
From HCI to Software Engineering and back∗

Jośe Creissac Campos
Departamento de Inforḿatica

Universidade do Minho, Campus de Gualtar
4710-057 Braga, Portugal.

Jose.Campos@di.uminho.pt

Michael D. Harrison
Department of Computer Science

The University of York, Heslington
York YO10 5DD, UK.

Michael.Harrison@cs.york.ac.uk

Abstract

Methods to assess and ensure system usability are be-
coming increasingly important as market edge becomes less
dependent on function and more dependent on ease of use,
and as recognition increases that a user’s failure to under-
stand how an automated system works may jeapordise its
safety. While ultimately only deployment of a system will
prove its usability, a number of approaches to early analy-
sis have been proposed that provide some ability to predict
the usability and human-error proneness of the fielded sys-
tem. The majority of these approaches are designed to be
used by human factors specialists, require specific expertise
that does not fall within the domain of software engineering
and fall outside standard software development life cycles.

However, amongst this number, some rigorous mathe-
matical methods have been proposed as solutions to the
more general problem of ensuring quality of system designs
but with limited success. This paper discusses their lim-
itations both in terms of the broader software engineering
agenda and in terms of their effectiveness for usability anal-
ysis, the opportunities that they offer and discusses what
might be done to make them more acceptable and effective.
The paper positions those methods that have been effective
against less formal usability analysis methods.

1 Introduction

Although much emphasis has been placed on engineer-
ing more reliable hardware and software systems, relatively
little significance has been attached to human factors issues.
In fact human factors account for a very large proportion of
failures in systems and the proportion is growing as meth-
ods of software development improve. “Although valid fig-
ures are difficult to obtain there seems to be general agree-
ment to attribute somewhere in the range of 60-90% of all

∗In Bridging the Gaps Between Software Engineering and Human-
Computer Interaction, ICSE ’2003 workshop, pages 49-56.

system failures to erroneous human actions” [7]. A study
of 1100 computer related fatalities between 1979 and 1992
estimates that 92% of these fatalities could be attributed to
human computer interaction [11]. These numbers clearly
indicate the need for a better integration of human-factors
concerns into the software engineering life-cycle.

The use of rigorous, mathematical, methods has been
proposed as a solution to the problem of improving the qual-
ity of system designs. The potential of these methods has
led to their application to interactive systems development
(see, for example, [6]). In recent years a focus of attention
has been the possibility of performing rigorous and system-
atic reasoning in order to assess the usability characteristics
of systems. The application of automated reasoning tech-
niques, in particular, has been studied [15, 2, 17].

In considering the specification of a device, usability en-
gineering is concerned with how it interacts with the context
in which it is placed. The focus is not so much on the device
and its structure (though this is of interest) as the way that a
device is embedded in its context, that is its work environ-
ment. Therefore, as well as the specification of the device,
the specification of an interactive system where the device
is located is also of interest. This interactive system will in-
volve humans and devices. It is the interplay between them
that should be analysed.

Usability analysis is a difficult process, and not neces-
sarily one where it is obvious that mathematical methods
and tools can play a relevant part. Roles for the different
components involved may vary and the objectives which
the system is intended to achieve will also change over time.
Specifying how people actually behave rather than how they
should behave is extremely difficult. In this paper formal
approaches to the representation and analysis of interactive
systems shall be considered that aid the process of usabil-
ity engineering. In particular, these formal techniques shall
be compared with a class of more informal but systematic
usability analysis methods.

The paper discusses the role that model based techniques
can play in modelling and analysing interactive devices, as-

1

sumptions about their use, and the work that they do. In
the next section less formal techniques are discussed before
identifying their ingredients in the context of a more formal
analysis.

2 Approaches to usability analysis

Ultimately, the only reliable method of assessing sys-
tems is to observe them in a broad enough set of situations
that are as close as possible to those that are envisaged for its
use. The problem with empirical analysis is that of the ef-
fort involved in constructing a prototype that is sufficiently
robust to be fielded. Changes are therefore more expensive
to make than they would be at earlier design stages. It is also
difficult to obtain situations that are truly representative of
the kind of environment in which the finished system will
be used and are exhaustive of these possible situations. On
the whole, successful systems evolve over time, using ex-
periments with prototypes through trial and error.

