
Model Cheking Interator Spei�ations �Jos�e C. Campos1;2; and Mihael D. Harrison11Human-Computer Interation Group, The University of York, UK2Departamento de Inform�atia, Universidade do Minho, PortugalAbstrat. Reent aounts of aidents draw attention to \automation surprises"that arise in safety ritial systems. An automation surprise an our when asystem behaves di�erently from the expetations of the operator. Interfae modehanges are one lass of suh surprises that have signi�ant impat on the safety ofa dynami interative system. They may take plae impliitly as a result of othersystem ation. Formal spei�ations of interative systems provide an opportunity toanalyse problems that arise in suh systems. In this paper we onsider the role thatan interator based spei�ation has as a partial model of an interative systemso that mode onsequenes an be heked early in the design proess. We showhow interator spei�ations an be translated into the SMV model heker inputlanguage and how we an use suh spei�ations in onjuntion with the modelheker to analyse potential for mode onfusion in a realisti ase. Our �nal aim isto develop a general purpose methodology for the automated analysis of interativesystems. This veri�ation proess an be useful in raising questions that have to beaddressed in a broader ontext of analysis.Keywords: software veri�ation, interative systems, automation surprise, interfaemode onfusion, model heking, interator based spei�ations1. IntrodutionThis paper is primarily onerned with the use of automated reasoningtehniques (more spei�ally model heking) during interative sys-tems design. Model heking is a veri�ation tehnique that is beingused with suess in hardware and protool veri�ation. We believeit an also play an important role in the development of safety rit-ial interative systems where the onsequene of failure an beomeunaeptable.Reent aounts of aidents, inidents and simulations (Palmer,1995) have drawn attention to problems that arise in safety ritialsystems through \automation surprises". An automation surprise hap-pens when the system behaves di�erently from the expetations of theoperator. A partiular lass of suh surprises, interfae mode hanges,has signi�ant impat on the safety of a dynami interative systemand may take plae impliitly as a result of other system ation. Theformal spei�ation of an interative system o�ers an opportunity to� Published in Automated Software Engineering, 8(3/4):275-310, August 2001. 2001 Kluwer Aademi Publishers. Printed in the Netherlands.
CamposH01.tex; 30/08/2001; 14:38; p.1

2 Campos & Harrisonanalyse the onsequenes of its design and thereby redue the risk ofthis type of interfae problem.Relevant analyses (Leveson and Palmer, 1997; Rushby, 1999) ofmode omplexity in aviation based systems have been onduted ret-rospetively using experiene based on ight simulations. Senarios ofuse based on past experiene provide a foundation for analysis in thesepapers. In ontrast we onsider the role that interator based models(Faonti and Patern�o, 1990; Duke and Harrison, 1993) have in analysingmode onsequenes early in the design proess. An interator is anobjet (onsisting of state and operations) with the additional propertythat state pereivable to the user, and ations that are aessible to theuser, are identi�ed expliitly. The main advantage of interators is thatthey allow the spei�ation of both system state and behaviour anduser interfae presentation and behaviour in the same framework. Thiswill be developed further in Setion 2.2.What makes interative systems interesting (and hard) from thepoint of view of veri�ation is the multipliity of areas and onernsthat ome into play during the design of suh systems. To the tradi-tional onerns of software engineering, interative systems design addsa requirement to aommodate a onsideration of the ontext in whihthe system is used. This means that aspets of psyhology, soiology,and ergonomis may all have a bearing on design and may need to betaken into aount during veri�ation. A property of onern may notrepresent a failure for the interative system rather it may highlightsenarios where speial are should be taken to understand how theuser will interat with the system at this point.Conepts of usability derived from psyhologial or soiologial un-derstandings are diÆult if not impossible to rationalise in a form thatan be used as part of a veri�ation proess. Conepts suh as task (aunit of human ativity arried out to ahieve a spei� goal) and userinterfae mode (how the system responds to input and how the state isrepresented and pereived as output) involve a broad range of onernsfrom hardware restritions to more subjetive human fators issues. In(Campos and Harrison, 1998) we argue that to address these questionse�etively a tighter integration between design and veri�ation is re-quired and that this integration an be ahieved by developing andverifying a range of partial models of the system under development.The aim is that eah model should fous on spei� features of thesystem.Palmer (1995) reports on problems found during a set of simulationsof realisti ight missions. One of these was related to the task oflimbing and maintaining altitude in response to Air TraÆ Controlinstrutions. An automati hange in the ying mode led to pilot ation
CamposH01.tex; 30/08/2001; 14:38; p.2

Model Cheking Interator Spei�ations 3of anelling the sheduled automati funtion of limbing to a spei�altitude. Clearly the fat that this situation may arise has signi�antimpat on the safety of the airraft. For example, air traÆ problemsmay arise from the loss of separation with other airraft. We will showhow heking models that desribe the interfae between the pilot andthe automation may help early detetion of problems suh as these. Thekind of analysis we are dealing with is not primarily onerned withthe behaviour of the system by itself, but with the interation betweenthe system and its users. Our methodology requires input from human-fators speialists to be inorporated in the veri�ation proess so thatwe an explore how system and user behave together.Two basi types of automated veri�ation tehnique an be identi-�ed: model heking and theorem proving. Eah tehnique has its ownstrong points. Model heking is usually best at verifying reahabil-ity properties of systems, while theorem provers are best at verifyingproperties related to the system's state. The fous of this paper is onthe former. Our view is that both tehniques an be useful. The hoieof whih to use will depend on the partiular aspet of the systembeing analysed. In (Doherty et al., 2000) we show how theorem provingan be useful to reason about the relation between the system stateand the proposed user interfae. In (Campos and Harrison, 1999) weshow how both veri�ation tehniques an be integrated into a oherentveri�ation proess.In Setion 2 we expand on the role that veri�ation an play duringinterative system design and introdue the interator notation. InSetion 3 we desribe a tool that enables us to hek interators inSMV. In Setion 4 we use the interator notation to build a modelof the Mode Control Panel (MCP) of the airraft. The MCP is oneelement of the interfae between the pilot and the airraft autopilot.This model is derived from the desription of the ase study in (Palmer,1995). We will show how abstrations an be used to keep the modellear for analysis by both systems and human fators speialists evenin the presene of ontinuous and non-ontinuous subsystems that haveto be modelled together. In Setion 5 we show how to go about modelheking the resulting spei�ation. In Setion 6 we ompare our workwith other approahes to the veri�ation of software requirements ingeneral, and of interative systems in partiular. Finally in Setion 7we analyse the results of the ase study and draw some onlusions.

CamposH01.tex; 30/08/2001; 14:38; p.3

4 Campos & Harrison2. Interators and Partial ModelsWe argue that there are nuanes in the veri�ation of interative sys-tems that di�erentiate the proess from the more general problem ofsoftware veri�ation. Interators help to give proper emphasis to humaninterfae omponents of the system and an be used in the veri�a-tion proess. We introdue the partiular interator and veri�ationtehnique that we shall be using.2.1. The Role of Verifiation in Interative SystemsDesignFormal veri�ation of interative systems an be seen to fall into twoategories:� known problems of existing systems: explaining why problems arise;� disovery of onsequenes of a partiular interative system spe-i�ation: establishing whether a proposed system exhibits desiredproperties.In the ase of known problems, hindsight drives the developmentof a model in order to analyse the partiular problem. This type ofanalysis an be useful in explaining what went wrong but of ourse itannot predit design problems.If we an disover the onsequenes of a partiular design proposalthen errors an be deteted and prevented before the system is used inpratie. Approahes related to this issue tend to be based around thedevelopment of a spei�ation of the entire system (f. Patern�o, 1995,Heitmeyer et al., 1998). This spei�ation may be reverse engineeredfrom the atual system implementation (f. Bumbulis et al., 1996).(Campos and Harrison, 1997) provides a review of urrent approahesto the automated veri�ation of interative systems. Entire spei�a-tions an be hard and ostly to hange if problems are found and designdeisions remade. Additionally, it is diÆult to see how spei�ationswhih represent whole systems an be analysed e�etively (f. Camposand Harrison, 1998) for systems as omplex as interative systems.As was mentioned earlier the aim of formal veri�ation is not provinga system orret. Corretness assumes some absolute measure of qualityagainst whih the spei�ation an be veri�ed. In trying to de�ne it weare faed with the problem of its own orretness. Hene, as Henzinger(1996) states:The only sensible goal of formal methods is to detet the preseneof errors and to do so early in the design proess. Indeed, \falsi�-
CamposH01.tex; 30/08/2001; 14:38; p.4

Model Cheking Interator Spei�ations 5ation" would be a more appropriate name for the endeavor alled\veri�ation".In (Campos and Harrison, 1998) it is argued that to explore thefull potential of formal veri�ation the veri�ation step must be movedinto the development proess. Veri�ation should be used as a guidein the proess of design deision making (f. the \verify-while-develop"paradigm, de Roever, 1998) rather than as a sanity hek at the end ofthe proess. Models an be built that highlight spei� aspets of theartefat. Veri�ation of these partial models an be used to highlightthe spei� onerns of di�erent development stages (f. Fields et al.,1997). The results of the analysis of suh a model an then be fed-bak to the design proess (see Figure 1). This proess an be appliedrepeatedly.
System

Identify

Design

Model

Build

Properties

Verify

Results

Analyse

Artefact

Figure 1. Veri�ation proessThe move towards a tighter integration between veri�ation anddesign has a number of advantages:� design deision making: allows for a more informed proess.� omplexity ontrol: building partial models foussed on the spei�provides better ontrol of the omplexity of the models.� reuse: it beomes possible to reuse models and/or proofs see (Cam-pos, 1999, Chapter 5) for an example of reuse of a proof.� tehnique �t: di�erent properties require di�erent styles of veri�-ation; by using a number of models we avoid being tied down to apartiular veri�ation tehnique (see Campos, 1999, Campos andHarrison, 1999, Doherty et al., 2000).
CamposH01.tex; 30/08/2001; 14:38; p.5

6 Campos & Harrison� property relevane: properties required to hek the soundness ofa omplex spei�ation may draw the fous away from systemproperties suh as \freedom from unexpeted mode hanges"; byfousing our models on the spei� aspets we want to analyse weare able to formulate properties that are relevant to that systemrather than the spei�ation of the system.2.2. The Interator LanguageIt has been argued elsewhere that traditional spei�ation languagesdo not help designers fous on key issues in interative systems. In-terators (Faonti and Patern�o, 1990; Duke and Harrison, 1993) havebeen proposed as a struturing onept for suh a task.An interator, as developed by the York group (Duke and Harrison,1993) (see Figure 2), is an objet whih interats with the environ-ment through events and is apable of rendering (part of) its stateinto some presentation medium (rho in Figure 2). The model does notpresribe a spei�ation notation for the desription of interator stateand behaviour. Rather it ats as a mehanism for struturing the use ofstandard spei�ation tehniques in the ontext of interative systemsspei�ation.
rho

