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1. Introduction

Modern engineered systems have reached a high degree of complexity that requires
systematic design methodologies, and model-based approaches to ensure correct and
competitive performance. Regarding the use of digital controllers, in particular, evidence
shows that small errors in their design may lead to catastrophic failures.

Recent years have witnessed a significant growth of interest in the modelling, simulation and
formal verification of physical systems. A key factor in this growth was the development of
efficient equation-based simulation languages, and formalisms and tools able to deal with the
combinatory explosion of discrete systems states.

Safety control has, as its main goal, the assurance of the reliability, availability, and
maintainability requirements of automation systems. Because of its direct impact on people
and goods safety, the reliability of critical systems (transports, space, nuclear, among others)
has, since some time, mobilized the scientific community efforts. Assuring system safety,
demands the use of a global approach, guaranteeing that weaknesses do not exist. This
approach must take into account, first the set of engineering activities used during
development, and later, after entering into operation, the set of activities of operational



exploitation and maintenance. Thus, there is a continuous effort, within the scientific
community, to develop methods and tools enabling the anticipation of the possibility of
malfunctioning, and to study how these different methods and tools might complement each
other in the context of such a global approach.

Among the several techniques for industrial controllers’ analysis, there are, distinguished by
their utility, Simulation (Baresi et al. 2000) and Formal Verification (Moon, 1994). In the
literature on industrial controller’s analysis, these two techniques are rarely used
simultaneously. If Simulation is faster to execute, it has the limitation of considering only a
subset of all the system behaviour evolution scenarios. Using Formal Verification has the
advantage of analyzing all the possible evolution scenarios but it presents some limitations on
the dimension and complexity of the models that can be analyzed. Such limitations arise due
to the time and computational resources that become necessary for the attainment of formal
verification results for very large models. This paper shows, how it is possible, and desirable, to
conciliate these two techniques in the analysis of industrial controllers. With the simultaneous
use of these two techniques, the developed industrial controllers are more robust and not
subject to errors. This paper is focused on the formal verification of real-time systems and also
considers important aspects on the plant modelling tasks. The modelling of the plant is crucial
for the development of safe controllers (Yalcin and Namballa, 2005).

There are several approaches to applying formal verification techniques on automation
systems dependability: from formal verification by theorem proving (Roussel and Denis, 2002)
to formal verification by model-checking (Rossi, 2004); and considering (Machado et al. 2006-
a), or not (Rossi, 2004), a plant model. The above approaches, however, do not consider timed
aspects. In the formal verification of timed systems, several approaches can be used to
increase the quality of the verification results. A distinction can be made between the work by
(Remelhe et al. 2004), where the translation of IEC 61131-3 Sequential Function Charts (SFC)
into timed automata (Alur and Dill, 1990) is studied, and the work by (Gaid et al. 2005) where
an approach for constructing the controller model is proposed. This latter work uses the initial
approach proposed by (Mader and Wupper, 1999), and some work hypotheses related to the
evolution of the controller model and time aspects, in order to increase the quality of the
formal verification tasks’ results.

In the present work the base system and the work hypothesis considered by (Gaid et al. 2005)
for the controller behaviour are adopted, and we propose an approach to build timed plant
models.

The paper is organized as follows. Section 1 presents the challenge being addressed in this
work. Section 2 presents an overview of the most used analysis techniques for Industrial
Controllers design, with special focus on Simulation and Formal Verification. Section 3 presents
the impact of plant modelling on Simulation and Formal Verification analysis techniques (the
most important analysis techniques for industrial controllers’ design). Next, Section 4 is
devoted to the general presentation of the case study, involving a system with two tanks, a
heating device, level control sensors, and valves to control the liquids’ flow. The specification
for the controller, and the methodology used to deduce the controller program from the
specification of the system’s desired behaviour, is also presented in Section 4. Section 5 is



entirely devoted to plant modelling for simulation and formal verification purposes. Particular
aspects that must be taken into account during the plant modelling tasks are highlighted. Next,
in Section 6, a set of properties over system’s behaviour is provided, as well as their
formalization using Timed Computation Tree Logic (TCTL). Section 7 presents and discusses the
results obtained from simulation and formal verification of the case study’s specification,
considering the models of the plant. Section 8 presents our systematized approach using both
Simulation and Formal Verification. Additionally, it is shown how Plant modelling is essential in
the adopted approach, and how to proceed in order to obtain safe controllers for automation
systems. Finally, Section 9, presents conclusions and future work.

2. Analysis Techniques of Industrial Controllers Software

This section discusses the two main classes of approaches: Simulation and Formal verification,
as applied to Industrial Controllers’ Software.