The role of analytic techniques is not to solve all the us-
ability problems, that would be impossible, but to produce
early feedback about the design of an interactive system be-
fore expensive decisions have been made. In the main these
techniques are intended for use by human factors experts.
They operate on some informal representation of the de-
sign, for example a storyboard or a draft of the user manual.
The description is rarely sufficient to provide a specification
adequate as a basis for programming the system.

Two issues are important in the use of these informal
methods. Firstly, because the method is informal it will be
more difficult to perform it systematically and therefore en-
sure coverage. Secondly, the method relies on application
by those who have sufficient expertise to apply it correctly,
for example interpreting any questions that are asked of the
design appropriately.

Although the aim of these methods is that they should
be cheap to apply, their cost of application depends on the
expertise of those who do the application. They have in
common the goal to be able to reason about the usability
characteristics of systems during the development stages of
its design. Deferring the quality assessment until a proto-
type of the system is available, can become too costly. The
possibility of verifying the specification of the system in the
early stages of the design process could reduce the number
of changes in the future and thereby reduce the overall cost
of development.

Informal methods vary as to whether work representa-
tions, that is descriptions of what users are intended to do,
are involved in their application. Two classes of methods
shall be briefly discussed. The first,usability inspection,
assumes no representation of the user or the work that is
intended to be performed by the device under analysis. In-
stead it involves systematic interrogation of the design rep-

resentation using a series of standard questions.Cognitive
walkthroughon the other hand requires an initial model of
how the device is to be used. Again questions are asked sys-
tematically of the device but these questions are related to
the task representations.

2.1 Usability Inspection

The first class of methods involves systematic inspection
of the design by means of guidelines for good practice in
the design. It is assumed that there are a number of gen-
eral characteristics that all usable systems should exhibit. In
[12], a usability inspection method (Heuristic Evaluation) is
proposed based on this type of approach. Applying heuris-
tic evaluation involves setting up a team of evaluators to
analyse the design of the user interface. To avoid bias in the
analysis, the team members should not have been involved
in the design process. They should be human-factors ex-
perts, although studies have shown that teams of users can
also provide useful results [3]. Once all evaluators have per-
formed their analysis, results are aggregated. This provides
a more comprehensive analysis of the design.

To guide analysis a set of design heuristics is used based
on general purpose design guidelines. The set proposed
by [12] comprises nine heuristics:simple and natural di-
alogue; speak the user’s language; minimise user mem-
ory load; be consistent; provide feedback; provide clearly
marked exits; provide short cuts; good error messages; and
prevent errors. Using these heuristics, evaluators will in-
spect the proposed design in order to assess if relevant
guidelines are obeyed. Obviously not all heuristics will be
appropriate all of the time.

The method prescribes nothing about how analysis is
performed in terms of whether or not the system follows
a guideline. Typically some type of informal walkthrough
approach is used (see Section 2.2). It is also assumed that
the team of analysts will envisage situations in which the
system shall be used. In effect the analysts imagine possi-
ble work situations implicitly, whereas in the method to be
discussed next these situations are made explicit.

2.2 Cognitive Walkthroughs

Heuristic evaluation makes noexplicit documented as-
sumption about how the system is to be used. Hence a
heuristic might invite the team of analysts to consider any
situationat all where feedback is not given. In practice it
may well happen that in certain tasksfeedbackis essential
while in other tasks users may have enough understanding
of what will happen next for feedback to be superfluous.

A class of informal butstructuredtechniques make ex-
plicit (to differing degrees) the work or tasks that are to be
done in using the device. The consideration of what hap-

2

pens in the context of a particular task is therefore the fun-
damental unit of analysis. This general class of walkthrough
techniques attempts a more work-based usability analysis
by simulatinghow users are expected to behave when faced
with the system under analysis.

Cognitive walkthroughs [9] is one such technique. Its
aim is to analyse how well the interface will guide the user
in performing tasks. User tasks must first be identified, and
the model of the interface (the device model) must be suf-
ficiently detailed to cover all possible courses of action the
user might take.

