
The GUISurfer tool: towards a language independent
approach to reverse engineering GUI code

João Carlos Silva
jcsilva@ipca.pt

Carlos Silva
carlosebms@gmail.com

Rui Gonçalo
uch.073@gmail.com

João Saraiva
jas@di.uminho.pt

José Creissac Campos
jose.campos@di.uminho.pt

Departamento de Informática/CCTC
Universidade do Minho, Campus de Gualtar

4710-057 Braga, Portugal

ABSTRACT
Graphical user interfaces (GUIs) are critical components of
today's software. Developers are dedicating a larger portion
of code to implementing them. Given their increased im-
portance, correctness of GUIs code is becoming essential.
This paper describes the latest results in the development of
GUISurfer, a tool to reverse engineer the GUI layer of in-
teractive computing systems. The ultimate goal of the tool
is to enable analysis of interactive system from source
code.
Keywords
Graphical User Interfaces, Source code, Analysis
ACM Classification Keywords
H.5.2 User Interfaces: Graphical user interfaces (GUI). D.2.7
Distribution, Maintenance, and Enhancement: Restructuring,
reverse engineering, and reengineering.
General Terms
Languages, Reliability, Human Factors
INTRODUCTION
Model-based development of software systems, and of in-
teractive computing systems in particular [6], promotes a
development life cycle in which models guide the devel-
opment process, and are iteratively refined until the source
code of the system is obtained. Models can be used to cap-
ture, not only the envisaged design, but also its rational,
thus documenting the decision process undertook during
development. Hence, they provide valuable information for
the maintenance and evolution of the systems.
It is not always the case, however, that models exist for a
given piece of software. Indeed, not all software develop-
ment approaches promote the use of models as highlighted
above (e.g. Agile Development methods place relatively

little emphasis on documentation). In the specific case of
interactive computing systems, the de facto standard for
modeling software (UML [2]) do not cater for the adequate
modeling of user interfaces. Even so, it is still the case that
models would help in the maintenance and evolution of
such software.
With the above in mind, we are working on the develop-
ment of tools to automatically extract models from the user
interface layer of interactive computing systems’ source
code. To make the project manageable we focus on event-
based programming toolkits for graphical user interfaces
(GUI) development (Java/Swing being a typical example).
The goal is that extracted models will enable the analysis of
existing interactive applications. This might be required to
ascertain the quality of a given implementation, when an
existing application must be ported, or simply updated [5].
A particular emphasis is being placed on developing tools
that are, as much as possible, language independent.
Through the use of generic programming techniques, the
developed tool aims at being targetable to different user
interface programming languages and toolkits (possibly
from different programming paradigms – e.g. object ori-
ented or functional), from professional to end-user pro-
grammed interactive systems (e.g. spreadsheets). At this
time, our tool is able to reverse-engineer Java (either with
Swing or GWT) and Haskell application's source code.
Our goal is to be able to extract a range of models from the
source code. In the present context we focus on finite state
models that represent the behavior of GUI. That is, when
can a particular GUI event occur, which are the related
conditions, which system actions are executed, or which
GUI state is generated next. We choose this type of model
because we want to be able to reason and test this GUI
model in order to analyze aspects of the original applica-
tion's usability, and the quality of the implementation.
In previous papers [7, 8] we have explored the applicability
of slicing techniques to our reverse engineering needs, and
developed the building blocks for the approach. In this pa-
per we explore both the integration of testing techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

allowing us to reason about GUI models, and the feasibility
of targeting the tool to different programming languages.
The paper uses a simple agenda application as running ex-
ample.
THE AGENDA EXAMPLE
Throughout the paper we will use an interactive agenda of
contacts as a running example. The system allows users to
perform the usual actions of adding, removing and editing
contacts. Furthermore, it also allows users to search for a
contact by its name. This particular example was chosen
because it has enough features to allow us to demonstrate
the approach in the scope of this paper.