2.1. Simulation

In the field of engineering, Simulation is used with different objectives and considering
different software tools (Hlupic, 1999): from the simulation of mechanical systems behaviour,
simulation of process behaviour (Huda and Chung, 2002), simulation of integrating
manufacturing plants (Eben-Chaimea et al. 2004) to the simulation of more complex systems’
behaviours, more precisely the Simulation of software for the control of automation systems.
In this last case, several approaches are possible but the final goal is always to avoid major
damages, and to be sure, before the realization of the controller, that the system will comply
with expected behaviour.

Mathematical modelling and simulation are emerging as key technologies in engineering.
Relevant computerized tools, suitable for integration with traditional design methods, are
essential to meet future needs of efficient engineering. A number of approaches can be used
to improve this technique, in order to obtain more accurate simulation results.

There is a large amount of simulation software, on the market, for automation systems design
improvement. All languages and model representations are proprietary and developed for
specific tools. There are general-purpose tools such as ACSL, SIMULINK and System Build. They
are based on the same modelling methodology, input-output blocks, as used in the previous
standardization effort, CSSL, from 1967 (Strauss, 1967). There are domain-oriented packages
covering, for example, electronic programs (SPICE, Saber), multibody systems (ADAMS, DADS,
SIMPACK), or chemical processes (ASPEN Plus, SpeedUp). With few exceptions, all such
simulation packages are only strong in one domain, and are not capable of reasonably
modelling components in other domains. This is a major disadvantage since technical systems
are becoming more and more heterogeneous with components from many engineering
domains.

Techniques for general-purpose physical modelling have been developed during the last
decades, but did not receive much attention from the simulation market. Modern approaches
build on non-causal modelling with true equations, and the use of object-oriented constructs
to facilitate reuse of modelling knowledge. There are already several modelling languages with



such a support available from universities and small companies. Examples of such modelling
languages include ASCEND (Piela et al. 1991), Modelica (Elmqvist et al. 1996), gPROMS (Barton
and Pantelides, 1994), NMF (Sahlin et al. 1996), ObjectMath (Fritzson et al. 1995), Omola
(Mattsson et al. 1993), SIDOPS+ (Breunese and Broenink, 1997), Smile (Kloas et al. 1995),
U.L.M. (Jeandel et al. 1996) and VHDL-AMS (IEEE, 1997).

2.2. Formal Verification

As the complexity of the systems being built increases, so does the need for techniques and
tools that allow analysis of their correctness and fit for purpose. In this context, it is commonly
argued that formal mathematical notations should be used to support modelling and
reasoning from the early stages of design and development (Jones, 1980). Using them, a model
of the intended design can be developed and reasoned about.

Once a system model has been proposed, the question arises of determining its quality. Will
the modelled system work as expected, and without incidents? Proving that the model is
correct is not mathematically possible (Jones, 2003). This springs from the fact that, to prove it,
some representation of the intended system against which to compare the model would be
needed. But the model is the representation of the intended system.

Not being able to prove the correctness of the model is, nevertheless, different from not being
able to reason about its quality. It is still possible to identify desirable properties of the system
(measures of quality), and challenge the model with theorems expressing those properties. If
the theorems can be proved, then it has been verified that the model exhibits those
properties. If the modelling and proofs are done in some formal, mathematically based
notation, then the verification is said to be formal.

This process of exploring the model with theorems representing properties to be verified is
called formal specification verification (or validation). This is clearly different from formal
program verification, the process of formally proving that a given system satisfies a
specification, which was the traditional area of verification (Loeckx and Sieber, 1984) (Jones,
2003).

At this point it should also be clear that formal verification is different from simulation and
testing. Formal verification establishes the validity of a property in a given specification in an
absolute manner. Testing, in all but the simplest specifications, can only establish the validity
of a property in a subset of the specification. While an appropriate choice of test cases can give
a high degree of confidence, that confidence is never absolute.

The process of reasoning about formal models of systems has since long been an object of
study (Jones, 2003). For a long time, however, formal proofs tended to stay in the area of
envisaged benefits that were never actually completely fulfilled. It would be said that formal
proofs could be done, but little was shown about how to actually prove interesting properties
of a system. The fact is that formal proof tends to be a delicate, detailed, and time consuming
process. As the complexity of models grows, tackling such proofs by hand becomes



increasingly harder. This has led to the study of mechanical reasoning techniques as a way to
(at least partially) automate the analysis.

Two main categories of methods can be identified:

e deductive methods (i.e. theorem proving): these are semi-automated methods where
a traditional mathematical proof is performed by a tool under user guidance —
examples of theorem provers are PVS (Crow at al. 1995) and the Larch system (Guttag,
1993), but many others are currently available;

e algorithmic methods (i.e. model checking — see (Clarke et al. 1986)): these are fully
automated methods and, given suitable system descriptions and properties, are
capable of determining if a property is valid in a system, without human intervention.

Theorem provers take a deductive approach to verification. Proofs are performed in the
traditional mathematical style, using some formal deductive system (a set of logical axioms,
together with a set of deduction rules). Proofs progress by transforming (rewriting) a set of
premises into a desired conclusion. The axioms and the deduction rules are the basis for the
rewriting process.