Analysis of how a user would execute the task is per-
formed by asking three simple questions at each stage of
the interaction:Will the correct action be made sufficiently
evident to users?; Will users connect the correct action’s de-
scription with what they are trying to achieve?; Will users
interpret the system’s response to the chosen action cor-
rectly?. To answer these questions, probable courses of ac-
tion the users will take must be presumed and documented
as so-called user models. Problems are identified whenever
there is a “no” answer to one of the questions above.

There are variations of this basic idea that assume more
or less expertise from the analyst. Methods span human fac-
tors and human computer interaction and those developed
in one tradition are barely known in the other. The meth-
ods that exist differ in two respects: in the way that items
or units from the work description are used and in the types
and generality of the questions.

For example, cognitive walkthrough asks three simple
questions and is designed to explore usability or learnabil-
ity, the THEA technique [16] provides a larger set of eigh-
teen questions based around Norman’s model of cognition,
and focusses on human performance with a particular fo-
cus on human error. HEIST on the other hand [8] includes
timing and other aspects of context in its very large set of
questions. TRACEr invites questions in domain terms relat-
ing specifically to air traffic control concepts [18].

3 More formal analytic methods

Informal analytic approaches pose problems for engi-
neers of complex interactive systems. Results are largely
dependent on the skills of the evaluators: human factors
skills rather than software engineering skills. This is a par-
ticular problem in the case of heuristic evaluation where the
underlying theory is less explicit within the method. The
human evaluators will bring into the analysis process a num-
ber of assumptions about user behaviour, and about the us-
age of the device. The validity of the analysis is limited by
these assumptions.

Walkthrough approaches are more structured but may
become extremely resource intensive as systems increase in
complexity and possible activities that relate to the system

become more diverse.
Although formal approaches are generally more limited

in their application because of the cost of producing ini-
tial models they have the potential advantage that they can:
demand more clarity from the analyst about the design de-
scription as well as the assumptions that form the basis for
analysis; provide a precise description that can be used as
a basis for systematic mechanical analysis in a way that
would not otherwise be possible; and provide an external
representation that may make it possible for some of the
processes, currently only within the domain of expertise of
a human factors expert, to be performed by an engineer.

Formal approaches bring more rigour and automation to
usability analysis at the expense of flexibility. They require
a specific type of model and a specific type of verification
technique which can limit the analysis to be performed.

Proving properties of interactive systems shares with any
other approach to analysis the requirement that there should
be a model of the key features that are to be under scrutiny
in the analysis. Here a model of interactive behaviour is
required which highlights the interactive behaviour of the
system while discouraging inappropriate bias in the analy-
sis. A device description is to be explored in the context
in which it is used. Instead of analysing all possible be-
haviours it is necessary to decide how to specify those be-
haviours that correspond to the way that the device shall be
used. This itself narrows the context to those features that
the designer considers to be important. Once the device
and the rules for specifying its context have been explored
it is also necessary to decide under what conditions the use
of the device is of concern. It may be appropriate to anal-
yse potentially extreme situations or where certain actions
might be discrepant with the expectations of the user. Each
of these issues shall be explored in more detail below. Four
steps as represented in Figure 1 are involved in the process.

Initially, usability requirements, perhaps based on us-
ability guidelines or heuristics, are identified and used to
aid the specification of which parts of the device are to be
explored.

Once the initial requirements have been expressed, a
model of the interactive device and a set of properties are
formulated. It is envisaged that at each stage of this pro-
cess human factors expertise will be involved in assessing
the validity of these properties or models. Models capture
assumptions about the user’s view of the system and prop-
erties capture constraints that if broken represent potential
failures in the use of the system.

The next stage is to verify whether the properties hold
of the device under the constraints imposed by the environ-
ment. For example it may be the case that it is necessary to
explore a property that reflects the visibility of actions but
only over certain paths corresponding to the likely tasks that
are to be performed.