Figure 1 – The agenda application
Each agenda consists of four windows. Namely, Login,
MainForm, Find, and ContactEditor. Figure 1 presents
the windows of a Java/Swing implementation. At applica-
tion start, the Login window (Figure 1, top-left window) is
used to control users’ access to the agenda. A login and
password have to be provided by the user. If the user intro-
duces a valid login/password pair, and presses the Ok but-
ton, then the login window closes and the main window of
the application is displayed. If the user introduces an inva-
lid login/password pair, then the input fields are cleared, a
warning message is produced, and the login window con-
tinues to be displayed. By pressing the Cancel button in
the Login window, the user exits the application.
Authorized users can use the main window (Figure 1, top-
right window) to find and edit contacts (Find and Edit
buttons). By pressing the Find button, the user opens the
Find window (Figure 1, bottom-left window). This window
is used to search for a particular contact's data by name. By
pressing the Edit button, the user opens the ContactEditor
window (Figure 1, bottom-right window). This last window
allows the edition of all contact data, such as name, nick-
name, e-mails, etc. The Add and Remove buttons enable
edition of the e-mail addresses’ list of the contact. If there
are no e-mails in the list then the Remove button is auto-
matically disabled.
A first implementation was done in Java/Swing [4]. The
implementation has 821 lines of code, and was developed
with the NetBeans IDE. GUI code was generated automati-
cally by the IDE. The only change introduced in the gener-
ated code was the explicit setting of the visibility attribute
of the buttons in the interface. Currently GUISurfer (see

below) does not assume the initial state of buttons to de-
fault to visible, but this can be easily fixed.
GUISURFER
In order to achieve our goal of developing an approach for
reverse engineering of GUI source code, we have started
the development of the GUISurfer tool. GUISurfer resorts
to a number of techniques to make it easier to achieve eas-
ily re-targetable reverse engineering of GUI source code.
Figure 2 describes our approach. Using a parser for the
relevant programming language, an Abstract Syntax Tree
(AST) is obtained from source code. In order to subse-
quently extract the user interface from the AST, we need to
construct a function that isolates a sub-program from the
entire program. Because we want to reuse our approach
across different programming languages and paradigms, we
need to use generic techniques that work with any AST and
not with the AST of a particular programming language
only. Thus, our reverse engineering approach combines two
language-independent techniques: strategic programming
(ST) [11, 12], and program slicing [10].

Figure 2 - Model-based GUI reasoning process
GUI components’ constructors are used to focus the slicing
in the subtrees that represent the GUI. The GUI code slic-
ing module performs this code slicing of relevant GUI AST
fragments. It performs a traversal of the tree (based on the
program dependency graph) in order to detect all GUI
nodes. This is a generic module to extract GUI fragments
from any AST, i.e. Java/Swing, WxHaskell, C#, etc.

Figure 3 - Agenda GUI state machine

Using strategic programming we make use of a pre-defined
set of (strategic) generic traversal functions that traverse
any AST using different traversal strategies (e.g. top-down,
left-to-right). These functions enable us to focus on nodes
of interest, only. In fact, we do not need to have knowledge
of the entire grammar/AST, only of those parts that are of
interest (the GUI toolkit sub-language in our case). As a
result, we do not need full knowledge of the grammar to
write recursive functions that isolate the graphical user in-
terface sub-program from the entire program.
Using the described approach we aim to make the manipu-
lation of the AST easily re-targetable to different program-
ming languages and GUI toolkits. While building the AST
is clearly language dependent, regarding code slicing, only
the GUI components constructors need to be specified.
The components that we look for in the source code are
widgets that enable users to input data (user input), widgets
that enable users to choose between several different op-
tions such as a command menu (user selection), any action
that is performed as the result of user input or user selection
(user action), and any widget that enables communication
from the application to users (output to user).
Given the user interface code of the interactive system and
a list of relevant GUI components, we can generate its
graphical user interface abstraction. GUISurfer receives the
list of components to look for as a parameter, meaning it is

possible to extract models at different levels of detail. From
models focused on specific types of components, up to
models of the complete interface.
GUISurfer is composed by three tools: FileParser, As‐
tAnalyser, and Graph. These tools are configurable
through command line parameters. Below we outline some
of the more important parameters for each tool. For more
details on the techniques behind these tools see [7, 8].
The FileParser tool is used to parse a particular source
code file. For example, the command “FileParser 
Login.java” allows us to parse the Login class from the
Agenda application. As a result, we obtain its AST.
The AstAnalyser tool is used to slice an abstract syntax
tree, considering only it graphical user interface layer. It
consists of a slicing library, containing a generic set of tra-
versal functions, and has been implemented in Haskell.
This tool must be used with three arguments, i.e. the ab-
stract syntax tree, the entry point in source code, and a list
with all widgets to consider during the GUI slicing process.
The command “AstAnalyser Login.java.ast main 
JButton” let us extract the GUI layer from Login.java
abstract syntax tree, starting the slice process from main
method, and extracting only "JButton" related data. The
tool generates two files “initState.gui” and
“eventsFromInitState.gui” which contain initial
states and events from initial states, respectively.