Theorem provers provide a degree of automation. Nevertheless, it is still up to the verifier to
decide the proof strategy but for the simplest proofs. Additionally, automated proofs need to
be much more detailed than normal hand produced proofs, since no leaps in reasoning can be
made. The prover must be ““convinced" of the correctness of every step in the proof. So,
automated theorem proving can be difficult to use. Learning curves, in particular, can be quite
steep. Given these limitations, research in the area is continuing and alternative approaches
have been sought.

Model checking was originally proposed as an alternative to the use of theorem provers in
concurrent program verification in (Clarke et al. 1986). The basic premise was that a finite
state machine specification of a system can be subject to exhaustive analysis of its entire state
space to determine what properties hold of the system's behaviour. Typically the properties
are expressed in some temporal logic that allows reasoning over the possible execution paths
of the system. In this context, the possible execution paths are interpreted as alternative
futures.

The kind of analysis that model checking is concerned with has basically to do with testing the
universality, inevitability or possibility of given properties expressed in some temporal logic.
For example, whether it can be guaranteed that the system will not be in a deadlock situation,
or that users will have to save their work before quitting.

By using an algorithm to perform the state space analysis, the two main drawbacks of theorem
provers were avoided:

e the analysis is fully automated (as opposed to theorem provers' high reliance on the
skills of its users);



e the validity of a property is always decidable (as opposed to theorem provers'
undecidability problems).

A main drawback of model checking has to do with the size of the finite state machine needed
to specify a given system: useful specifications may generate state spaces so large that it
becomes impractical to analyse the entire state space. Hence, theoretically decidable systems
may become undecidable in practice. The use of Symbolic Model Checking (Burch, 1990)
somewhat diminishes this problem. Avoiding the explicit representation of states, state spaces
as big as 10% states may be analysed.

As the maturity of the verification technology evolved, the feasibility of applying it in a more
generalised manner ensued. As a result, in recent years several approaches to applying formal
verification techniques on automation systems dependability have been proposed. These
range from formal verification by theorem proving (Roussel and Denis, 2002) to formal
verification by model checking (Rossi, 2004) (Gaid et al. 2005) (Machado, 2006).

At the same time, the success of the technique means that research has continued. Currently
there are tools capable of dealing with richer models. For example, including issues of time, c.f.
timed model checking, (Behrmann et al.2001), or probabilistic reasoning, c.f. stochastic model
checking (Kwiatkowska et al. 2007). Timed model checking has been used, for example, by
(Remelhe et al. 2004) and it used in the current paper.

3. Impact of Industrial Plants Modelling on Controllers’
analysis techniques

This section presents the “state of the art” concerning different contexts of plant modelling,
and its use in the context of industrial controllers’ analysis techniques. The need to improve
the safety of automation systems’ behaviour is the major aspect that leads to the use of plant
models.

3.1. Controllers analysis: Simulation

Simulation is an analysis technique that allows experimenting with a reduced and finite
number of evolution scenarios of automation systems behaviour. While the results thus
obtained are valuable for the tested scenarios only, it becomes possible to very quickly detect
some errors in the specification of the controller. A number of simulation related works
consider, in a more or less detailed manner, a plant model. See, for instance, the works of:

e (Baresi et al. 1998) (Baresi et al. 2000) where the plant is modelled by Simulink blocks,
e (Amerongen, 2003) where the plant is modelled by bond graphs,

e (Barton and Pantelides, 1994) where the plant is “divided” in small modules, with each
module modelled by a finite state machine,

e (Mattsson et al. 1998) (EImqvist et al. 1999) where the plant is modelled in the
Modelica language,



e (Liu, 2004) where SPOA (System Performance-Oriented Automation), a plant modelling
methodology, is proposed.

In all these works, the plant model is generally used for obtaining realistic evolution scenarios
of the controller model execution. More important than the generation of numerous
evolutions of the system (changing different logical inputs), it is preferable to obtain these
evolutions from the evolution of a plant model. Following this methodology, the plant model
has a direct influence (Gouyon, 2001) in the pertinence of the stimuli of the controller model
and, clearly, in the pertinence of the results obtained with the simulation technique.

3.2. Controllers analysis: Formal Verification

The use of formal methods on industrial automation systems controllers verification may be
classified on three levels, taking into account three different criteria (Frey and Litz 2000) :

e The used method: Model-checking (Lamperiere-Couffin et al. 1999), Theorem-proving
(Roussel and Denis, 2002), Reachability analysis (Shanmugham and Roberts, 1995).

e The adopted formalism: Petri Nets (D'Souza and Khator, 1997), Net Condition/Event
Systems (Rausch and Krogh, 1998), Finite state machines (Hassapis et al.1998).

e The use (or not) of a plant model:
o Non model-based, without considering a plant model (Rossi, 2004);

o Constrained-based, considering only some behaviour constraints
(rudimentary model) (Canet et al. 2000);

o Model-based, considering a real plant model, elaborated using a well
defined formalism (Kowalewski and Preupig, 1996). This model can be
more or less refined depending on the behaviour properties that one
intendss to prove.