Presentation

Events State

Figure 2. York InteratorSeveral di�erent formalisms have been used to speify interators.These inlude Z (Duke and Harrison, 1993), modal ation logi (MAL)(Duke et al., 1995) and VDM (Harrison et al., 1996). We will be using a(deonti) modal logi (Ryan et al., 1991; Fiadeiro and Maibaum, 1991)that has been adapted to interator spei�ation by Duke (Duke et al.,1995).The de�nition of an interator has three main omponents:� state;� behaviour;� rendering.
CamposH01.tex; 30/08/2001; 14:38; p.6

Model Cheking Interator Spei�ations 7The state of an interator is modelled by a olletion of typedattributes. We would speify a dial whih indiates a value as follows:interator dial(T)attributesneedle: TThis interator has only one attribute (needle) and the type of theattribute is T (the range of values in the dial). Type T is a parameterof the interator whih means that it is possible to have dials withdi�erent ranges.Ations are introdued in order to manipulate state. In this ase wewill only have an ation to set the value in the dial:ationset(T)The type T indiates that the ation will have a parameter of that type.set is therefore a family of ations.Interator behaviour is desribed using a logi based on StruturedMAL (Ryan et al., 1991). MAL (Modal Ation Logi) is a (deonti)modal logi that inorporates a notion of ation. Strutured MALadds mehanisms for struturing the spei�ation to the basi MALnotation. A Strutured MAL agent de�nes a labelled transition systemwhere ations are used to label the transitions between states. MALaxioms will be used to de�ne the behaviour of interators. In additionto the usual propositional operators and ations the logi provides:� a modal operator [℄ : if [a℄expr then expr is true in all statesresulting from the ourrene of ation a | the modal operatoris used to de�ne the transition relation between states;� a speial referene event [℄: if [℄expr then expr is true in the initialstate(s) | the referene event is used to de�ne the initial state(s);� a deonti operator per: if per(a) then ation a is permitted tohappen next;� a deonti operator obl: if obl(a) then ation a is obliged to happensome time in the future.Deonti operators per and obl are a form of quanti�ation over theations in a given state:� per(a) � 9a1 � a = a1 ^ [a1℄true� obl(a) � 8a1 � [a1℄true ! (a = a1 _ [a1℄obl(a))
CamposH01.tex; 30/08/2001; 14:38; p.7

8 Campos & Harrisonwhere [a1℄true means that ation a1 is possible in the urrent state.An obligation persists until the ation ours (f. Fiadeiro and Maibaum,1991).A major di�erene between our logi and Strutured MAL is inthe treatment of the modal operator. In Strutured MAL the modaloperator is applied to whole propositions. There is no way to relate oldand new values of attributes diretly. Old and new values are often re-lated in pratie by the introdution of auxiliary variables. For examplean ation (inr) whih inrements the value of attribute needle abovewould be de�ned in Strutured MAL as:(needle = aux)! [inr℄(needle = aux+ 1)where aux is an auxiliary variable introdued to arry the value ofneedle into the next state (after inr).To avoid these auxiliary variables we extend the de�nition of themodal operator of (Fiadeiro and Maibaum, 1991) by:� applying the operator to attributes only;� using priming to indiate whih attributes are a�eted by it.Hene the axiom above an be written as:[inr℄(needle0 = needle+ 1)Parentheses will be omitted whenever the sope of the modal operatoran be inferred.The behaviour of set an be de�ned by the following axiom:[set(v)℄ needle'=vThe rendering relation for the interator presentation is de�ned byannotating ations and attributes to show that they are pereivable.The modality of the pereivable attribute/ation is given using furtherattributes. For example vis asserts that the parameter/ation is visi-bly pereivable. In addition if attahed to an ation it an be invoked bythe user. Additional annotations are introdued for further modalities.Taking all the above we get the dial in Figure 3.Interators are omposed using inlusion (Ryan et al., 1991). To usea dial in some other interator we would write:interator Panelinludesdial(Range) via speedDialwhere speedDial beomes the name of a partiular instane of dial inthe ontext of interator Panel. We shall assume that all ations and
CamposH01.tex; 30/08/2001; 14:38; p.8

Model Cheking Interator Spei�ations 9interator dial(T)attributesvis needle: Tationvis set(T)axioms(1) [set(v)℄ needle'=vFigure 3. Simple dial interatorattributes of an interator are always aessible to other interatorsthat inlude it. To initialise the needle of speedDial the following axioman be added to interator Panel:[℄ speedDial.needle=0We assume the existene of type Range. Types will be representedas enumerations of the \key values" or as subranges of integer:typesT1 = fa, b, gT2 = 0..10The modal operator allows us to presribe the e�et of ations in thestate but says nothing about when ations are permitted or required tohappen. For this we must use the permission and obligation operators.As in (Ryan et al., 1991), we only onsider the assertion of permissionsand the denial of obligations:� per(a)! guard | ation a is permitted only if guard is true;� ond ! obl(a) | if ond is true then ation a beomes obliga-tory.Permissions are asserted therefore by default and obligations are o� bydefault.This makes it easier to add permissions and obligations inremen-tally when writing spei�ations. Permission axioms per(a)! guard1and per(a) ! guard2 together yield per(a) ! (guard1 ^ guard2) forexample. This logi is partiularly appropriate for desribing a systemin whih omponents an be reused.The next setion gives introdutions to SMV and CTL as well asa detailed desription of how MAL desriptions an be translated intoSMV. The translation is summarised in Table I. A reader familiar withSMV and CTL and more interested in strategies for proving propertiesof interative behaviour than seeing a justi�ation for a translation mayskip to Setion 4, pausing briey at Table I.
CamposH01.tex; 30/08/2001; 14:38; p.9

10 Campos & Harrison3. Model Cheking Interators3.1. SMVModel heking was originally proposed as an alternative to theoremproving in onurrent program veri�ation (Clarke et al., 1986). Thebasi premise was that a �nite state mahine spei�ation of a sys-tem an be subjet to exhaustive analysis of its entire state spae todetermine what properties hold of the system's behaviour. Typiallythe properties are expressed in some temporal logi that allows reason-ing over the possible exeution paths of the system (see Figure 4). Inthis ontext the possible exeution paths are interpreted as alternativefutures.
S1

S0

S2

S2

S1

S0

S2

S1

S0

S0

S1
....

...
.

.Figure 4. Exeution paths (adapted from Abowd et al., 1995)By using an algorithm to perform the state spae analysis over a�nite state system two major drawbaks of theorem provers an beavoided:� the analysis is fully automated;� the validity of a property is always deidable.A main drawbak of Model Cheking is onerned with the sizeof the �nite state mahine needed to speify a given system. Use-ful spei�ations may generate state spaes so large that it beomesimpratial to analyse the entire state spae. Deidable systems may be-ome e�etively undeidable in pratie. The development of SymboliModel Cheking somewhat diminished this problem. By this meansstate spaes as large as 1020 states may be analysed (Burh et al.,1990).
CamposH01.tex; 30/08/2001; 14:38; p.10

Model Cheking Interator Spei�ations 11MODULE blinkVARlight: boolean;INITlight=0TRANSnext(light) = !lightFigure 5. An example SMV module3.1.1. The SMV input languageAn SMV spei�ation is a olletion of modules. Eah module de�nesa �nite state mahine. A module onsists of a number of state variablesthat are omparable with interator attributes and a set of rules thatspeify how the module an progress from one state to the next (thatare omparable with interator axioms).Figure 5 shows an example SMV module. Attributes are delaredin lause VAR. Here there is only one attribute (light) and its type isboolean. Clause INIT de�nes the initial state of the module. Here theinitial state attribute light is false (zero representing false). ClauseTRANS de�nes how the state evolves. Axioms in TRANS lauses are writ-ten using a temporal logi in whih next is the only temporal operator.next is used to referene the next state. The usual propositional op-erators are also present: ! stands for logial not, &/| stand for logialand/or respetively, -> and <-> stand for impliation and equivalene.Hene in the example the attribute will repeatedly toggle between trueand false every time a state hange happens.The omplete list of delarations used is as follows:� VAR | allows the delaration of the variables that de�ne the mod-ule's state. The types assoiated with the variables an be eitherboolean, an enumeration, an array, or another module. The use ofarrays will not be addressed in this paper (see Campos, 1999).� INIT| allows the de�nition of the initial state of the module. Thisis done using propositional formulae on the module's attributes.� TRANS | allows the de�nition of the behaviour of the module.This is done using temporal formulae. The operator next is usedto refer to the next state.� INVAR| allows the spei�ation of invariants over the state. Theyare written using propositional formulae only.
CamposH01.tex; 30/08/2001; 14:38; p.11

12 Campos & Harrison� FAIRNESS | allows the spei�ation of fairness onstraints. Thebehaviour of the module (i.e., the states in its exeution paths)will have to obey the fairness onstraints in�nitely often. Fairnessonstraints an be temporal formulae (CTL formulae) or simplypropositional formulae.� SPEC | allows the de�nition of a CTL formula to be heked.3.1.2. CTLCTL (Computational Tree Logi | Clarke et al., 1999) is used toexpress properties of the behaviour of the system spei�ed in SMV. Aformal desription of CTL is given by (Clarke et al., 1999). An informalaount of the operators is given here. Besides the usual propositionallogi onnetives CTL allows for operators over the omputation pathsthat emanate from a state:� A { for all paths (universal quanti�er over paths);� E { for some path (existential quanti�er over paths);and over states in a omputation path:� G { used to speify that a property holds at all states in the path(universal quanti�er over states in a path);� F { used to speify that a property holds at some state in the path(existential quanti�er over states in a path);� X { used to speify that a property holds at the next state in thepath;� U { used to speify that a property holds at all states in the pathprior to a state where a seond property holds.These operators allow us to express onepts suh us:� universally: AG(p) { p is universal (for all paths, in all states, pholds);� inevitability: AF (p) { p is inevitable (for all paths, for some statealong the path, p holds);� possibility: EF (p) { p is possible (for some path, for some statealong that path, p holds).
CamposH01.tex; 30/08/2001; 14:38; p.12