Finally, the Graph tool receives as arguments the “init‐
State.gui” and “eventsFromInitState.gui” files,
and generates several metadata files with events, condi-
tions, actions, and states extracted form source code. Each
of these types of data is related to a particular fragment
from the AST. Another important outputs generated by the
Graph tool are the "GuiModel.hs" and "GuiModelFull.hs"
files. These are GUI specifications written in the Haskell
programming language. These specifications define the
GUI layer mapping events/conditions to actions. Finally,
this last tool allows us also to generate several visual mod-
els through the GraphViz tool, such as state machines, be-
havioral graph, etc.
GUI MODELS
Interactive systems can be represented as directed graphs
[5]. User actions are mapped into arcs and states are appli-
cation GUI idle time. Figure 3 presents a directed graph
describing the agenda application GUI behavior. This graph
was generated from the Java/Swing implementation. User
actions are mapped into arcs and states describe sets of ac-
tive windows. Each transition has the generic form <win-
dow><state><action><condition>. The meaning of each
element is the following: <window> identifies the window
in which the action occurred; <state> identifies a specific
internal state of the window; <action> identifies a user ac-
tion; <condition> identifies a condition that must hold for
the transition to occur.
In Figure 3, window states and conditions are identified by
name. These names reference AST fragments that are iden-
tified in the metadata files generated by GUISurfer. Hence,
the top left corner of the figure shows that, initially, only
the login window is presented to users. If the user presses
OK, and condition cond1 (the login/password pair is valid)
is verified then, the interface will present the MainForm
window. From their other windows can be opened.
One aspect that can be immediately noticed is that applica-
tion does not constrain the number of Find and ContactEdi-
tor windows that can be open at the same time (the left bot-
tom state corresponds to three Find windows and the
MainForm window being displayed – the model was gener-
ated considering a depth of up to four user actions). While
it might make sense to edit several contacts at the same
time, performing several searches simultaneously might be
problematic and would deserve some investigation. This
illustrates how simple visual inspection of the graph al-
ready provides valuable information.
As referred to above, information about the internal states
of each window is also extracted. Figure 4 illustrates a type
of model identifying the internal states for each application
window, together with the total number of events associ-
ated with each state. This is useful as a metric to detect
windows complexity.
A number of approaches can be used to reason about the
system from the generated models. For example, we can
use graph-based algorithms to compute if all the states are
accessible from the initial one, in order to detect whether a

particular window of the application will ever be displayed
or not. We can also produce valid or invalid sentences of
the language defined by the machine to use as test cases.
These test cases can be used to prove more advanced prop-
erties of the interface.

Figure 4 - GUI state events number
ONGOING WORK
GUISurfer is already able to reverse engineer Java/Swing
applications (limitations are analyzed in the Discussion
section). This section puts forward a number of improve-
ments we are currently working on.
Support for Analysis
As already stated, using graphs to model Graphical User
Interfaces opens up a number of venues for analysis [9].
These range from using graph theoretic concepts such as
the shortest path between two vertices (which can be seen
as defining the most efficient way a user can achieve a par-
ticular change of state), through testing relevant properties
of the behavior of the system (as described by the graph),
up to formal verification of such properties (c.f. using
model checking [3]).
Graph operators
In order to support graph based analysis, we are extending
GUISurfer with graph operators. At this time we have im-
plemented intersection, union and difference of graphs.
This has proven particularly useful in comparing versions
of an application, allowing analysis of whether different
versions have the same behavior.
Consider a new version of the Agenda application, where
the Contact Editor form was for some reason left out. To
simulate this we simply remove the following Java/Swing
instruction from the code:
new ContactEditor().setVisible(true); 

Using the newly introduced graph difference operator we
are able to obtain the behavioral differences between the
two versions of the application. In this case we obtain the
graph of the Figure 5. The graph shows explicitly all be-
havioral differences between these two Agenda versions
(bold transitions). In this case it can be seen that accessing
the contact editor can be done in the first version, but not in
the second. Either the change was intentional, and the
analysis confirms that it was successfully accomplished, or
it was unintentional, and the analysis detects a problem in
the new version of the software.