Formal verification is an exhaustive technique. However, it is also a time consuming technique
when compared, for instance, to simulation, and especially when a real case is being analysed.
This is due to the complexity of the calculations performed. Also, it might happen that
obtaining a solution is not feasible.

The utilization of a plant models, in formal verification tasks, will be studied in detail. An
automation system is always composed by a controller coupled with a plant (Fig. 1). The
controller outputs are the plant inputs, and the plant outputs are controller inputs.

Fig. 1. An automation system composed by a controller and a plant, connected.

Many works are focused on the formal verification of industrial controllers without considering
the plant modelling. Among them, the most significant are (Bornot et al. 2000) (Lamperiere-
Couffin et al. 1999) (Mertke and Frey 2001) (Rossi 2004). In these works plant models were not
taken into account.



There are other works that, although not considering an explicit plant model, consider the
introduction of some system behaviour constraints, and have thus improved considerably the
obtained results (Canet et al. 2000).

On other works still, the plant model was considered in an explicit way. Among them, the most
significant are (Rausch and Krogh, 1998) (Hassapis et al. 1998) (Kowalewski and Preufig 1996)
(D'Souza and Khator, 1997) where the plant is modelled with the utilization of the following
formalisms: Petri Nets, Finite state machines and Net condition/event systems.

From a general point of view, plant modelling is done using a monolithic approach, and the
plants that are modelled are small, when compared to the complexity of a standard industrial
system. When the plant is modelled using a modular approach (Zaytoon and Carré-Ménétrier,
1999), the global model of the plant is typically obtained from the Cartesian product of the
modules that compose it. This global model — even for a simple case study — becomes complex
and with a higher dimension (number of states and transitions) leading to situations and states
that do not have a physical signification.

In the works studied, when a plant model is used, a reduction of the reachable states of the
controller model is performed. With the restriction imposed by the plant model some states of
the obtained global model are not reached because the plant behaviour model imposes some
restrictions of the controller model evolution. In this case, there are some behaviour
properties that can be proved when the plant model is taken into account. Otherwise, it would
be impossible to prove them.

Currently, plant models used in formal verification tasks are seen as a simple improvement in
order to facilitate the performance of some formal verification techniques and tools like, for
instance, some model-checkers.

Other important aspect that must be taken into account is the detail of the plant model
considered. In fact, this factor directly affects the global model obtained for the automation
system (a higher number of states has direct influence on the global computation time). The
kind of properties that become possible to prove is directly related to the plant model’s level
of detail.

4. Case Study

In this work, a modified version of the benchmark example for an evaporator system,
presented by (Kowalewski et al. 2001) and (Huuck et al. 2001), is used. The system (Fig. 2)
consists of two tanks (tank1 is heated and mixed), a condenser, level sensors and on-off valves
(Vi). In normal operation mode the system works as follows. Tank1 is filled with two solutions
by opening valves V1 and V2. Then, the mixer starts working in order to promote the dilution.
After two time units, the heated device is switched on for 20 time units to increase
temperature solution. During this period part of the liquid is evaporated and cooled by the
condenser. At that point the required liquid concentration has been reached and the heater is
switched off. The remaining liquid is drained to tank2 by opening valve V3. The mixing device is
switched off when tankl is empty. The solution stays in tank2 for post-processing for 32 time
units (to stay liquid), and then valve V4 is open to empty tank2.



Fig. 2. Evaporator system. Closed-loop system composed by controller and plant.

Throughout normal operation mode, the system may malfunction. During evaporation, the
condenser may fail. In that case, the steam cannot be cooled and the pressure inside the
condenser will rise. Therefore, the heater must be switched off to avoid the condenser
explosion. By doing so, the temperature of tank1 will decreases and the solution may become
solid, thus preventing drainage of tank2. Hence, valve V3 must be opened early enough, but
only after opening valve V4, to prevent tank2 from overflowing.

In the case of a condenser malfunction, we also need to guarantee certain response times of
the control program, taking into account the timing characteristics of the physical devices:
e whenever a condenser malfunction starts, the condenser can explode if steam is
produced during 22 time units;
o if the heating device is switched off, the steam production stops after 12 time units;
e if no steam is produced in tank 1, the solution may solidify after 19 time units;
e emptying tank 2 takes between 0 and 26 time units;

e emptying tank 1 is very fast with respect to the other durations, so that it is considered
as instantaneous;

o filling tank 1 takes at most 6 time units.