3

System

Artefact

Identify

Design

Model

Build

Properties

Verify

Results

Analyse

Principles
Requirements

Human−Factors

Human−Factors

Figure 1. Integration of verification in devel-
opment

Finally the results are explored with the human factors
analyst for their likely consequences. If the answer is pos-
itive then it can be said that under the assumptions used
in expressing the model and the property, the system satis-
fies the usability criteria. If the answer is negative then the
reasons why must be investigated. A negative result might
indicate that the device model is incomplete. It may there-
fore be necessary to determine whether all relevant aspects
of the device have been considered. Alternatively it might
point to a situation where the assumptions made about the
user (or the context of usage) must be refined. For example
it may be necessary to eliminate specific courses of action
from the expected user behaviour. Finally it might be a gen-
uine usability problem.

4 Analysing an interactive device

Formal analysis has been used in a variety of ways to
explore interactive systems. In the next sections it will be
shown how this type of approach can be useful in reasoning
more systematically about usability.

A first approach is to model the device and use knowl-
edge about the user to drive the analysis. This is the ap-
proach taken by Campos and Harrison [2]. They use a
Modal Action Logic (MAL) based notation for modelling,
and a tool that translates the models into SMV (a model
checker). Properties can be checked using this system by
writing them in Computational Tree Logic (CTL).

Modelling is performed from the point of view of the
interaction between device and user and involves taking ac-

interactor MCP
includes

aircraft via plane
dial(ClimbRate) via crDial
dial(Velocity) via asDial
dial(Altitude) via ALTDial

attributes
vis pitchMode: PitchModes
vis ALT: boolean

actions
vis enterVS, enterIAS, enterAH, toggleALT

enterAC
axioms

[] plane.altitude = 0
[crDial.set(t)] pitchMode′=VERT SPD ∧ ALT′=ALT
...
[enterAC] pitchMode′=ALT CAP ∧ ¬ALT′

per(enterAC) →
(ALT ∧ |ALTDial.needle - plane.altitude|≤2)

(ALT ∧ |ALTDial.needle - plane.altitude|≤2) →
obl(enterAC)

...

Figure 2. The MCP model

count of the specific analysis to be performed. To give a
flavour of the notation, an excerpt of a model is presented
in Figure 2.

The specification of the interactive behaviour of the de-
vice asserts constraints on the way the device is viewed, for
example by defining user level actions and the way informa-
tion about those actions may be perceived (cf. thevis anno-
tations). Further constraints may be imposed by consider-
ing the means by which behaviours should take account of
contextual factors.

In [2] the mode control panel (MCP) of an aircraft
is analysed regarding altitude acquisition. The design of
the interface has been based on the plausible assumption
that if the altitude capture (ALT) is armed the aircraft will
stop at the desired altitude (selected in the altitude dial —
ALTDial). This can be expressed as the CTL formula:

AG((plane.altitude< ALTDial.needle∧ ALT) →
AF(pitchMode=ALT HLD ∧

plane.altitude=ALTDial.needle))

which reads: it always (AG) happens that if the plane is
below the altitude set on the MCP and the altitude capture
is on then (AF) the altitude will always be reached and the
pitch mode be changed to altitude hold.

In the process of checking the properties, counter-
examples are generated by the model checker that reflect
inadequacies in specification of the model or the property.

4

In [2] some initial counter-examples are produced that
indicate situations where the pilot might take action to stop
the aircraft from climbing (for example, changing the ver-
tical speed). When the property is changed to prune those
behaviours a new counter-example is produced which indi-
cates that under specific circumstances the aircraft performs
an implicit mode change that might lead subsequent user
action to cause the aircraft to keep climbing past the tar-
get altitude. Palmer [14] reports that a similar problem was
detected during simulation.

This counterexample prompts the designer to consider
whether there is enough information provided by the de-
vice’s user interface so that the pilot may be kept in the loop.
The designers and human-factors experts can be called upon
to clarify the full consequences of the counterexample. How
aware will the pilot be of the mode change performed by the
automation? Is this issue adequately covered in the manu-
als, and during training? Should the system be redesigned
and how? What engineering constraints come into play re-
garding the design? Being able to raise these issues against
a formal proof background in early design stages will un-
doubtedly allow for a better/safer design from the start. It
will also reduce downstream costs of failing to discover
these problems until too late.

