knowledge must

Conceptual Specification Implementation

View

bl
ac

k 
bo

x

Purpose

w
hi

te
 b

ox

HCI models

S/W Eng. models

Figure 6. HCI models vs. Software engineer-
ing models

be brought to bear on the analysis either by resorting
to an expert that will look at the model and analyse
its features, or encoded in some specific analysis tech-
nique. Even in the last case the input from a usability
expert is typically needed. It can be said that these
models don’t follow the usability guideline of placing
knowledge in the world, instead of in the users’ head.

Another approach is to take a broader perspective
and attempt to model not only the system but also the
user. In this case usability related information can be
captured directly in the model. These models should
be able to capture salient features of user behaviour
when faced with a user interface, but developing them
is a difficult and complex endeavor.

6 Bridging the gap

It is clear that models can be a invaluable reasoning
and communication tool during software development.
This is also true for interactive systems development.
More so since two communities with largely different
background are (should be?) involved in the process of
designing and implementing an interactive system.

Architectural models are those where it will be easi-
est to reach common ground. At this level, HCI models
attempt to capture (with varying degrees of abstrac-
tion) how the interface is structured, and what infor-
mation it presents to the user. These models can be
used to drive the implementation of the system. Cur-
rent day IDE tools already enable the graphical defi-
nition of the user interface, with code being automat-
ically generated. It must be noted, however, that the
user interface can have implications on the architec-
ture of the system that go beyond the architecture of



the user interface layer.
Behavioural models are considerably more far apart.

This happens because models from both communities
address slightly different issues. HCI models are con-
cerned with the joint behaviour of system and users.
Software engineering models are more concerned with
the internal behaviour of the components of the sys-
tem. Deriving one from the other might not always be
an easy task. In most situations the link between the
two types of modes will not be as direct as in the case
of the architectural models. Behavioural models from
software engineering are dependent on the architecture
of the system. Additionally, typical software engineer-
ing notations do not support the kind of modelling done
at the HCI level.

From a methodological point of view, since the sys-
tem is developed for its users, user interface design
should drive the initial stages of development. Once
a first idea of the desired user interface is achieved, the
process of designing a system that implements it can
be started.

It is not realistic to think of software development
as a sequential process. Development of software hap-
pens iteratively and incrementally. Also, the assurance
of quality most be faced from the very early stages
of design. Hence, usability analysis should be applied
not only during the initial stages of development, but
throughout all of the development process, whenever
user interface issues become under consideration.

For that to happen two points need to be addressed:

• software engineering models must better cover the
user interface layer — in order to promote commu-
nication the first step is that both communities are
talking about the same concepts (even if in differ-
ent languages).

• The relation between software engineering mod-
els of the user interface, and HCI models must be
further investigated — software engineering mod-
els are developed with implementation in mind,
HCI models are developed with usability in mind;
nevertheless, they influence each other.

The ideas above are already being explored. In [17]
the integration of a task modelling language into the
UML is discussed. This seems to imply a broadening
of application of the UML. This type of effort could
potentially help in establishing the relation between
the two types of models.

In [16] a different approach is attempted. In this
case the application of the UML to the modelling and
development of interactive systems is explored with the
creation of appropriate stereotypes. The approach can
then be seen as a step in the direction of better coverage

of the user interface layer from the software engineering
community. A similar approach is proposed in [5].

The definition of usability patterns could help bridge
the communication gap by crystallising knowledge and
best practices. However, the context of application of
these patterns is complex and they can hinder the cre-
ative potential that is so relevant in user interface de-
sign. Their definition and use must therefore be made
with careful consideration of all the issues involved.

7 Conclusions

Models are a particularly good tool for communica-
tion. The need for promoting the communication be-
tween the HCI and software engineering communities
has been identified. For that to happen the differences
between the models used by each community must first
be identified and understood.

In this paper the processes and models used by the
software engineering community and HCI communities
have been briefly looked at. Some of the differences
between the two types of models have been identified.
As a result of the exercise some proposals have been
made for aspects that need to be addressed in order to
promote better communication between the two com-
munities.

The end result of a better integration between soft-
ware engineering and HCI will be better quality in-
teractive systems. The notion of quality must be un-
derstood both from a HCI perspective (better usabil-
ity) and from a software engineering perspective (bet-
ter code).

This increase in quality should happen not only in
terms of the end result (the system produced), but also
in terms of the development process. That is, develop-
ment should be more efficient with less need for changes
to be made due to usability problems.

Acknowledgements

The author wishes to thank Gavin Doherty for his
useful comments on previous versions of this paper.

References

[1] Ann Blandford, Richard Butterworth, and Paul
Curzon. Models of interactive systems: a case
study on programmable user modelling. Inter-
national Journal of Human-Computer Studies,
60(2):149–200, February 2004.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide. Object



Technology Series. Addison-Wesley, Reading, MA,
1998.

[3] José C. Campos. Automated Deduction and
Usability Reasoning. DPhil thesis, Department
of Computer Science, University of York, 1999.
Available as Technical Report YCST 2000/9.

[4] José C. Campos and Michael D. Harrison. Model
checking interactor specifications. Automated
Software Engineering, 8(3-4):275–310, August
2001.

[5] Paulo Pinheiro da Silva. Object Modelling of In-
teractive Systems: the UMLi approach. PhD the-
sis, Department of Computer Science, University
of Manchester, 2002.

[6] Alan Dix, Janet Finlay, Gregory D. Abowd,
and Russel Beale. Human-Computer Interaction.
Pearson Education Ltd., third edition edition,
2004.

[7] D.J. Duke, P.J. Barnard, D.A. Duce, and J. May.
Syndetic modelling. Human-Computer Interac-
tion, 13(4):337–393, 1998.

[8] E. Hollnagel. Human reliability analysis: context
and control. Academic Press, London, 1993.

[9] IEEE Computer Society, Los Alamitos, Califor-
nia. Guide to the Software Engineering Body of
Knowledge: Trial Version, May 2001.

[10] International Organization for Standardization.
ISO standard 13407 – Human-centered design pro-
cesses for interactive systems, first edition edition,
June 1999.

[11] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process. Object
Technology Series. Addison-Wesley, Reading, MA,
1999.

[12] Bonnie E. John, Len Bass, and Rob J. Adams.
Communication across the hci/se divide: Iso
13407 and the rational unified process r©. In
Proceedings of the 10th International Conference
on Human Computer Interaction, Crete, Greece,
June 2003.

[13] Giulio Mori, Fabio Paternò, and Carmen Santoro.
Ctte: Support for developing and analyzing task
models for interactive system design. IEEE Trans-
actions on Software Engineering, 28(9), 2002.

[14] William M. Newman and Michael G. Lamming.
Interactive System Design. Addison-Wesley, 1995.

[15] Jakob Nielsen and Rolf Molich. Heuristic evalu-
ation of user interfaces. In CHI ’90 Proceedings,
pages 249–256, New York, April 1990. ACM Press.

[16] Nuno Nunes and João Falcão e Cunha. Towards
a UML profile for user interface development: the
Wisdom approach. In Proceedings of UML 2000.
Springer-Verlag, 2000.

[17] Fabio Paternò. ConcurTaskTrees and UML: how
to marry them? Position paper to the Tupis 2000
Workshop at UML 2000, 2000.

[18] J. Preece et al. Human-Computer Interaction.
Addison-Wesley, 1994.