4.1. Controller specification

As we intended to conciliate the use of Simulation and Formal Verification tools, we needed to
adopt a controller specification that could act as the basis of the controller program in the two
analysis techniques. With that in mind, the controller specification was developed in IEC 60848
SFC because it can then be used as both the starting point for the development of the timed
automata based Programmable Logic Controller program (PLC), to be verified with UPPAAL,
and also the starting point for the development of the controller program to be used by the
StateGraphs Modelica library (Otter et al. 2005).

The input and output variables of the controller model are summarized in Table 1; minimum
and maximum level sensors and malfunction sensor are considered as inputs and on-off valves
and Heater, Mixer and Alarm are controller program outputs.

Table 1.Input and output variables of the controller program.
Fig. 3. IEC 60848 SFC specification of the controller program.

4.2. Algebraic representation of the controller specification

As the basis for the controller modelling for simulation and formal verification purposes must
be the same, the controller specification is translated to algebraic equations. These will be the
basis for the controller models used on these two analysis techniques.



The desired behaviour for the described system was modelled using IEC 60848 SFC. The
specification is presented in Fig. 3 . As IEC 60848 SFC is a specification language (and not a
programming one), it becomes necessary to translate the SFC specification, first into a
StateGraph program, and second into a program written in a PLC programming language (in
this case the ladder language will be used). The translation from SFC to StateGraph is
presented in (Seabra et al. 2007).

The goal of this work is to obtain a controller specification that, after being validated, will be
implemented on a PLC (Programmable Logic Controller). So, the controller specification model
takes into account the PLC behaviour (illustrated in Fig. 4).

Fig. 4. Cyclic scan monitor of the PLC

Let CC(q) (Clearing Condition) a Boolean variable associated to each transition of a SFC. A
transition g (Fig. 5) can be cleared if it is enabled (all the steps that precede immediately this
transition are active) and if its associated transition condition TC(q) is true. So, in a general
case CC(qg) can be formulated as follows:

CC(q) = (ITj2 X)) x TC() (1)

with:
e Xj: step Boolean variable associated to step j,
e TC(qg): Transition Condition associated to the transition g,

e m: number of steps that precede immediately step j.
Fig. 5. Transition condition after simultaneous sequences

According to the IEC 60848 evolution rules, the Boolean step variable Xiassociated to each SFC
step i can be computed in the following manner:

with:
e Xi(t): value of the step variable of step i for the tth scan cycle,
e Xi(t+1): value of the step variable of step i for the (t+1)th scan cycle,
e p: number of transitions that precede step i,
e n: number of transitions that follow step i,
e CC(pj): Clearing Condition of the transition (pj),

e CC(nk): Clearing Condition of the transition (nk).
The step activation/de-activation is done by:
Xi(t+1) = X7_, CC(pj) + Xi(t) x [Tj=, CC(nk) (2)

In the case of step 2 of the above SFC, for instance, it comes then:



e CC(9) =X11XT2E (3)
e CC(10) = X12xT1E (4)

o X12(t+1)=CC(9) + X12(t) x CC(10) (5)
Computation of actions:

Each action is set when the logical OR of the step variables of the steps to which this action is
associated is true. For instance:

o V1() = X1(¢) (6)
o V1(t) = X11(t) + X12(t) + X13(t) + X21(¢) (7)

With all the rules presented above, we construct the Ladder program based on the deduced
equations. This is achieved by applying all the described steps to the controller specification
presented in Fig. 3.

5. Plant Modelling

The interesting point about the plant modelling process was that it consisted of two steps:
first, modelling the plant using the Dymola software and the Modelica programming language
(EImgvist and Mattson, 1997), and, second, using the Modelica models as the basis for the
development of the UPPAAL models which are used on the formal verification tasks.

In the second step an “abstraction” is carried out from the hybrid models, obtained with
Modelica, to the timed models that can be created with timed automata and verified with
UPPAAL.

It would have been possible to directly translate the hybrid models, produced with Modelica,
to hybrid models for Formal Verification purposes. However, the performance of the formal
verification tasks, using hybrid systems or timed systems, is, of course, incomparable. The last
one is faster and, using it, it is possible to treat standard industrial systems. Furthermore, most
of the behaviour properties that typically we will intend to prove consist of properties that can
be proved with timed Formal Verification. See (Campos et al. 2008) for a study of typical
properties that can be found in the literature. There are other properties that we can only
prove using hybrid formal verification. However, this aspect is not covered in this work.

5.1. Plant Modelling for Simulation purposes

5.1.1. Modelica Language

Modelica is a language for physical systems modelling that is being developed in the context of
an international effort (Mattsson et al. 1997). It is suited for multi-domain modelling. For
example, mechatronic models in robotics; automotive and aerospace applications involving
mechanical, electrical, hydraulic and control subsystems; process oriented applications; and
generation and distribution of electric power.



The design of Modelica builds on two relevant modern concepts in modelling and simulation.
Namely, non—causal modelling and the use of object-oriented constructs (encapsulation,
inheritance and hierarchy). Models in Modelica are mathematically described by differential,
algebraic and discrete equations. The main objective is to make it easy to exchange models
and model libraries.