Model Cheking Interator Spei�ations 133.2. From Interators to SMVModel heking of interator models an be ahieved by translatingthese models into SMV. To aomplish this eah interator's state andbehaviour must be expressed in SMV.3.2.1. Expressing interator state in SMVSMV has been used in the veri�ation of interative system spei�a-tions by Abowd et al. (1995). Their approah uses a propositional pro-dution system written in Ation Simulator (Monk and Curry, 1994).With interators we build spei�ations ompositionally. An SMV mod-ule is similar to an interator in that it also has a state (a olle-tion of attributes) and axioms desribing how the state evolves. Thesesimilarities make it possible to represent interators as SMV modules.State attributes in SMV an be delared as booleans or as having anenumerated type. This means that restritions will have to be enforedon the types used in interators. A variable de�ned as having typenat will have to be restrited to an appropriate subrange of nat beforetranslation to SMV is arried out. With this in mind a translation rulean be de�ned:Translation Rule 1. (Attributes)attributes a1: T translates to: VAR a1: T;whenever T is a valid SMV type.The inludes lause is used to allow interators to have other in-terators as part of their state. This notion has a diret ounterpartin SMV where modules an have instanes of other modules as partof their state. Instanes of inluded interators are represented as vari-ables. Their types are the SMV modules that result from the interatortranslation. The translation rule for interator inlusion is:Translation Rule 2. (Interator inlusion)inludes iname via i1 translates to: VAR i1: iname;where iname is the SMV module that results from the translation ofinterator iname.The onept of importing does not exist in SMV. Importing lausesan be eliminated from an interator desription by substituting the im-ported interators syntatially. SMVmodules annot be parameterisedby types. It is possible to eliminate type parameters from interatorbased models by instantiating eah parameterised interator with thetypes atually used as parameters. Therefore a parameterised interatorwill generate an SMVmodule for eah instantiation of parameters. Eahof these transformations an be done automatially.
CamposH01.tex; 30/08/2001; 14:38; p.13

14 Campos & HarrisonWith appropriate restritions therefore it is possible to represent thestate of an interator in the state of an SMV module. The remainingproblem is to express behaviour of interators in SMV. The remainderof this setion deals mainly with showing how a translation from MALto SMV axioms an be e�eted. It does this by providing the translationalgorithm needed for eah type of axiom. The approah taken follows(Fiadeiro and Maibaum, 1991).3.2.2. Expressing interator behaviour in SMVFive types of axioms are identi�ed:� invariants | these are formulae that do not involve any kind ofation or (referene) event (i.e., simple propositional formulae).They must hold for all states of the interator.� initialisation axioms | these are formulae that involve the refer-ene event ([℄). They de�ne the initial state of the interator.� modal axioms | these are formulae involving the modal operator.They de�ne the e�et of ations in the state of the interator.� permission axioms | these are deonti formulae involving the useof per. They de�ne spei� onditions for ations to be permittedto happen.� obligation axioms | these are deonti formulae involving the useof obl. They de�ne the onditions under whih ations beomeobligatory.The notion of ation in MAL means that the axioms are interpretedover labelled transition systems. Ations are assoiated with state tran-sitions (Fiadeiro and Maibaum, 1991). This is unlike SMV axiomswhih are interpreted over (unlabelled) �nite state mahines (see Se-tion 3.1). We shall use the notation prop(expr1; ::; exprn) to denote aformula on expressions expr1 to exprn using propositional operatorsonly. The expressions expr1 to exprn themselves need not neessarilybe propositional. We will also use names a1 to an to denote interatorattributes.Invariants These are axioms prop(a1; ::; an). Invariants must hold inall states of the model. SMV has a diret ounterpart in the INVARlause. The translation rule for invariants is then:Translation Rule 3. (Invariants)prop(a1; ::; an) translates to: INVAR prop(a1,..,an)
CamposH01.tex; 30/08/2001; 14:38; p.14

Model Cheking Interator Spei�ations 15Initialisation axioms These are axioms [℄prop(a1; ::; an) that are usedto de�ne the initial state. This also has a diret ounterpart in SMVnamely the INIT lause. Initialisation axioms are translated by remov-ing referene events and plaing the resulting axioms in INIT lauses:Translation Rule 4. (Initialisation axioms)[℄prop(a1; ::; an) translates to: INIT prop(a1,..,an)Modal axioms These axioms are used to speify the e�et of ationsin the state and are of the form prop([a℄a1; ::; [a℄ag ; ah; ::; an).Fiadeiro and Maibaum (1991) show how it is possible to reasonabout the temporal properties of the normative behaviours of deontispei�ations1. Normative behaviours of interator models are the onesthat are of interest in what follows. Therefore it will be possible to makeuse of these results to translate modal axioms to SMV.The ourrene operator >ation is based on the >T operator in(Fiadeiro and Maibaum, 1991). This operator is used to signal thata given state has been reahed through the ourrene of some spei�ation. >ation a holds in a state when a is the ation that auses thetransition to that state.The operator will be modelled by a state attribute (ation) indi-ating the ation for whih the operator holds true. Hene >ation abeomes ation = a in SMV. The type of this attribute will be anenumeration of all the possible ations. This approah avoids the prob-lem of dupliated initial states desribed in (Campos, 1999). States aredupliated when they an be reahed using di�erent ations (see Figure6). This is di�erent from the approahes in (Atlee and Gannon, 1993)
action

ac1

ac2
action

ac1

ac2

S

>

>

S

S

Kripke StructureLabelled Transition SystemFigure 6. State dupliationand (Abowd et al., 1995) where information is enoded in the state1 A behaviour is said to be normative if all permissions are respeted and allobligations are ful�lled.
CamposH01.tex; 30/08/2001; 14:38; p.15

16 Campos & Harrisonabout the next ation that will happen. With this type of approah,models that originally had one single initial state with several ationsleading from it will be transformed into models with several initialstates. This might lead to situations where formulae involving the useof existenial quanti�ation over paths fail on the transformed modeleven if they are true of the original model. This happens when despitethe formula being true of the original single initial state it fails to betrue of some of the generated initial states. Remember that to sueedthe property must be true of all initial states, and that eah of theinital states at the SMV level will apture a subset of the behaviourthat is possible from the original single initial state in the model.Using the ourrene operator the modal operator may be elim-inated from modal axioms. Fiadeiro and Maibaum (1991) show theanalogue of2: ([a℄p)) ((>ation a)! p) (1)The equation states that if p always holds after ation a, then p musthold in all states where >ation a holds (all states that an be reahedby performing a).The modal axiom [a℄p an be written in SMV as ation = a! p.This translation works if all attributes in p are bound to the modal op-erator (i.e., all attributes are alulated in a single state resulting fromthe exeution of a). This amounts to a situation where the e�et ofations is independent of the states where they our. A typial modalaxiom will use attribute values from both the state prior and after theourrene of the ation in order to express the state transformationsgenerated by the ation. Hene the translation must be adapted so thatreferene to both states is possible. This an be done using the nextoperator. The translation rule for modal axioms beomes:Translation Rule 5. (Modal axioms)prop([a℄a1; ::; [a℄ag; ah; ::; an)translates to:TRANSnext(ation)=a -> prop(next(a1),..,next(ag),ah,..,an)Modal axioms are thereby translated into axioms that test whether thenext ation is the appropriate one and assert the desired property usingnext to referene the state after the ation happens.Permission axioms These axioms are used to restrit ation permis-sion to some spei� onditions. Permission axioms are of the form2 In this ontext a) b means that a! b for all states in the model.
CamposH01.tex; 30/08/2001; 14:38; p.16

Model Cheking Interator Spei�ations 17per(a) ! prop(a1; ::; an) and mean that ation a is permitted onlywhen the propositional formula prop(a1; ::; an) holds.Fiadeiro and Maibaum (1991) show that formulae of the formper(a)! ondlead to X(>ation a)! ond:where X is the next state temporal operator.Hene the translation rule for permission axioms is:Translation Rule 6. (Permission axioms)per(a)! prop(a1; ::; an)translates to:TRANS next(ation)=a -> prop(a1,..,an)An SMV model must satisfy its axioms. This translation rule there-fore guarantees that all permission onditions will have to be met in theorresponding SMV model in order for the state transition assoiatedwith that ation to take plae.Obligation axioms These axioms are used to assert the obligation ofperforming some ation. They take the form prop(a1; ::; an) ! obl(a)meaning ation a beomes obligatory when the propositional formulaprop(a1; ::; an) holds.Fiadeiro and Maibaum (1991) show that a formula of the formond! obl(a)leads to ond! F (X(>ation a))with F the sometime in the future operator.It is not possible to express this last equation diretly in terms ofSMV. The SMV input language allows referene to the urrent andnext state only, whereas the equation above makes referene to somearbitrary state in the future. The only way to inuene future states ofthe system is through fairness onditions (see Setion 3.1.1). A fairnessondition must hold in�nitely often. If the formula next(ation) = ais plaed as a fairness ondition then eventually the ation will happen.This does not impose any limit on how long it will be neessary to waitfor the ation.This strategy requires formulae to be added and removed from theset of fairness onditions as obligations are suessively raised and ful-�lled during the exeution of the state mahine. Fairness is de�ned by
CamposH01.tex; 30/08/2001; 14:38; p.17

18 Campos & Harrisona stati set of formulae in the SMV text. In order to overome this itis neessary to use a boolean ag signaling when a spei� obligationis raised/ful�lled.For eah axiom prop(a1; ::; an) ! obl(a) we reate a boolean vari-able obla whih will represent the obligation. Following from thede�nition of obl in Setion 2.2 this variable will be set to true wheneverthe obligation is raised (i.e., prop(a1; ::; an) holds) and not immediatelyful�lled. In addition obla must be kept true while the ation does notour. This an be summarised in the following SMV axiom:TRANSnext(ation)!=a -> next(obla)=(prop(a1,..,an) | obla)If the next ation is a then obla must be set to false:TRANS next(ation)=a -> !next(obla)Initially the variable is set to false. In fat the variable is only set totrue when the obligation is raised and not immediately ful�lled.INIT !oblaFinally, a fairness lause is added stating that obla must be falsein�nitely often:FAIRNESS !oblaThis guarantees that whenever an obligation is signalled it is eventuallyful�lled.It is now possible to enumerate the rules for the translation of aninterator into an SMV module. This is done in Table I. On the lefthand side of the table the various interator expressions are listed. Theright hand side gives the orresponding SMV expressions.3.2.3. Some �nal omments regarding the translationThe disussion above has only onsidered ations with no parameters.It is possible to eliminate a parameterised ation automatially bysubstituting it by a set of ations, one for eah possible ombinationof the parameters' values. Parameterised ations an appear in threetypes of axioms. Only universally quanti�ed variables are aepted asparameters.� modal axioms. Axioms are repeated as many times as needed byinstantiating the parameterised ations with the appropriate val-ues.� permission axioms. Axioms are repeated as many times as needed.
CamposH01.tex; 30/08/2001; 14:38; p.18