5 Modelling the user to limit the analysis

As mentioned the approach above binds constraints
about which paths can occur into the properties. There
are other ways of restricting only to paths that are relevant.
Rushby [17] models simple assumptions about the user’s
view of the system. The approach can be characterised as
embedding elements of a user model into the device model
and thereby constraining the behaviours of the system that
must be analysed. The specification is modified to capture
the changes in the user model as a result of actions by the
system.

The problem to be explored using the model checker
is whether there are discrepancies between the expecta-
tion that the pilot has of the ALT mode and its actual
state. Considering the state of the altitude capture as de-
fined by the device mode logic (ALT), and as idealised by
the user (idealALT), the property could be expressed as:
AG(ALT=idealALT)

A number of questions arise about how the user model is
constructed. It must be decided what the user will or not be
aware of, and whether the user will remember relevant in-
formation. These issues must be dealt with in the context of
a model of cognitive behaviour. When the approach is used
by software engineers there is a risk that wrong assump-
tions about cognition may be built into the model through
ignorance of the science behind the model. These assump-
tions, however, are central to the reasoning process and be-

cause they are embedded in the specification their analysis
becomes less open to discussion and dispute. In the exam-
ple above, assuming the user does not notice the relevant
indicator, then the mode problem is detected when we try to
verify the property. When the user is assumed to notice the
indicator then the problem does not show up in the analysis.

More elaborate attempts have been made to model what
the operator is likely to do with a given device design. Two
examples are syndetic modelling [4] which involves mod-
elling the user as a process based on assumptions from a
cognitive architecture (Interactive Cognitive Subsystems)
and programmable user modelling (PUM) [19] which uses
a planning model. In both cases, the analysis is based on
describing the joint behaviour of device and user models.
While the primary goal of the syndetic modellers has be-
come to use formalism to make assumptions made in cog-
nitive models more explicit and thereby more precise, PUM
assumes that a cognitive architecture is programmed with
domain and device specific knowledge. The aim of PUM
therefore is to better understand and design the interactive
system.

In this case, instead of enriching the device model with a
(state-based) model of user’s knowledge, a separate model
of the knowledge needed by the user to operate the device
is first developed, and then combined with the device model
in order to investigate the behaviour of the resulting system.
An instruction languageis used to describe the goals of the
user in using the device as well as the operators or methods
as understood by the user to achieve these goals. Unlike
the approach above these operators do not necessarily cor-
respond to device level operations. Conceptual operators
are defined in terms of pre- and post- conditions on the state
as idealised by the user.

Once the models are fully developed a planning engine
is used to show how the assumptions made in the model
lead to a sequence of actions at the device level that meet
the goals expressed at the domain level. This is typically
done using means-ends analysis. The execution of a PUM
is therefore an attempt to mimic how a rational user will
behave when faced with the device. In most of the PUMA
work as represented by [1] this process is ultimately per-
formed relatively informally by hand.

6 Using the task to drive the analysis

In previous sections two approaches have been discussed
for analysing an interactive system. In the first approach
the model of the device is the primary focus for explo-
ration. Assumption about context and user may be embed-
ded within properties implicitly. In the second approach one
model is used to describe the device in terms of the methods
or actions that are available to users as understood by users,
and a second model describes the goals as understood by

5

users and encodes assumptions about cognition. Task anal-
ysis is a third approach. The motivation is similar to the
other two in that the aim is to generate sequences that can
be used as a basis for analysing the device. Task analy-
sis however is a discipline that involves observing work as
practiced, interviewing users, developing training material
in order to understand the goals, sub-goals and actions as
perceived by the users. The task analyst then represents the
tasks that have to be carried out in terms of the goals, sub-
goals and procedures or plans that should be followed. The
problem with this approach is the use of the word “should”.
The approach is normative and therefore may ignore impor-
tant classes of activity that were unforeseen.