Since Modelica accepts non-causal models, bond-graphs can be translated to Modelica code as
sub-models (i.e. a-causally). Bond Graphs are a domain-independent graphical notion of
physical systems modelling. During modelling, the edges in the graph denote the ideal
exchange of energy between the sub-models (vertices). One can state that bond-graph
modelling is in fact a form of object-oriented physical systems modelling.

In Modelica models and sub-models are declared as classes, with interfaces that are called
connectors. A connector must contain all quantities needed to describe the interaction.
Attributes can be used to specify how the connections are converted to computable code.
Modification of a model definition is possible using the extended construct. This way, for
refinement of a generic sub-model into a more specific one, only the ‘new’ specific parts need
to be described. The common parts are inherited from the more generic sub-model, and need
to be specified only once.

Modelica supports both high level modelling by composition and detailed library component
modelling by equations. Models of standard components are typically available in models’
libraries. Using a graphical model editor, a model can be defined by drawing a composition
diagram (also called schematics), positioning icons that represent the models of the
components, drawing connections and giving parameter values in dialogue boxes. Constructs
for including graphical annotations in Modelica, make icons and composition diagrams
portable between different tools.

5.1.2. Plant Model

All the system was modelled. Tank1 and tank2 models are presented on this sub-section.
Considering the case of tank 1 we have, in the Modelica modelling language, the model
presented in Figure 6.

Fig. 6. Modelica code for the tankl model

The Modelica program code for modelling tank2, presented in Figure 7, is similar to the code
obtained for the tankl model. The main difference between these two codes is due to the
tanks having different numbers of fill sources. Tank 1 has two fill sources, while tank 2 has
sone.

Fig. 7. Modelica code for the tank2 model



5.2. Plant Modelling for Formal Verification Purposes

This sub-section starts with a description of the formalism adopted for plant modelling for
formal verification purposes, and then introduces and discusses the plant model for the case
study.

5.2.1. Modelling formalism

Timed automata were adopted as the modelling formalism for plant modelling due to two
main reasons: first, the study of the proposed system needs to take time into account; and,
second, it is the input formalism of the UPPAAL model-checker (Behrmann et al. 2004). Hence,
is well adapted to the formal verification of timed systems.

Definition 1 (Timed Automaton (TA)). A timed automaton is a tuple (L, I0,C,AE, I), where Lis a
set of locations, 10 € Lis the initial location, C is the set of clocks, A is a set of actions, co-
actions and the internal T -action, E c L x A x B(C) x 2 x L is a set of edges between locations
with an action, a guard and a set of clocks to be reset, and | : L — B(C) assigns invariants to
locations. i

We now define the semantics of a timed automaton. A clock valuation is a function u : C — Ry,
from the set of clocks to the non-negative reals. Let R be the set of all clock valuations. Let
Ug(x) = 0 for all x € C. We will abuse the notation by considering guards and invariants as sets
of clock valuations, writing u € I(l) to mean that u satisfies I(l).

Definition 2 (Semantics of TA). Let (L, 10,C,A,E, ) be a timed automaton. The semantics is
defined as a labelled transition system (S, s,, —), where S < Lx R is the set of states, s, = (I,
Uo) is the initial state, and — < Sx{R,oUA}xS is the transition relation such that:

d
-(Luw) > Lu+d)ifvd': 0<d <d=u+delill)and

- (L) 5 (I, u') if there existse = (l,a,g,1,l") € Es.t.u € gu' = [r -
OJu,and u’ € I(D),

Where, for d € Ry, u + d maps each clock x in C to the value u(x) + d, and [r — OJu denotes the
clock valuation which maps each clock in r to 0 and agrees with u over C\ r. &

Timed automata are often composed into a network of timed automata over a common set of
clocks and actions, consisting of n timed automata A, = (L, l? ,C, A E, 1), 1<i<n.Alocation
vectorisavectorl = (I,...,1,).

We compose the invariant functions into a common function over location vectors I(l) =
A;I; (). We write L [1] /1;] to denote the vector where the ith element |; of [ is replaced by I} .
In the following we define the semantics of a network of timed automata.

Definition 3 (Semantics of a network of Timed Automata). Let A, = (L, l? ,C A E,l)bea

network of n timed automata. Let I, = (19,...,19) be the initial location vector. The



semantics is defined as a transition system (S, s,, —), where S = (L; x - x L) x RCis the set of
states, so= (TO, Up) is the initial state, and — < S x S is the transition relation defined by:

-Quw) » Qu+ d)ifvd: 0<d <d=>u+delIl

-(Luw) - li/l, ,u") if there exists liT—gT> (li, s.t.u € g,u' = [r - 0Jlu,andu’ €
L

1D,

!