Model Cheking Interator Spei�ations 19Table I. Translation from interators to SMVInterator SMV Moduleinterator name MODULE nameattributesa : fv1; ::; vng VAR a : fv1; ::; vngVAR ation : fa1; ::; ang;interator inlusion:inludes iname via i1 VAR i1: iname;invariants:prop(a1; ::; an) INVAR prop(a1; ::; an)initialisation axioms:[℄prop(a1; ::; an) INIT prop(a1; ::; an)modal axioms:prop([a℄a1; ::; [e℄ag; ah; ::; an) TRANS next(ation) = a �>prop(next(a1); ::; next(ag); ah; ::; an)permission axioms:per(a)! prop(a1; ::; an) TRANS next(ation) = a �>prop(a1; ::; an)obligation axioms:prop(a1; ::; an)! obl(a) VAR obla : boolean;INIT !oblaTRANS next(ation)!= a �>next(obla) = (prop(a1; ::; an) j obla)TRANS next(ation) = a�>!next(obla)FAIRNESS !obla� obligation axioms. Any of the ations generated by the rules abovewill disharge the obligation.Another feature of the interator language is the ability to givenames to enumerated types. This is not possible in SMV but typenames an be eliminated by substituting all ourrenes of a type nameby its de�nition.Two additional lauses are added to the language. Clause fairnessallows the de�nition of fairness onstraints and lause test allows thede�nition of CTL formulae to be heked. Clause test should only beused in the master interator of a model. Additionally, this interatorshould be alled main.The fous has been individual interators. It is assumed that thesemantis of ombining interators and of ombining SMV modules arethe same. This is true exept for one problem. By default SMV moduleswork in lok-step. Whenever a module performs a transition all itshildren (that is all module instanes delared as variables of its state)must perform a transition. It is neessary to model the fat that inter-ators an evolve independently subjet to expliit synhronisations in
CamposH01.tex; 30/08/2001; 14:38; p.19

20 Campos & HarrisonSMV. SMV provides the proess as a mehanism for interleaved exeu-tion (MMillan, 1993). Whenever an SMV module ontains instanesof other modules as its hildren the keyword proess an be usedto make that hild run independently of the parent's behaviour. TheSMV semantis of proesses is too restritive. No two proesses withthe same parent an be running simultaneously. This interpretationprevents modules (and the interators that they represent) from syn-hronising on some ation. To overome this it is neessary to introduestuttering in the SMV modules expliitly. A stutter means that modulesan perform state transitions in whih no ations atually happen. Aspeial ation nil is introdued along with axioms stating that thisation does not hange the state of the module. A module an therebyperform an ation while another module does nothing. By this meansit is possible to simulate the behaviour of both modules performingations simultaneously.In order to refer to the enabledness of an ation in the test lauseoperator enbl is introdued. The expression enbl(a) is translated intoE[ation=nil U ation=a℄ (an ation is enabled if there is a om-putation path where no ation happens until ation a happens).3.3. The toolA tool to implement the translation just desribed has been imple-mented in Perl (see Wall et al., 1996 for a desription of the language).The Perl sript (i2smv) works by reading an interator model andbuilding an intermediate representation of that model. The interme-diate representation is then manipulated by performing the followingsteps:1. eliminate interator importing;2. eliminate type parameters from interators;3. eliminate parameters from ations;4. eliminate type names;5. reate the stuttering ation;6. generate SMV ode aording to the translation in Table I.The tool ats as a �lter by reeiving interator ode as input andgenerating SMV ode as output. A �le an also be provided for theinput. Supposing an interator model is ontained in �le model.i theommand:
CamposH01.tex; 30/08/2001; 14:38; p.20

Model Cheking Interator Spei�ations 21

Figure 7. The Interators to SMV ompilerindy033:~> i2smv model.i | smvwill automatially generate and model hek the SMV equivalent of theinterator model.An Emas (Stallman, 1998) mode has been written to provide anintegrated environment for the development, translation and veri�a-tion of interator spei�ations. Figure 7 shows the tool in use. The toppane holds an interator model while the bottom pane shows the resultof SMV model heking. The option i2smv on the menu bar providestwo alternatives for proessing model desriptions.� Compile & Verify | This results in what is shown in Figure 7. Themodel is ompiled and SMV automatially used on the resultingode. A pane is reated to show the result of the veri�ation. Thisis the option used during normal operation. It allows i2smv andsmv to work together in a ompletely transparent manner. Onlythe interator model and the result of the veri�ation need to beseen.� Compile | This option will not usually be used during normaloperation of the tool. It is provided to allow aess to the generated
CamposH01.tex; 30/08/2001; 14:38; p.21

22 Campos & HarrisonSMV ode. The model is ompiled to SMV ode and the generated�le is then opened in Emas using the SMV mode.4. Modelling the MCP with InteratorsWe have already noted that the Palmer (1995) ase study deals witha problem relating to altitude aquisition in a real airraft (MD-88).Although this partiular problem was identi�ed during simulation ofrealisti ight missions, Palmer notes that similar problems are fre-quently reported to the Aviation Safety Reporting System (Cheaney,1991).4.1. Basi priniplesOperators of automated systems build mental models that lead toexpetations about system behaviour. When the system behaves dif-ferently from the expetations of the operator, automation surprises(Woods et al., 1994) our. This type of problem is onerned withhow the system and user interat rather than with the behaviour of thesystem alone. In the present example the system behaved as designed(i.e., it did not malfuntion) but nevertheless an automation surprisehappened. The system is misleading operators into forming false beliefsabout its behaviour. Beause it is diÆult to prejudge the behaviourof the system in the ontext of use, simulations of real-life interationsare required with real users.Although the use of simulation allows for the detetion of someshortomings in design it also has some intrinsi problems. A full systemor prototype has to be built whih is ostly late in the design/develop-ment life yle when design deisions have already been made.An ability to analyse and predit potential problems during theinitial stages of design would redue the number of problems foundlater in the simulation stage. This early analysis must be done withoutundue bias from hindsight. We are not trying to explain why somethingwent wrong. Rather we want to exhaust the set of potential soures ofproblems.The problem with the example of Palmer (1995) is that it is basedpreisely on hindsight. Even though it is diÆult to be untainted bythis previous experiene we will attempt to build a generi model of theartefat under onsideration. We will then analyse those aspets of thebehaviour that are highlighted by the ase study and hene attempt todemonstrate that it is possible to detet the problem and to preventit from reeping into the design. We shall argue that the model and
CamposH01.tex; 30/08/2001; 14:38; p.22

Model Cheking Interator Spei�ations 23the questions we ask ould have been generated without the bene�t ofexperiene of the Palmer senario.The model will fous mainly on what is relevant in that dialoguebetween the user and the artefat and will not dwell on the details ofeither the artefat or the user. This proess of abstration is ommonin model heking. Of ourse a question might be raised as to whetherthe interfae presentation aurately reets the internal state of thesystem and whether the model has been so biased towards the questionthat other important harateristis of the system will go undeteted.The model fouses on the key ations and the parameters that arepresented by the interfae in a way that is onsistent with the moredetailed desription of the artefat.In summary, what we have done is quite di�erent from buildinga model around the Palmer senario. Here we are using generi usease type questions as a starting point for the analysis. In the �rstase the results of the senario diretly inuene the model so that theanalysis is biased by hindsight. In the seond ase we use the senarioonly to set up a ontext for veri�ation. The veri�ation proess itselfis independent of the results desribed in the senario. The senarioould be onsidered to be an idealised desription of how the systemshould funtion in a partiular situation in order to guide the systemdevelopment.4.2. Seleting what to analyseThe �rst step in the proess, see Figure 1, is deiding exatly whatfeatures of the systems we wish to analyse. Identifying relevant re-quirements and properties to ensure orretness an be a nontrivialtask. This is espeially true of open systems suh as interative sys-tems where the orretness of system behaviour an be veri�ed onlyin the ontext of assumptions made about the environment (f. theassumption-ommitment paradigm, de Roever, 1998).These requirements and properties are related to the user and there-fore the proess of obtaining them beomes the fous for interdis-iplinary disussion. In pratie designers an resort to veri�ationwhenever a deision has to be made about some partiular aspet ofthe interfae design. Suh a disussion might have a ritial impat onthe system safety or may have onsequenes that are unlear to thedesigner.In the present ase the issue is how automation and user interatduring altitude aquisition. A reasonable expetation for the pilot tohave of the system is that:
CamposH01.tex; 30/08/2001; 14:38; p.23

24 Campos & HarrisonWhenever the pilot sets the automation to limb up to a givenaltitude, the airraft will limb until suh altitude is aquired andthen maintain it.We will proeed as if suh a request for analysis had been made by thedesign team and follow the proess outlined in Figure 1.The property above relates to the vertial guidane subsystem of theairraft mode logi. On the MD-88 the pilot interats through a panelalled the Mode Control Panel (MCP). The funtionality of the MCPwill be desribed in Setion 4.4 as will the model that was built. Infor-mation regarding the urrent ying modes is displayed on the FlightMode Annuniator (FMA). We will inlude the relevant omponents ofthe FMA as attributes (pithMode and ALT) of the MCP model (seeFigure 10).4.3. Modelling the ontext as a finite systemTo analyse a system we need to plae it in its ontext of operation.The MCP is not intrinsially unsafe. It only makes sense to talk ofshortomings in its design in relation to the atual system that theMCP is inuening. In this ase we need to model the airraft state inorder to relate it to the automation state.The airraft is a ontinuous system but our spei�ations are dis-rete. This means we will need to substitute state variables that rangeover ontinuous state spaes by orresponding (abstrated) state vari-ables that range over disrete domains (f. Heitmeyer et al., 1998). Inthe present ontext we are speially interested in the altitude. Henestate hanges will orrespond to hanges in the altitude by some amount.We will abstrat from this and use 1 as a unit of measure. In order tomodel the state transitions ation y is introdued. The model for theairraft is shown in Figure 8. Besides asserting the hange of altitudein eah transition, the axiom for y relates limb rate to the altitudehange.We must be areful that the abstration proess above does nota�et the behaviour of the system as it relates to properties we willbe heking. Altitude steps must be small enough when ompared withthe remaining behaviour of the system to provide a realisti basis foranalysis in ontext. This will be further addressed in Setion 5.1 whenthe domain of the types is disussed.4.4. Modelling the MCPAs we have argued, modelling the MCP (see Figure 9) involves takingaount of the spei� analysis we want to perform. In this ase we want
CamposH01.tex; 30/08/2001; 14:38; p.24