Figure 5 - Agenda GUI behavioral graph (using difference operator)

Testing
In order to support testing of user interface properties over
the extracted behavioral models, we make use of the
QuickCheck Haskell library tool. QuickCheck [1] is a tool
for the automated testing of Haskell programs. The pro-
grammer provides a specification of the program, in the
form of properties that functions should satisfy, and
QuickCheck then tests whether the properties hold in a
large number of randomly generated cases. Specifications
are expressed in Haskell, using combinators defined in the
QuickCheck library. QuickCheck provides combinators to
define properties, observe the distribution of test data, and
define test data generators.
Consider again the version of the agenda without the Con-
tactEditor window. If we run a set of tests in QuickCheck
to determine whether the different windows in the applica-
tion are reachable, we get as results that after running
10,000 randomly generated tests it was still impossible to
reach the ContactEditor window.
Re-targeting the tool
As stated from the start, the goal when developing
GUISurfer has been to make it a easily re-targetable tool.
The tool was originally designed to work with code written
in the Java/Swing. Recently we have started work on add-
ing capabilities to analyze code written in the Haskell func-
tional programming language (with the WxHaskell toolkit),
and Java code using the Google Web Toolkit (GWT), a
Java based toolkit to develop Rich Internet Applications.
For WxHaskell, an Haskell parser was added to the tool.
Next, the specific set of WxHaskell GUI components had
to be supported. This amounted to configuring the slicing
process with the WxHaskell components. A more funda-
mental issue related to event handling. In WxHaskell,
events handler in the interface, are registered through the

“on command” property, not Java’s “addActionListener”.
To solve this problem, the GUISurfer tool again considers a
different set of operators and properties. The main adapta-
tion work was due to the different programming paradigm
being used, i.e functional paradigm, where programs are
executed by evaluating expressions. Thus, the GUISurfer
tool must consider this different types of expression evalua-
tion. As example, Haskell control structures can be defined
by multiple equations as an alternative to if or case expres-
sions.
This first version of WxHaskell support is already able to
reverse engineer an application such as the agenda used
above, and our goal is to extend it to a larger set of Haskell
code constructions.
Regarding GWT, since it is a Java toolkit, the same parser
already used by GUISurfer for Java/Swing code could be
used. Ideally then there would only be the need to perform
the slicing step with a different set of GUI components
(those of GWT instead of those from Swing). However a
few issues arose. The first related to the genericity of the
tool and was due to GUISurfer’s original implementation
using the “addActionListener” method of Swing compo-
nents to identify actions. In GWT however methods are
registered though the “addClickHandler” method. Solving
this problem meant parameterizing GUISurfer on the
method used to register event handler in the interface.
A second issue related to differences in the functionality of
both toolkits (Swing and GWT). Since a GWT application
is a web application, the closing window (in GWT, panels)
actions available in Java Swing are not present. Closing a
web application is an unusual action, and thus there is no
direct support in GWT for doing it, though it can be
achieved by invoking native JavaScript. Another issue oc-
curred in detecting a change from a window/panel to an-