A variety of representations of tasks have been explored.
Either using specific languages such as ConcurTaskTrees
(CTT) or using more general languages, for example Ofan
andMurφ. These task representations are used in a variety
of ways to analyse the interface. Paternò in [15], develops
an interface model using LOTOS which is derived from a
task description. The model therefore reflects the structure
of the tasks that the device is supposed to support. More re-
cently Paterǹo has used CTT to model and analyse the tasks
models directly, no device model is used. Normative be-
haviour drives the analysis completely and properties such
asreachabilityare analysed only in terms of the paths per-
mitted by the task description.

Fields [5] has produced a more encompassing approach
in which separate device and task models are developed,
and the behaviour of their combination is analysed. In this
case the analysis, while based on the normative behaviour
represented by the task, systematically generates sequences
that are based on perturbations of these normative task paths
using simple mutations: omission, commission, repetition,
reversal and so on, as used in hazard analysis techniques.
Device models are written in theMurφ language, and task
models in a special purpose notation which is automatically
translatable into theMurφ language.

A further approach uses Ofan Statecharts which encode
not just the device but also the task and the environment.
These state charts are rendered checkable using the SMV
model checker [10].

It would be straightforward to add a task model to fig-
ure 2. Whatever language is used, task models will describe
the intended traces of behaviour. If only user actions are
considered the actions in the task model will be the subset
of visible actions of the device model, and the task model
describes the intended traces of user behaviour. A possibil-
ity to representing those traces is using C/E Petri nets [13].
For example, the Petri Net in figure 3 represents the task of
setting an altitude and toggling the altitude capture.

The Petri Net can be translated into an interactor for anal-
ysis. Each place is modelled by a boolean state variable rep-
resenting whether it is marked. Each transition is modelled

a

c

bac1

ac2ac3

Figure 3. A simple Petri Net

by two axioms. A permission axiom stating when the transi-
tion is allowed to fire, and a modal axiom stating the effect
of the transition on the marking of the net. For example,
transition toggleALT is modelled by axioms:

per(toggleALT)→ (placeB∧¬placeC)

stating that it can fire when place B is marked and place C
is unmarked (i.e. after ALTDial.set()); and

[toggleALT] ¬placeB’∧ placeC’∧ placeA’=placeA

stating that after toggleALT being fired place B becomes
unmarked, place C becomes marked, and the marking of
place A does not change.

The task model represented by the Petri Net can be com-
bined with the device model binding task and device vis-
ible actions together. Properties can be checked of the
form AF(goal state of the system) (the goal can be achieved
by performing the task) or AG(¬hazardous state) (no haz-
ardous state can be reached when performing the task).

7 Discussion

Ensuring the usability of a system is a complex and dif-
ficult endeavour. It has been shown elsewhere [3] that it
is possible to reason about designs, from models of those
designs, in order to improve usability prior to actual im-
plementation and deployment of the system. Typical ap-
proaches, however, lack the rigour and thoroughness that
only formal (mathematical) models can provide.

When attempting to model an interactive system for
analysis we are faced with the problem of how to capture
the diversity of concepts and concerns that are involved in
the analysis of usability. Three basic aspects can be identi-
fied. The designed device, the user(s), and the work to be
carried out (usually expressed in terms of tasks or goals). In
a good interactive system design the device will support the
user in carrying out the work. The quality of such support
can be measured in many ways: efficiency, effectiveness,
enjoyability, etc.

6

We have presented a number of proposals for the sys-
tematic analysis of usability that use different combinations
of these ingredients. In the approach of [2] only the device
is explicitly modelled. Considerations about user and work
are used to drive the analysis. This style of unconstrained
approach is best suited to detect problems with unpredicted
device, or user, behaviour. This can be especially relevant
for complex systems where tasks can interact in unexpected
ways. It does not, however, provide much direct support
when investigating how users will actually use the system.
That step is left outside the formal reasoning phase. Addi-
tionally, some of the behaviours identified by the automated
analysis might not be relevant to the real system. This anal-
ysis is also to be done outside the tool.

To address these issues, authors have proposed the use of
user models in conjunction with the device models. This di-
rectly introduces human factors issues into the models, thus
lessening the dependency of the analysis on human-factors
expertise, and making it more accessible to software engi-
neers. The general idea behind this style of approach is to
set a specific goal, and see whether thesystemcan find a
way to satisfy it. This is specially interesting when inves-
tigating how a user will interact with a device in order to
achieve a certain goal. In this aspect, it can be related back
to Cognitive Walkthroughs. However, the planner may gen-
erate unexpected solutions that might lead the analyst to ap-
preciate unforeseen consequences and scenarios that would
not be otherwise explored.