Model Cheking Interator Spei�ations 25interator airraftattributesaltitude: AltitudeairSpeed: VeloitylimbRate: ClimbRateationsyaxioms(1) [y℄ (altitude0 >=altitude - 1 ^ altitude0 <=altitude + 1) ^(altitude0 <altitude ! limbRate0 <0) ^(altitude0=altitude ! limbRate0=0) ^(altitude0 >altitude ! limbRate0 >0)Figure 8. The airraftto validate the pilot's assumption that setting both the altitude and anadequate pith mode will ause the airraft to limb to that altitude.This amounts to verifying the safety of operation of the pith modes.
Climb Rate Velocity Altitude Pitch Modes

00

ILS

ALT

 OFF

FD

 SPD MACH

0
HOLD

0
FD

 OFF

SEL
SPD

NAV0 0 0 00 0

MCP

1 2 OFF

AUTO
 AP ON

LIM
EPR

SEL
MACH ALT

 THROT

H

 ALT IAS

 V.NAV

-

 HDG

ARM ROLL PITCH THRUSTFMA

VERT
0 00 0

MACH

-

LAND
AUTO

LOC
VDR

V

IAS

SPD

Figure 9. The MCP (adapted from Honeywell In., 1988)The omponents that were deemed relevant are shown in Figure 9 ina lighter bakground. The hoie of enoding will typially have beenarried out through disussion with human fators and domain experts.The model will inlude setting veloity, limb rate, and altitude, andseleting the appropriate pith mode (see below). We are then makingthe assumption that the other omponents of the MCP (for example,lateral navigation and thrust) will not a�et the safety of operation ofthe pith modes. This assumption an be disharged by a separate proofproess. Hene we are able to assess deisions relating to partiulardesign aspets in a ompositional manner.Three main dials are involved (see Figure 9):� airspeed (veloity);
CamposH01.tex; 30/08/2001; 14:38; p.25

26 Campos & Harrison� vertial speed (limb rate);� altitude window (i.e., altitude to whih the airraft should limb).Airspeed and altitude an only be positive values. The vertial speedan either be positive (going up) or negative (going down). The pa-rameterised interator introdued in Setion 2.2 (see Figure 3) allowsus to represent the di�erent dials eonomially. Dials are representedabstratly by an attribute (needle) and an ation (set). The ationorresponds to setting a value (see Axiom 1). The attribute representsthe value that has been set.How the MCP inuenes the automation will depend on its operat-ing pith mode. The pith mode de�nes how the airraft behaves duringairraft asent/desent. There are four pith modes:� VERT SPD (vertial speed pith mode): instruts the airraft tomaintain the limb rate indiated in the MCP (the airspeed willbe adjusted automatially);� IAS (indiated airspeed pith mode): instruts the airraft to main-tain the airspeed indiated in the MCP (the limb rate will beadjusted automatially);� ALT HLD (altitude hold pith mode): instruts the airraft to main-tain the urrent altitude;� ALT CAP (altitude apture pith mode): internal mode used by theairraft to perform a smooth transition from VERT SPD or IAS toALT HLD (see ALT below).We therefore de�ne the type:PithModes = fVERT SPD, IAS, ALT HLD, ALT CAPg.Additionally there is a apture swith (ALT) whih an be armed toause the airraft to stop limbing when the altitude indiated in theMCP is reahed.The MCP operation is desribed by the interator in Figure 10.Setting the limb rate or airspeed auses the pith mode to hangeaordingly (Axioms 1 and 2). Setting the altitude dial arms the alti-tude apture (Axioms 3). These axioms speify mode hanges that areimpliitly arried out by the automation as a onsequene of user ativ-ity. Axioms 4 to 8 are introdued to de�ne the e�et of the interator'sown ations. These allow hanging between di�erent pith modes andtoggling the altitude apture. Ation enterAC (setting the pith modeto ALT CAP) is an internal system event (it is not annotated with vis)whih therefore annot be invoked diretly by the user. Axioms 9 and 10
CamposH01.tex; 30/08/2001; 14:38; p.26

Model Cheking Interator Spei�ations 27interator MCPinludesairraft via planedial(ClimbRate) via rDialdial(Veloity) via asDialdial(Altitude) via ALTDialattributesvis pithMode: PithModesvis ALT: booleanationsvis enterVS, enterIAS, enterAH, toggleALTenterACaxioms# Ation e�ets(1) [rDial.set(t)℄ pithMode0=VERT SPD ^ ALT0=ALT(2) [asDial.set(t)℄ pithMode0=IAS ^ ALT0=ALT(3) [ALTDial.set(t)℄ pithMode0=pithMode ^ ALT0(4) [enterVS℄ pithMode0=VERT SPD ^ ALT0=ALT(5) [enterIAS℄ pithMode0=IAS ^ ALT0=ALT(6) [enterAH℄ pithMode0=ALT HLD ^ ALT0=ALT(7) [toggleALT℄ pithMode0=pithMode ^ ALT0 6=ALT(8) [enterAC℄ pithMode0=ALT CAP ^ :ALT0# Permissions(9) per(enterAC) ! (ALT ^ jALTDial.needle - plane.altitudej�2)# Obligations(10) (ALT ^ jALTDial.needle - plane.altitudej�2) ! obl(enterAC)(11) (pithMode=ALT CAP ^ plane.altitude=ALTDial.needle) !obl(enterAH)# Invariants(12) pithMode=VERT SPD ! plane.limbRate=rDial.needle(13) pithMode=IAS ! plane.airSpeed=asDial.needle(14) pithMode=ALT HLD ! plane.limbRate=0(15) (pithMode=ALT CAP ^ plane.altitude<ALTDial.needle) !plane.limbRate=1(16) (pithMode=ALT CAP ^ plane.altitude>ALTDial.needle) !plane.limbRate=-1Figure 10. The MCP model

CamposH01.tex; 30/08/2001; 14:38; p.27

28 Campos & Harrisonspeify the mode logi that regulates that this event happens when thealtitude apture is armed and the plane is inside some neighbourhoodof the target altitude. The restrition on the size of the neighbourhoodis that it should not be too small to allow the system to evolve (havebehaviour) while inside the neighbourhood of the target altitude andtherefore it has been spei�ed as the value 2. Axiom 11 spei�es thatthe system must set the pith mode automatially to ALT HLD onethe desired altitude has been reahed. Finally, Axioms 12 to 16 desribethe e�et of the pith modes on the state of the airraft.The property under analysis relates to the temporal behaviour of themodel. Model heking is the therefore the natural hoie of tehniqueto be used (Campos and Harrison, 1998). Before we an apply thisapproah two further steps are neessary. We need to obtain a hekableversion of the model and we must de�ne how the properties an beexpressed in CTL. 5. Cheking the DesignHaving developed a model for the MCP we will now analyse it usingSMV and the tool desribed in Setion 3.5.1. Converting the ModelEvery veri�ation tehnique or tool fores restritions on what anbe analysed and how. SMV requires some adjustment to be made tothe model we have developed to ut down the number of states. Themost relevant is the need to have enumerated types in the spei�ationonly. Altitude and veloity provide no problem. The airraft will haveits own physial limitations on maximum speed and altitude and weneed to ensure that the seleted maximum value (hene, the maximumaltitude) is higher than the tolerane distane in Axiom 9 of interatorMCP. We hoose to represent both as the range 0 to 5. Three situationsharaterise limb rate in this situation: limbing, holding altitude ordesending. These will be represented as three values: -1 (to representall negative limb rates), 0, and 1 (to represent all positive limb rates).Abstration implies removing information from the model whih anlead to situations were properties an be proved of the abstrated modelwhih are not true of the original model (false positives). The abstra-tion proess above is similar to the Appliation State abstration in(Dwyer et al., 1997). (Dwyer et al., 1997) shows that if the propertiesto be heked are universally quanti�ed then false positives are notintrodued by the abstration proess.In summary we use the following types:
CamposH01.tex; 30/08/2001; 14:38; p.28

Model Cheking Interator Spei�ations 29Altitude = f0, 1, 2, 3, 4, 5gVeloity = f0, 1, 2, 3, 4, 5gClimbRate = f-1, 0, 1gThe behaviour of the interator plane is modi�ed to take into aountthe maximum and minimum altitudes (see Appendix A).The use ase we are onsidering deals with altitude aquisition andtherefore it is not neessary to inlude negative (below sea level) al-titudes in the model. The minimum value for altitude is zero. Thespei�ation ould be extended trivially to inlude negative altitudes.Only the de�nition of Altitude and the minimum altitude in the planeinterator would need to be adapted to the new minimum value.To make it ompatible with the SMV heker the name of interatorMCP must be hanged to main. The hekable version of the spei�a-tion is presented in Appendix A whih is automatially onvertible toSMV using the ompiler.Having translated our model to SMV we now have to express theproperties as CTL formulae that we want to analyse using the modelheker. These formulae an then be inluded in the model using testlauses.5.2. Formulating and heking propertiesThe design of the interfae (as seen in Setion 4.2) has been based onthe plausible assumption that if the altitude apture (ALT) is armedthe airraft will stop at the desired altitude (seleted in ALTDial). Thisan be expressed as the CTL formula:AG((plane.altitude < ALTDial.needle & ALT) ->AF(pithMode=ALT_HLD & plane.altitude=ALTDial.needle))whih reads: it always (AG) happens that if the plane is below thealtitude set on the MCP and the altitude apture is on then (AF)the altitude will always be reahed and the pith mode be hanged toaltitude hold.The CTL formula above is somewhat weaker than the pilot's expe-tation introdued in Setion 4.2 but it subsumes interesting propertiesof the interation between a user and the MCP. Setion 7 furtherdisusses this issue.Only two piees of information are needed about how the translationfrom interators to SMV works in order to express CTL formulae and tointerpret the traes that provide ounterexamples. Knowledge is neededof the existene of the ourrene operator (attribute ation at theSMV level) and of the onvention that the expression a v at the SMVlevel represents expression a(v) at the interator level.
CamposH01.tex; 30/08/2001; 14:38; p.29