_ . ! ? lgiri
- (l, u) - |1 ]/lj’ll/ll- ,u' |if there exists l; ke li and [ 29 l]f s.t.u €
(9:0g), v’ = [r; U 1; - 0lu,and u’ € 1(D),

5.2.2. Plant model

We consider the following eight modules for the present plant model: Tankl, Tank2, Heater,
Mixer, Alarm, Steam, Condenser and Liquid.

It is worth noticing that there are two important aspects that we take into account:

e First, the set of simulation functioning delays are obtained by simulation. The obtained
delays are, afterwards, used for the formal verification tasks, in order to define the
time units used in the modules of the plant model; and

e Second, some behaviour properties that cannot be traduced for formal verification
models (because they consider hybrid behaviour and we only consider formal
verification of timed systems) can be simulated using Modelica and Dymola.

Model of tank1

The model of tank1 is, first, simulated with Dymola. The corresponding Modelica code is
presented in Fig. 6.

The obtained delays on simulation were used on formal verification with UPPAAL. The
corresponding model of the tank developed in UPPAAL for formal verification purposes, is
presented in Fig. 8.

Fig. 8. UPPAAL model of tank1.

We consider four states:
e the empty state models tankl being empty;
o the filling state models liquid entering in tank1;
e the full state models tank1 being full;

e state overflow is also considered; this is a possible state for the tank, but describes an
undesired behaviour.



In this model, it is also considered that tank1 is emptied in a very short time, when compared
with the filling time. Hence, we have considered this time to be null. It is for this reason that
the model goes from the full state directly to the empty state, without an intermediate state.
The Boolean variables T1E and T1F are associated with tankl.empty and tank1.full,
respectively. These variables represent the level sensors’ signals sent by the sensors from the
plant to the controller. The maximum time for filling tank1 is six time units.

Model of tank2

The model of tank2 is similar to that of tank1, and the reasoning followed to obtain this model
was the same as presented before for obtaining tank1’s model. As empting tank1 is considered
to take a short (null) time, the filling of the tank2 is done in the same conditions, since the
liquid is transferred from tankl to tank2. Four states are considered: empty, full, emptying and
overflow, which (again) is a possible state for the tank, but describes an undesired behaviour.
The variables T2E and T2F have the same behaviour on the model for tank2 as T1E and T1F
described above for tankl. Emptying tank2 takes, at most, twenty-six time units (Fig. 6).

Fig. 9. UPPAAL model of tank2.
Models of the Heater, Mixer and Alarm

The reasoning adopted when building these three models was the same: for all of them it
consisted in considering two states for each model:

e state off — the initial state for all of them, and;

e state on —indicating that the orders sent from the controller to the plant are active.
Fig. 10, Fig. 11 and Fig. 12 present the models for the Heater, Mixer and Alarm, respectively.
Fig. 10. Model of the Heater
Fig. 11. Model of the Mixer
Fig. 12. Model of the Alarm
Model of the condenser

The model of the condenser, presented in Fig. 13, is composed of five states:
e state good models the good functioning of the condenser;

e state malfunction_heater models that the condenser is malfunctioning and the heater
is in its on state;

e state malfunction_not_heater models that the condenser is malfunctioning but the
heater has been switched off;

o state before_explosion models the behaviour where it is not possible to avoid the
condenser explosion; and



e state explosion models the behaviour of the condenser explosion.
Fig. 13. Model of the condenser

In the behaviour described in the case study, it is stated that the condenser may explode if it
starts malfunctioning, and steam exists for the duration of twenty-two time units after that. In
the model, if the system remains in the malfunction_heater state (the heater is in the on state)
during ten time units, then the condenser will inevitably explode because we will have steam
for more twelve time units (in state before_explosion). The malfunction behaviour happens in
a random way from the state good of the condenser model: we have added to the condenser
model a Boolean variable Malf that indicates that behaviour.

Model of the steam

One of the hardest tasks on plant modelling is to model plant products (as the case of steam)
because these models are specific for each plant. In this case, and taking into account the
above described behaviour for the system, the model of steam is extremely useful to allow us
to prove some system behaviour properties. We thus consider three states for the model:

e state off models that steam does not exist;

e state on_heat_on models that steam exists and the heater is also in state on (the
model of the steam is dependent of the model of the heater), and

e state on_heat_off models that steam exists but the heater is in the off state.

After the heater switches off, steam lasts for twelve time units. We have introduced the
Boolean variable steam_var that indicates when steam exists or not.

Fig. 14. Model of the steam
Model of the liquid

As the steam model presented before, the model of the liquid (Fig. 15) is also a specific model
related with a plant product.

Fig. 15. Model of the liquid

This model has been created from the view point of the presence of liquid in tankl, regarding,
also, the possible liquid solidification.