Adding the user model means adding assumptions about
user behaviour which will restrict the possible behaviours of
the device. This bias in the analysis can lead to key issues in
the device’s design being ignored. User model architectures
such as PUM help in guiding the process and in spelling out
what assumptions are being made.

An alternative is to model, not the user, but the tasks that
the user must perform. The approach will not give much
direct support when investigating how easy users will find
performing the tasks to be, but enables the analysis of how
the device supports the proposed tasks. This can be done
both in terms of whether performing the task achieves the
desired goal, and of whether performing the task might lead
the device into unwanted states. The consequences of er-
roneous behaviour are investigated by introducing errors in
the task model.

It has become clear that the different styles of approach
are complementary in that they support different styles of
reasoning about the system. Unconstrained device analysis
enables a more thorough exploration of the device. The in-
terpretation of the results must then be performed with the
aid of human-factors experts. By adding user models to the
analysis one aims at analysing how users will be able to use
the device. Using task models one analysis how the device
supports the tasks the user is expected to perform.

8 Conclusions

A number of studies indicates that human factors account
for a very large proportion of failures in systems [7, 11]. In
the past, software development methods have attached rel-
atively little significance to human factors issues. Unless
that is changed the proportion of failures attributed to hu-
man factors will keep increasing as other aspects of soft-
ware development improve. Clearly there is the need for a
better integration of human factors concerns into the soft-
ware engineering life cycle.

One specific facet of such integration is the need to rea-
son about the usability of systems’ designs from early in the
development process. Usability analysis must not be left to
the latter stages of software development when changes will
be more difficult and expensive to make. Instead, a num-
ber of lightweight methods are needed that enable reasoning
about the usability of systems from the early stages of de-
sign, thus enabling the design to be shaped by the usability
criteria and concerns.

A number of discount (analytic) methods for the analy-
sis of usability have been proposed, and studies have shown
that they can be useful in detecting potential usability prob-
lems [3]. Discount techniques have distinct advantages over
empirical methods. They are cheap to use, they do not re-
quire extended advanced planning and they can be used in
the early stages before a design is implemented.

There are however problems when these techniques form
part of a process where it is intended that they be applied
by software engineers because they require human factors
expertise. Another problem is the sheer size and complexity
of the models that must be considered when it comes to
complex systems. Usually the methods tend to focus on
what could be called surface issues in the interaction, with
little consideration of more complex behavioural issues of
the interaction between user and device that will arise in
real usage conditions. In this respect it can be argued that
not even empirical evaluation can guarantee absence of such
errors since for complex systems it is usually not viable to
test all possible usage conditions/situations.

This paper presents some recent proposals of more for-
mal and systematic usability analysis methods that attempt
to provide answers to these problems. The claim is that
these techniques, although narrower in scope, provide a
more thorough analysis in which human factors claims are
more clearly identified and substantiated using complemen-
tary expertise from other parties to the design process.
Hence software engineers carry out part of the process but
there are well defined stages where human factors input
is required. In an initial phase human factors expertise is
brought in to help select and model relevant system features,
the analysis can then progress in a more typical software en-
gineering setting, finally the analysis of the results must go

7

back to human factors expertise.
The problems with using formal techniques relate to how

well the techniques scale; how easy is it to use the methods;
and whether the methods bias the analysis so that key is-
sues may be ignored. We do not contend that this type of
approach is the answer to all of the usability engineering
problems. We do however feel that it has a role to play dur-
ing interactive systems design and analysis. In the context
of design problems where there is no obvious pay off us-
ing formal techniques, for example where more exploratory
techniques are currently used, it might be argued that costs
of applying these techniques are too high. However the sit-
uations where early analysis can reduce substantial down-
stream costs, either because the system is safety critical
or because the cost of shipping volumes of less than us-
able systems cannot be countenanced, are increasing. More
in depth and realistic studies are required to justify these
claims.