30 Campos & HarrisonWhen we model hek a spei�ation the heker answers whetheror not the test sueeds. When we hek the model against the formulaabove we get the following trae as ounterexample3:-- speifiation AG (plane.altitude < ALTDial... is false-- as demonstrated by the following exeution sequenestate 1.1:....state 1.2:....state 1.3:....-- loop starts here --state 1.4:plane.limbRate = 1plane.altitude = 1ALTDial.ation = set_4rDial.ation = set_1rDial.needle = 1state 1.5:plane.limbRate = -1plane.altitude = 0rDial.ation = set_-1rDial.needle = -1state 1.6:plane.limbRate = 1plane.altitude = 1rDial.ation = set_1rDial.needle = 1resoures used:user time: 167.1 s, system time: 0.49 sBDD nodes alloated: 936879Bytes alloated: 16121856BDD nodes representing transition relation: 1952 + 9153 Note that from state to state only those values that have hanged are shown.For brevity we only show enough of the ounter example to make the point.
CamposH01.tex; 30/08/2001; 14:38; p.30

Model Cheking Interator Spei�ations 31What the model heker points out is that the pilot might ontinu-ously hange the limb rate so as to keep the airraft ying below thealtitude set on the MCP (look at rDial.ation). Although this mightseem an obvious (if arti�ial) situation it does raise the issue of howthe automation reats to hanges in the limb rate when an altitudeapture is armed. It suggests hanges that ause the airraft to deviatefrom the target altitude.There is not enough detail in the model to make this point learlyso we need to refer bak to the designers in order to raise the point.The model ould then be re�ned if neessary to inlude this partiularaspet of the automation behaviour in greater detail. These are valuableoutomes of the veri�ation proess and show that the proess is notself ontained. Rather it prompts questions that have to be dealt withat other stages of design.If the model is appropriate in this respet it will lead to a re�nementof the assumptions about the user. A revised property must reet thefat that hanging the limb rate an prevent the airraft from reahingthe desired altitude. This proess of re�ning the formulae is an impor-tant omponent of the veri�ation proess and it is one that shouldinvolve the insight and analysis of human fators and domain experts.This re�nement proess has the e�et of inorporating knowledge aboutthe user into the proof.In the light of the ounterexample produed by the hek of the �rstformula the test formula now beomes:AG((plane.altitude < ALTDial.needle & ALT) ->AF((pithMode=ALT_HLD & plane.altitude=ALTDial.needle)| (plane.limbRate = -1))It reads: in the onditions stated, the plane will stop at the desiredaltitude unless ation is taken to start desending.When we try this property the answer is still no. The model hekerpoints out that hanging the pith mode to VERT SPD (for instaneby setting the orresponding dial) when in ALT CAP terminates therequest to stop limbing at the target altitude. When the pith modehanges to ALT CAP the altitude apture is automatially swithed o�(see Axiom 8) even though the airraft is still limbing. Any subsequentation from the pilot that auses the pith mode to hange will ausethe airraft to keep limbing past the target altitude. This is an alertto the designer. Is it a desirable state of a�airs? Is enough informationprovided by the MCP to alert the pilot? Here disussions with humanfators experts may provide help about whether this situation is likelyto be problemati. Hene the property in itself does not enode user
CamposH01.tex; 30/08/2001; 14:38; p.31

32 Campos & Harrisonexpetations. Rather failure to satisfy the property may generate thebasis for a senario that may lead to a onern about human issues.(Palmer, 1995) reports that a similar problem was deteted duringsimulation. One the airraft hanges into ALT CAP mode there areuser ations that might lead to a \kill the apture" mode error and aonsequent altitude bust. We laim that we ould have ahieved thisresult without knowledge of the simulation results. We gave SMV nospei� hain of events to analyse nor did we hek expliitly for theabsene of altitude busts. The analysis revolved around a simple generiuse ase onerned with altitude apture. It was the tool that pointedto a partiular sequene of events that ould lead to this hazardoussituation. This ould have been ahieved as an automated veri�ationproess based only on a pen and paper senario of an airraft in itsearly design stages.Finding a problem is just a trigger for further analysis and disus-sion. The designers and human-fators experts an be alled upon tolarify the full onsequenes of the ounterexample. How aware willthe pilot be of the mode hange to ALT CAP performed by the au-tomation? Is this issue adequately overed in the manuals, and duringtraining? Should the system be redesigned and how? What engineeringonstraints ome into play regarding the design? Being able to raisethese issues against a formal proof bakground in early design stageswill undoubtedly allow for a better/safer design from the start. It willalso redue downstream osts of failing to disover these problems untiltoo late. 6. Related WorkThe use of automated reasoning tools for software veri�ation has at-trated onsiderable interest in reent years. In this paper we haveonsidered model heking interative systems' spei�ations for theveri�ation of interative systems designs. This work is omparablewith a number of reent papers.6.1. The Case studyThe spei� ase study that we have used is also analysed in (Levesonand Palmer, 1997) and (Rushby, 1999). Leveson and Palmer (1997)write a formal spei�ation based on a ontrol loop model of proess-ontrol systems using AND/OR tables. This spei�ation is then anal-ysed manually in order to look for potential errors aused by indiretmode hanges (i.e., hanges that our without diret user interven-
CamposH01.tex; 30/08/2001; 14:38; p.32

Model Cheking Interator Spei�ations 33tion). An advantage of using a manual analysis proess is greater free-dom in the spei�ation language. This an lead to more readablespei�ations. The possibility of performing the analysis in an auto-mated manner however will be an advantage when analysing omplexsystems and will potentially remove some elements of analyser bias.We address the issue of readability by using a high level spei�ationnotation (interators) whih is then translated into SMV.Rushby (1999) reports on the use of Mur� to automate the detetionof potential automation surprises using (Palmer, 1995) as an example.He builds a �nite state mahine spei�ation that desribes both thebehaviour of the automation and of a proposed mental model of itsoperator. He then expresses the relation between the two as an invarianton the states of the spei�ation. Mur� is used to explore the statespae of the spei�ation and look for states that fail to omply withthe invariant (i.e., mismathes between both behaviours).Rushby (1999) builds his spei�ation around the spei� sequene ofevents that is identi�ed in (Palmer, 1995) as the ause for the altitudebust. We believe that our approah is more exible. Our aim is todevelop a general purpose methodology for the automated analysisof interative systems. While we used the mode problem as a asestudy we are onvined that the methodology an also be applied tothe analysis of other issues. For example, task related properties, lok-in and interlok issues, or awareness an be analysed in this way. In(Campos and Harrison, 1999) we give an example involving the analysisof awareness in a omputer mediated ommuniations system.6.2. SMV and requirements verifiationAlthough the use of model heking as a veri�ation tool has met withmore aeptane in the areas of hardware and ommuniation proto-ols design its use in more general settings is also being addressed. In(Atlee and Gannon, 1993) the use of the MCB model heker for theveri�ation of safety properties of software requirements is reported.More reently (see Sreemani and Atlee, 1996), the use of SMV hasalso been addressed. In both ases the model heker is used to analyseproperties of model transition tables of SCR (Software Cost Redution)spei�ations.The work above relates to properties of single mode transition tableswith boolean variables only. This has been expanded upon by Heit-meyer's group to onsider properties of omplete SCR spei�ations(Heitmeyer et al., 1998; Bharadwaj and Heitmeyer, 1999). In order toredue the omplexity of the state mahines being analysed (Bharadwajand Heitmeyer, 1999) proposes two abstration methods that allow the
CamposH01.tex; 30/08/2001; 14:38; p.33

34 Campos & Harrisonelimination of unneessary variables. We note that these abstrationsare applied to the whole spei�ation. This di�ers from our approahwhere abstrations and information about the properties to be hekedare used to build partial models of the system. We believe our approahto be more appropriate for early stages of design sine it does notimpose the need for a full model of the system. In any ase abstrationssuh as those proposed an also be used downstream of these abstratmodels.SMV is also used by (Chan et al., 1998) for the veri�ation ofrequirements spei�ations. They do this by analysing RSML (Require-ments State Mahine Language) spei�ations. Here the translation toSMV is not neessarily semantis-preserving hene SMV models may begenerated whose semantis di�er from the original RSML spei�ations.All of the work above onentrates on veri�ation of the require-ments spei�ation. This di�ers from our work in that we are mainlyinterested in verifying the interation between the user and the systemrather than the spei� behaviour of the system. While it is obviousthat the system must behave orretly this is learly not enough. It isalso neessary that system and user interat e�etively. Our work anbe seen as omplementary with work in requirements veri�ation.SCR and RSML have been used with suess for the spei�ationof safety ritial systems. MAL as a spei�ation language providesdeonti operators for permission and obligation that allows the spei�-ation of more omplex behaviour patterns while retaining a degree ofreadability and ease of use. Experiene has shown that the behaviourof MAL based interator models are mostly based on the notion ofation. Permission axioms assert the onditions for the ations to bevalid. Modal axioms assert the e�et of the ation on the state. Theseaxioms are onsistent with the traditional style of speifying a systemusing pre- and post-onditions for the possible ations.MAL based models an be translated into SMV in a fully automatedmanner. In all the other approahes there is some degree of man-ual intervention. Automated translation is ruial to avoid undetetedtranslation errors introdued through human intervention.Chan et al. (1998) disuss the need for an iterative approah todevelopment where model heking is used as a design tool. This issimilar to our view of the role of veri�ation in interative systemsdesign. In (Campos and Harrison, 1998) we have argued for the useof both model heking and theorem proving during design to helpguide the design proess. The need for ways to identify meaningfulproperties to hek is also mentioned in (Chan et al., 1998). We believethat onsidering the user during veri�ation is one suh approah togenerating properties.
CamposH01.tex; 30/08/2001; 14:38; p.34