other. In Swing this is achieved by invoking the “dispose”
method on a class. In GWT this is achieved by making the
visibility attribute of the panels. Again, changes were intro-
duced to address this situation.
In this first version of GWT support, an assumption is also
made that the GWT code is structured as similar as possible
to Java Swing code. Work is currently ongoing and our
goal is to loosen these restrictions as much as possible, and
generally improve support for panel handling.
DISCUSSION
Using GUISurfer, programmers are able to reason at a
higher level of abstraction than that of code. GUISurfer
makes possible high-level graphical representation of thou-
sand of lines of code. The process is almost automatic and
enables reasoning over the interactive layer of computing
systems. Examples were provided of some of the analysis
that can be performed.
While results show this type of approach is useful, it must
be acknowledged that there are limitations. One relates to
the focus on event listeners for discrete events. This means
the approach is not able to deal with continuous media and
synchronization/timing constraints among objects. Another
has to due with layout management issues. GUISurfer can-
not extract, for example, information about overlapping
windows since this must be determined at run time. Thus,
we cannot find out in a static way whether important in-
formation for the user might be obscured by other parts of
the interface. A third issue relates to the fact that generated
models reflect what was programmed as opposed to what
was designed. Hence, if the source code does the wrong
thing, static analysis alone is unlikely to help because it is
unable to know what the intended outcome was. For exam-
ple, if an action is intended to insert a result into a text box,
but input is sent to another instead. However, if the design
model is available, GUISurfer can be used to extract a
model of the implemented system, and a comparison be-
tween the two can be carried out.
CONCLUSIONS AND FUTURE WORK
In this paper we have present the latest results of work on
investigating the extraction of different GUI models from
application’s source code. Our goal is to produce a fully
functional reverse engineering tool. The tool is not only
useful to enable the analysis of existing interactive applica-
tions, it can also be helpful when an existing application
must be ported or simply updated.
The GUISurfer tool is already able to derive user interface
models of interactive computing systems written in
Java/Swing. Currently the main assumption made about the
code is that the NetBeans IDE generated it. Initial support
for WxHaskell and GWT is already available. We plan to
extend our implementation to handle more complex user
interfaces. We plan to continue with others programming
languages/toolkits, in order to make the approach as ge-
neric as possible. Support for reasoning about the generated
models has also been developed and was illustrated.

In order to make the tool available for an audience as wide
as possible, we have started on the development of a web
portal where the tool will be made available. The goal is
that users will be able to upload their own software and use
the tool to analyze it online
Open research problems related with this work are the cov-
erage criteria definitions used for testing models, and im-
plementation of refactoring/transformation rules for user
interface source code.
ACKNOWLEDGMENTS
GUISurfer development is being carried out in the context
of the CROSS and SSaaPPP projects, supported by the Por-
tuguese Research Foundation (FCT) under contracts:
PTDC/EIA-CCO/108995/2008 and PTDC/EIA-CCO/1086-
13/2008. J.C. Silva is supported by a FCT PhD grant
(SFRH/BSAD/782/ 2008).
REFERENCES
1. Claessen, K., and Hughes, J. QuickCheck: A light-

weight tool for random testing of Haskell programs. In
ICFP, ACM SIGPLAN, 2000, 2000.

2. Fowler, M., and Scott, K. UML Distilled: A Brief Guide
to the Standard Object Modeling Language. Addison-
Wesley, 2003.

3. Harrison, M.D., Campos, J.C., and Loer K. Formal
analysis of interactive systems: opportunities and weak-
nesses. In Research Methods in Human Computer Inter-
action, pp 88-111. CUP, 2008.

4. Loy, M., Eckstein, R., Wood, D., Elliott, J., and Cole,
B. Java Swing, 2nd Edition. O Reilly, 2002.

5. Moore, M. A survey of representations for recovering
user interface specifications for reengineering. Techni-
cal report, Institute of Technology, Atlanta, 1996.

6. Paternò, F. Model-based Design and Evaluation of In-
teractive Applications. Springer, November 1999.

7. Silva, J.C., Campos, J.C., and Saraiva, J. Combining
Formal Methods and Functional Strategies Regarding
the Reverse Engineering of Interactive Applications. In
vol. 4323 of LNCS, pp 137-150. Springer, 2007.

8. Silva, J.C., Saraiva J., and Campos, J.C. A Generic Li-
brary for GUI Reasoning and Testing. In ACM Sympo-
sium on Applied Computing, pp 121-128. ACM, 2009.

9. Thimbleby, H., and Gow, J.. Applying graph theory to
interaction design. pp 501–519, 2008.

10. Tip, F. A survey of program slicing techniques. Journal
of Programming Languages, September 1995.

11. Visser, E. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9.
2003.

12. Visser, J., and Saraiva, J.. Tutorial on strategic pro-
gramming across programming paradigms. In 8th Brazil-
ian Symposium on Programming Languages, Niteroi,
Brazil, May 2004.