References

[1] Ann Blandford, Richard Butterworth, and Jason
Good. Users as rational interacting agents: formal-
ising assumptions about cognition and interaction. In
M. D. Harrison and J. C. Torres, editors,Design, Spec-
ification and Verification of Interactive Systems ’97,
Springer Computer Science, pages 45–60. Springer-
Verlag/Wien, June 1997.

[2] Jośe C. Campos and Michael D. Harrison. Model
checking interactor specifications.Automated Soft-
ware Engineering, 8(3/4):275–310, August 2001.

[3] Heather W. Desurvire, Jim M. Kondziela, and
Michael E. Atwood. What is gained and lost when
using evaluation methods other than empirical testing.
In A. Monk, D. Diaper, and M. D. Harrison, editors,
People and Computers VII, pages 89–102. Cambridge
University Press, September 1992.

[4] D.J. Duke, P.J. Barnard, D.A. Duce, and J. May.
Syndetic modelling. Human-Computer Interaction,
13(4):337–393, 1998.

[5] Robert E. Fields.Analysis of erroneous actions in the
design of critical systems. DPhil thesis, Department
of Computer Science, University of York, 2001.

[6] M. Harrison and H. Thimbleby, editors.Formal Meth-
ods in Human-Computer Interaction. Cambridge Se-
ries on Human-Computer Interaction. Cambridge Uni-
versity Press, 1990.

[7] E. Hollnagel.Human reliability analysis: context and
control. Academic Press, London, 1993.

[8] B. Kirwan. A Guide to Practical Human Reliability
Assessment. Taylor and Francis, 1994.

[9] Clayton Lewis, Peter Polson, Cathleen Wharton, and
John Rieman. Testing a walkthrough methodology for
theory-based design of walk-up-and-use interfaces. In
CHI ’90 Proceedings, pages 235–242, New York,
April 1990. ACM Press.

[10] K. Loer and M. Harrison. Formal interactive systems
analysis and usability inspection methods: Two in-
compatible worlds? In P. Palanque and F. Paternó,
editors,7th International Workshop on Design, Speci-
fication and Verification of Interactive Systems (DSV-
IS), volume 1946 ofLecture Notes in Computer Sci-
ence, pages 169–190. Springer-Verlag, 2001.

[11] D. MacKenzie. Computer related accidental death:
an empirical exploration.Science and Public Policy,
21(4):233–248, 1994.

[12] J Nielsen. Usability Engineering. Academic Press,
Inc, 1993.

[13] Ph. Palanque, R. Bastide, and V. Senges. Task model
- system model: towards an unifying formalism. In
Proceedings of HCI International conference, pages
489–494, Yokoohama, Japan, July 1995. Elsevier.

[14] Everett Palmer. ”Oops, it didn’t arm.” - a case study
of two automation surprises. In Richard S. Jensen
and Lori A. Rakovan, editors,Proceedings of the
Eighth International Symposium on Aviation Psychol-
ogy, pages 227–232, Columbus, Ohio, April 1995.
Ohio State University.

[15] Fabio D. Paterǹo. A Method for Formal Specification
and Verification of Interactive Systems. PhD thesis,
Department of Computer Science, University of York,
1996.

[16] S. Pocock, M. Harrison, P. Wright, and P. Johnson.
THEA: A technique for human error assessment early
in design. In M. Hirose, editor,Human-Computer
Interaction INTERACT’01 IFIP TC.13 International
Conference on human computer interaction, pages
247–254. IOS Press, 2001.

[17] John Rushby. Using model checking to help discover
mode confusions and other automation surprises.Re-
liability Engineering and System Safety, 75(2):167–
177, February 2002.

[18] S. Shorrock and B. Kirwan. Development and applica-
tion of a human error identification tool for air traffic
control. Applied Ergonomics, 33:319–336, 2002.

8

[19] Richard M. Young, T. R. G. Green, and Tony Simon.
Programmable user models for predictive evaluation
of interface designs. In K. Bice and C. Lewis, editors,
CHI’89 Proceedings, pages 15–19. ACM Press, NY,
May 1989.

9