Model Cheking Interator Spei�ations 356.3. Interative Systems verifiationIn reent years a number of authors have started studying the appli-ation of automated reasoning tools to the development of interativesystems. Patern�o has proposed the use of the Lite tool set (Ma~nas et al.,1992) in the analysis of interative systems spei�ations (see, for exam-ple, Patern�o, 1995, Patern�o and Mezzanotte, 1995). He uses a avourof Interators written in LOTOS (Bolognesi and Brinksma, 1987) tomake a hierarhial spei�ation of the user interfae based on taskanalysis output. The translation proess from a LOTOS spei�ation toa �nite state mahine implies that information will be lost. Conditionalguards are systematially removed in this proess whih auses thehekable version of the spei�ation to admit more traes of behaviourthan the original LOTOS version. Approahes have been proposed thatinvolve using partiular styles of spei�ation to avoid these diÆulties(Patern�o, 1995) or a manual translation of the spei�ation (Palanqueet al., 1996).Properties are here expressed in an ation based notation ACTL(Niola et al., 1993). We believe CTL is a better hoie beause a-tions an be enoded as state attributes quite simply but enodingstate information as ations is rather ompliated and not amenableto automation. LOTOS spei�ations are arhitetural desriptions ofthe user interfae that derive from the task analysis whih makes itmore diÆult to reason about the relation between interfae and systembehaviour. Our iterative approah to veri�ation allows simpler models.The attributes that are hosen to be modelled reet user onerns,fousing on ations and display attributes that are relevant to the user.Properties of these simpler models thereby reet user onerns to somedegree. The models and properties presume a minimum about userproesses. Consequenes of the model viewed from a human fatorsperspetive may however be of onern and may involve some analysisof human proesses by those experts. A task based approah an beused to generate properties for veri�ation but there is danger in suhan approah that the task will over presribe what the operator does.Humans do not follow proedures instrution by instrution in gen-eral and problems often arise as a result of deviations from normativebehaviour.Bumbulis et al. (1996) reports on the use of the HOL theorem proverfor interative systems veri�ation. The approah deals with propertiesof the interfae at the devie level and is rather restritive in the prop-erties that an be veri�ed. Only safety properties of the relationshipsbetween the devies present at the interfae level are onsidered. Thereis no mention of the underlying funtionality, nor of the user. The
CamposH01.tex; 30/08/2001; 14:38; p.35

36 Campos & Harrisonanalysis that we desribe ours earlier and an be performed as thedevelopment progresses. In (Doherty et al., 2000) we show how theoremproving an be used to perform a more powerful analysis of the interfaebeing built. This is aomplished by analysing the relationship betweenuser interfae devies, underlying system state, and the pereption theusers might have of the system.7. Disussion and ConlusionsWe have looked at the automated veri�ation of early spei�ationsof interative systems. Interative systems are omplex systems whihpose diÆult hallenges for veri�ation. By bringing the veri�ationproess loser to the design proess we aim at better apturing themultiple onerns that ome into play in the design of interative sys-tems.We have shown how interator spei�ations an be translated intoSMV and desribed a tool to automate this translation. We have alsoshown how we an use suh interator spei�ations in onjuntionwith the tool to model and analyse a realisti ase of mode onfusion.Having deided to analyse the MCP panel a model of the artefat wasbuilt. We used CTL formulae to apture use ases about the operationof the artefat. Issues were raised about the behaviour of the systemas a result of the proess of verifying the formulae. Senarios werefound where the system did not behave as expeted. The analysis ofthese senarios ated as a fous for further interdisiplinary disussionregarding the meaning of the senarios and how they should inuenethe design. A revised version of the proposed veri�ation proess takinginto aount these disussions is presented in Figure 11.As a onlusion to the paper we shall briey address a number ofommon objetions to the approah as well as some restritions thatare on the agenda for future work.� As pointed out in Setion 5.2 the property eventually veri�ed wasweaker than the initial assumption about the pilot's expetationsintrodued in Setion 4.2. The CTL formula in the example spei-�es only the initial and �nal states of the senario being onsideredwhile the textual version (impliitly) mentions the intermediatestates of behaviour. Hene it is fair to point out that the CTLformula ould under some irumstanes hek even though thealtitude problem did our. This would happen in a situationwhere the airraft would go above the altitude set in the alti-tude dial and then ome bak to the appropriate altitude andstop at it. This raises two points. First of all it is important to
CamposH01.tex; 30/08/2001; 14:38; p.36

Model Cheking Interator Spei�ations 37
System

Artefact

Identify

Design

Model

Build

Properties

Verify

Results

Analyse

Principles
Requirements

Human−Factors

Human−Factors

Figure 11. The veri�ation proess revisitedlearly understand what is being veri�ed. We were not expresslylooking for an \altitude bust" situation. Rather we were hekingthe system against a use ase (that the airraft would stop at thedesired altitude) in order to detet unforeseen onsequenes of thedesign. Seond, the obligation operator (obl) raises an obligationfor an ation to our but imposes no restritions on how long thatmight take. Alternative semantis where an obligation had to beful�lled immediately have been found too restritive. One possibleway around this is to introdue axioms of shape obl(a)!ond.What this type of axiom allows us to express is that one ation abeomes obligatory it must happen before :ond. It is then possibleto express that an obligation to enter altitude apture pith modemust be ful�lled before the airraft goes past the target altitude(obl(enterAC)!ALTDial.needle<plane.altitude). Use of this type ofaxiom must be exerised with are sine they impose very strongrestritions on the behaviour of the system.� One problem in relation to model heking is to �nd a model thatis suÆiently expressive while onsisting of a manageable numberof states. One aim of the paper has been to show how reasoningabout interesting features of a omplex system an be done withoutresorting to a omplete spei�ation of the system and therefore a
CamposH01.tex; 30/08/2001; 14:38; p.37

38 Campos & Harrisongoal of a partial model should be to restrit the size of the modelto be manageable and yet aurate in desribing the appropriatefeatures of the system.� The use of interators and SMV gives us a degree of freedomand expressive power that omes with some ost. CTL, althoughallowing for the expression of possibility, raises fairness onerns.In the ase study above we ould have a situation where the pilotrepeatedly sets the limb rate of the airraft to zero thereby pre-venting it from reahing the altitude set in the apture. Situationsof this kind an be solved either by: altering the property; usingfairness onstraints on the system; or reworking the spei�ationwith the partiular ontext of analysis in mind.� Another potential problem with model heking is the size of theounter examples that are generated by the tool. Our experienehas shown the ounter examples to be small (tens of states). Webelieve this is due to the use of partial models of systems. Partialmodels of ourse have their own problems: are we using the ap-propriate senarios and abstrations? This is not just a problemof partial models, it is a harateristi of veri�ation in general.Even if we ould build a omplete spei�ation enompassing allrelevant aspets of a system and we had a powerful enough tool toanalyse every aspet it would be up to us to deide what questionsto ask of that spei�ation. We would always have the problemof determining if we have asked all the right questions. Formalveri�ation does not give us an absolute guarantee of orretness(Clarke and Wing, 1996; Henzinger, 1996), it is up to designersand human-fators experts to identify what are the ritial issuesin the design of an interative system. What formal veri�ationtehniques o�er is a way to reason about suh issues rigorously,and to prove formally whether the riteria are met or not early inthe design yle.� A question that ould be raised is how to guarantee that di�erentmodels of the same system are onsistent between eah other. In(Campos and Harrison, 1999) we show how this an be ahievedby onsistent overlapping of the di�erent models. There are evensituations where disrepanies between di�erent models an beused to detet problems in the design.� Another question that an be asked is whether it will always befeasible to enode mode surprises as invariants over the states ofthe model. Our aim has not been to verify the system exlusively
CamposH01.tex; 30/08/2001; 14:38; p.38

Model Cheking Interator Spei�ations 39for mode surprises. We are mainly onerned with the interationbetween user and system, and it is this interation proess that wewish to analyse. Given a system (interfae) design and a typialuse ase we want to investigate the interation proess betweenuser and system in terms of the use ase. During this proess itbeomes possible to detet problems in the interation. As it hasbeen shown, a mode surprise is one suh type of problem whihan be deteted. In onlusion, the point is that we do not reallywant to model \mode onfusion" we want to be able to detet it.We hope to have shown that use ases give us the possibility ofdoing this by providing ounter examples that an form the basisfor analysis by designer and human fators experts.Finally we have hinted at how the veri�ation proess an be usefulby raising questions that have to be addressed in a broader ontextthan the veri�ation itself. This is in line with our aim of developing aomprehensive methodology for the development of interative systems.AknowledgementsJos�e C. Campos was supported by Funda�~ao para a Ciênia e a Te-nologia (FCT, Portugal) under grant PRAXIS XXI/BD/9562/96. Theauthors thank Bob Fields and Karsten Loer for their useful ommentson earlier versions of this paper.ReferenesAbowd, G. D., H.-M. Wang, and A. F. Monk: 1995, `A formal tehnique for au-tomated dialogue development'. In: Proeedings of the First Symposium ofDesigning Interative Systems - DIS'95. ACM Press, pp. 219{226.Atlee, J. M. and J. Gannon: 1993, `State-Based Model Cheking of Event-DrivenSystems Requirements'. IEEE Transations on Software Engineering 19(1).Bharadwaj, R. and C. L. Heitmeyer: 1999, `Model Cheking Complete RequirementsSpei�ations Using Abstrations'. Automated Software Engineering 6(1), 37{68.Bodart, F. and J. Vanderdonkt (eds.): 1996, `Design, Spei�ation and Veri�ationof Interative Systems '96', Springer Computer Siene. Springer-Verlag/Wien.Bolognesi, T. and E. Brinksma: 1987, `Introdution to the ISO Spei�ationLanguage LOTOS'. Computer Networks and ISDN Systems 14(1), 25{59.Bumbulis, P., P. S. C. Alenar, D. D. Cowan, and C. J. P. Luena: 1996, `Validat-ing Properties of Component-based Graphial User Interfaes'. In (Bodart andVanderdonkt, 1996), pp. 347{365.Burh, J. R., E. M. Clarke, and K. L. MMillan: 1990, `Symboli model heking:1020 States and Beyond'. In: Proeedings of the Fifth Annual IEEE Symposiumon Logi In Computer Siene. IEEE Computer Soiety Press, pp. 428{439.
CamposH01.tex; 30/08/2001; 14:38; p.39

40 Campos & HarrisonCampos, J. C.: 1999, `Automated Dedution and Usability Reasoning'. DPhil thesis,Department of Computer Siene, University of York.Campos, J. C. and M. D. Harrison: 1997, `Formally Verifying Interative Systems:A Review'. In (Harrison and Torres, 1997), pp. 109{124.Campos, J. C. and M. D. Harrison: 1998, `The role of veri�ation in interativesystems design'. In: P. Markopoulos and P. Johnson (eds.): Design, Spei�a-tion and Veri�ation of Interative Systems '98, Springer Computer Siene.Springer-Verlag/Wien, pp. 155{170.Campos, J. C. and M. D. Harrison: 1999, `Using automated reasoning in the de-sign of an audio-visual ommuniation system'. In: D. J. Duke and A. Puerta(eds.): Design, Spei�ation and Veri�ation of Interative Systems '99, SpringerComputer Siene. Springer-Verlag/Wien, pp. 167{188.Chan, W., R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.Reese: 1998, `Model Cheking Large Software Spei�ations'. IEEE Transationson Software Engineering 24(7), 498{520.Cheaney, E.: 1991, `ASRS Introdues...'. ASRS Diretline (1).http://asrs.ar.nasa.gov/diretline.htm.Clarke, E. and J. M. Wing: 1996, `Tools and partial analysis'. ACM ComputingSurveys 28(4es), 116{es.Clarke, E. M., E. A. Emerson, and A. P. Sistla: 1986, `Automati Veri�ation ofFinite-State Conurrent Systems Using Temporal Logi Spei�ations'. ACMTransations on Programming Languages and Systems 8(2), 244{263.Clarke, E. M., O. Grumberg, and D. Peled: 1999, Model Cheking. MIT Press.de Roever, W.-P.: 1998, `The Need for Compositional Proof Systems: A Survey'. In:W.-P. de Roever, H. Langmaak, and A. Pnueli (eds.): Compositionality: TheSigni�ant Di�erene, Vol. 1536 of Leture Notes in Computer Siene. Springer,pp. 1{22.Doherty, G., J. C. Campos, and M. D. Harrison: 2000, `Representational Reasoningand Veri�ation'. Formal Aspets of Computing 12(4), 260{277.Duke, D., P. Barnard, J. May, and D. Due: 1995, `Systemati Development of theHuman Interfae'. In: Asia Pai� Software Engineering Conferene. IEEEComputer Soiety Press, pp. 313{321.Duke, D. J. and M. D. Harrison: 1993, `Abstrat Interation Objets'. ComputerGraphis Forum 12(3), 25{36.Dwyer, M. B., V. Carr, and L. Hines: 1997, `Model Cheking Graphial User In-terfaes Using Abstrations'. In: M. Jazayeri and H. Shauer (eds.): SoftwareEngineering | ESEC/FSE '97, No. 1301 in Leture Notes in Computer Siene.Springer, pp. 244{261.Faonti, G. and F. Patern�o: 1990, `An Approah to the Formal Spei�ation of theComponents of an Interation'. In: C. Vandoni and D. Due (eds.): Eurographis'90. North-Holland, pp. 481{494.Fiadeiro, J. and T. Maibaum: 1991, `Temporal Reasoning over Deonti Spei�a-tions'. Journal of Logi and Computation 1(3), 357{395.Fields, B., N. Merriam, and A. Dearden: 1997, `DMVIS: Design, Modelling andValidation of Interative Systems'. In (Harrison and Torres, 1997), pp. 29{44.Harrison, M., R. Fields, and P. C. Wright: 1996, `The User Context and FormalSpei�ation in Interative System Design (invited paper)'. In: C. R. Roast andJ. I. Siddiqi (eds.): Formal Aspets of the Human Computer Interfae, eletroniWorkshops in Computing. Springer-Verlag London.
CamposH01.tex; 30/08/2001; 14:38; p.40

Model Cheking Interator Spei�ations 41Harrison, M. D. and J. C. Torres (eds.): 1997, `Design, Spei�ation and Veri�ationof Interative Systems '97', Springer Computer Siene. Eurographis, Springer-Verlag/Wien.Heitmeyer, C., J. Kirby, and B. Labaw: 1998, `Applying the SRC RequirementsMethod to a Weapons Control Panel: An Experiene Report'. In: Proeedings ofthe Seond Workshop on Formal Methods in Software Pratie (FMSP '98). pp.92{102.Henzinger, T. A.: 1996, `Some myths about formal veri�ation'. ACM ComputingSurveys 28(4es), 119{es.Honeywell In.: 1988, `SAS MD-80: Flight Management System Guide'. HoneywellIn., Sperry Commerial Flight Systems Group, Air Transport Systems Division,P.O. Box 21111, Phoenix, Arizona 85036, USA. Pub. No. C28-3642-22-01.Leveson, N. G. and E. Palmer: 1997, `Designing Automation to Redue OperatorErrors'. In: Proeedings of the IEEE Systems, Man, and Cybernetis Conferene.Ma~nas, J. A. et al.: 1992, `Lite User Manual'. LOTOSPHERE onsortium. Ref.Lo/WP2/N0034/V08.MMillan, K. L.: 1993, Symboli Model Cheking. Kluwer Aademi Publishers.Monk, A. F. and M. B. Curry: 1994, `Disount dialogue modelling with AtionSimulator'. In: G. Cokton, S. W. Draper, and G. R. S. Weir (eds.): People andComputer IX - Proeedings of HCI'94. Cambridge University Press, pp. 327{338.Niola, R. D., A. Fantehi, S. Gnesi, and G. Ristori: 1993, `An ation-based frame-work for verifying logial and behavioural properties of onurrent systems'.Computer Networks and ISDN Systems 25(7), 761{778.Palanque, P., F. Patern�o, R. Bastide, and M. Mezzanote: 1996, `Towards an inte-grated proposal for Interative Systems design based on TLIM and ICO'. In(Bodart and Vanderdonkt, 1996), pp. 162{187.Palmer, E.: 1995, `"Oops, it didn't arm." - A Case Study of Two AutomationSurprises'. In: R. S. Jensen and L. A. Rakovan (eds.): Proeedings of the EighthInternational Symposium on Aviation Psyhology. Columbus, Ohio, pp. 227{232.Patern�o, F. and M. Mezzanotte: 1995, `Formal Analysis of User and System In-terations in the CERD Case Study'. Tehnial Report SM/WP48, AmodeusProjet.Patern�o, F. D.: 1995, `A Method for Formal Spei�ation and Veri�ation of Inter-ative Systems'. Ph.D. thesis, Department of Computer Siene, University ofYork.Rushby, J.: 1999, `Using Model Cheking to Help Disover Mode Confusions andOther Automation Surprises'. In: (Pre-) Proeedings of the Workshop on HumanError, Safety, and System Development (HESSD) 1999. Li�ege, Belgium.Ryan, M., J. Fiadeiro, and T. Maibaum: 1991, `Sharing Ations and Attributes inModal Ation Logi'. In: T. Ito and A. R. Meyer (eds.): Theoretial Aspets ofComputer Software, Vol. 526 of Leture Notes in Computer Siene. Springer-Verlag, pp. 569{593.Sreemani, T. and J. M. Atlee: 1996, `Feasibility of Model Cheking Software Re-quirements: A Case Study'. In: Proeedings of the 11th Annual Conferene onComputer Assurane (COMPASS '96). pp. 77{88.Stallman, R.: 1998, GNU Emas Manual. Free Software Foundation, 13th edition.Wall, L., T. Christiansen, and R. L. Shwartz: 1996, Programming Perl. O'Reilly &Assoiates, In., 2nd edition.Woods, D. D., L. J. Johannesen, R. I. Cook, and N. B. Sarter: 1994, `Behind HumanError: Cognitive Systems, Computers, and Hindsight'. State-of-the-Art ReportSOAR 94-01, CSERIAC.
CamposH01.tex; 30/08/2001; 14:38; p.41

42 Campos & HarrisonAppendixA. Chekable Spei�ationThis is the translatable version of the interator spei�ation for theMCP. The ompiler is line oriented hene eah expression must be fullyontained in a single line. Line breaks an be esaped with the bakslashharater allowing for multi-line axioms.# MCP exampletypesPithModes = {VERT_SPD, IAS, ALT_HLD, ALT_CAP}Altitude = {0, 1, 2, 3, 4, 5}Veloity = {0, 1, 2, 3, 4, 5}ClimbRate = {-1, 0, 1}interator airraftattributesaltitude: AltitudeairSpeed: VeloitylimbRate: ClimbRateationsflyaxioms(altitude>0 & altitude<5) -> [fly℄ \((altitude'>=altitude - 1 & \altitude'<=altitude + 1) & \(altitude'<altitude -> limbRate'<0) & \(altitude'=altitude -> limbRate'=0) & \(altitude'>altitude -> limbRate'>0))altitude=0 -> [fly℄ \((altitude'>=altitude & altitude'<=altitude + 1) & \(altitude'=altitude -> limbRate'=0) & \(altitude'>altitude -> limbRate'>0))altitude=5 -> [fly℄ \((altitude'>=altitude - 1 & altitude'<=altitude) & \(altitude'<altitude -> limbRate'<0) & \(altitude'=altitude -> limbRate'>=0))fairness!ation=nilinterator dial(T)attributes
CamposH01.tex; 30/08/2001; 14:38; p.42

Model Cheking Interator Spei�ations 43needle: Tationsset(T)axioms[set(v)℄ needle'=vinterator maininludesairraft via planedial(ClimbRate) via rDialdial(Veloity) via asDialdial(Altitude) via ALTDialattributespithMode: PithModesALT: booleanationsenterVS enterIAS enterAH enterAC toggleALTaxioms[asDial.set(t)℄ pithMode'=IAS & ALT'=ALT[rDial.set(t)℄ pithMode'=VERT_SPD & ALT'=ALT[ALTDial.set(t)℄ pithMode'=pithMode & ALT'[enterVS℄ pithMode'=VERT_SPD & ALT'=ALT[enterIAS℄ pithMode'=IAS & ALT'=ALT[enterAH℄ pithMode'=ALT_HLD & ALT'=ALT[toggleALT℄ pithMode'=pithMode & ALT'=!ALTper(enterAC) -> (ALT & \(ALTDial.needle - plane.altitude)<=2 &\(ALTDial.needle - plane.altitude)>=-2)[enterAC℄ pithMode'=ALT_CAP & !ALT'(ALT & pithMode!=ALT_CAP & \(ALTDial.needle - plane.altitude)<=2 & \(ALTDial.needle - plane.altitude)>=-2) -> obl(enterAC)pithMode=VERT_SPD -> plane.limbRate=rDial.needlepithMode=IAS -> plane.airSpeed=asDial.needlepithMode=ALT_HLD -> plane.limbRate=0(pithMode=ALT_CAP & plane.altitude<ALTDial.needle) -> \plane.limbRate=1(pithMode=ALT_CAP & plane.altitude>ALTDial.needle) -> \plane.limbRate= -1ALTDial.needle < 5(pithMode=ALT_CAP & plane.altitude=ALTDial.needle) -> \obl(enterAH)[℄ plane.altitude = 0
CamposH01.tex; 30/08/2001; 14:38; p.43

44 Campos & Harrisonfairness!ation=niltestAG((plane.altitude < ALTDial.needle & ALT) ->AF((pithMode=ALT_HLD & plane.altitude=ALTDial.needle)| plane.limbRate = -1))Address for O�prints:Jos�e Creissa CamposUniversidade do Minho, Departamento de Inform�atiaCampus de Gualtar4710-057 Braga, Portugale-mail: jose.ampos�di.uminho.ptfax: +351 253 60 4471

CamposH01.tex; 30/08/2001; 14:38; p.44