From the point of view of the presence of liquid in tankl (see Fig. 15) we have four
possibilities:

e there is no liquid in tank1, modelled by state no_liquid_1;

e thereis liquid in tank1 and the liquid is heating, modelled by state liquid_heat_on;

e thereis liquid in tankl1 and the liquid is not heating, modelled by state liquid_heat_off;
and



e thereis liquid in tank1 that changed to the solid state after thirty-one time units,
modelled by state solid (these thirty-one time units mean that the liquid solidifies
nineteen time units after the absence of steam; after the heater is switched off, the
steam is present for more twelve time units).

We point out that, for all the models, we have adapted the simulation conditions to obtain the
same delays proposed on (Gaid et al. 2005), in order to have a basis to compare the results of
the formal verification.

6. System Behaviour Properties and Properties
Formalization

Having a formal model of the controller program enables us to check if it exhibits the desirable
properties regarding safe and correct operation. Before we can carry out the verification step
in a model-checking tool, however, we need to:

e Decide what are the relevant properties the model should exhibit;

e Encode the properties in a logic suitable for automatic verification (in this case, model
checking).

Regarding the first step above, in general we will be interested in guaranteeing that
undesirable states of the process are not possible/reachable (safety), and that desirable states
can be reached (liveness). What these desirable/undesirable states are is domain dependent.
The exact nature of the process and of the controller greatly influences the choice of relevant
properties.

In the current case, we have chosen seven properties that, besides being considered relevant
in the context of the case study, are also examples of the type of results that can be achieved
through verification. The properties are:

P1: The tank will always be full when the heater is working — violation of this condition can
lead to tank 1 being damaged due to overheating.

P2: During the evaporation step, steam will leave tank 1 into the condenser only when the
heater is on and the valves V1, V2 and V3 are closed.

P3: The input and output valves of a tank will never be simultaneously open — violation of this
condition would lead to uncontrolled liquid flow.

P4: The condenser will never explode.
P5: The solution will never solidify in tank 1.
P6: Tankl will never overflow.

P7: Tank2 will never overflow.



Once we have decided on the properties we want to check, we must choose an appropriate
logic.

Fig. 16. A State machine and its Computation tree. Adapted from (Clarke et al. 1986).

It is important to choose a formal logic adapted to the verification technology being used.
UPPAAL uses a simplified version of TCTL (Alur et al. 1993), a timed version of CTL
(Computational Tree Logic). CTL (Clarke et al. 1986) is a propositional, branching-time temporal
logic that enables expressing queries over the possible behaviours of a model. In CTL the
behaviour of a system is seen as a tree representing behaviour alternatives (Fig. 16). CTL
formulae consist of path formulae and state formulae. State formulae are evaluated in
individual states. Path formulae quantify over paths in the behaviour of the model, and over
the states in those paths.

In what follows it is enough to know that, in the UPPAAL version of the logic, A is the universal
quantifier on paths (for any path...), and [ ] the universal quantifier over states in a path (for
any state...). Hence, if p is a state formula, then the combination A[ ] p means for all states in
the future p holds. State formulae are expressed in propositional logic with the usual
operators.

Bearing in mind the models described in the previous section and the temporal logical
operators just described, the properties identified above are formalized as follows:

P1: A[] (Himply T1F) —that is, it is always the case (A[]) that if the heater is on (H) then the
tank will be full (T1F).

P2: A[ ] (H imply (not(V1) and not(V2) and not(V3))) — that is, it is always the case (A[]) that if
the heater is on (H) then valves V1 to V3 will be closed (not(V1) and not(V2) and not(V3)).

P3: A[ ] not (((V1 or V2 or V4) and V3)) — that is, it is always the case (A[]) that valve V3 will not
be open at the same time as either valves V1, V2 or V4.

P4: A[ ] not condenser_explosion — that is, it is always the case that the condenser_explosion
condition will not hold.

P5: A[ ] not liquid_solid — that is, it is always the case that the liquid_solid condition will not
hold.

P6: A[ ] not tankl_overflow — that is, it is always the case that the tankl_overflow condition
will not hold.

P7: A[ ] not tank2_overflow — that is, it is always the case that the tankl.overflow condition
will not hold.

Once the properties have been formally expressed, verification can be carried out. That step is
addressed in section 7.2.

7. Obtained results



After the modelling of the studied system, the results of Simulation and Formal Verification are
presented.

7.1. Simulation Results

In order to perform the simulation, it is necessary to define a number of parameters: start and
stop time of the simulation, the interval output length or number of output intervals, and the
integration algorithm. In the present work, in all simulations performed, the Dass algorithm
(Basu et al. 2006) with 500 output intervals was used.

In order to study the system behaviour different values for physical variables of the plant were
used. Table 2 shows the variables considered in the simulation of the system behaviour.

Table 2.Variables of the plant.

The first two simulation performed were devoted to verify if the SFC of the controller system
(Fig. 3), modeled in the Modelica language with the StateGraph library for hierarchical state
machines, correctly simulated the evaporator system, both in normal and malfunction
operation. The values for the plant variables considered in these simulations were Q1=1,
Q2=0.5, G1=G2=1, Ht1=Ht2=1, A1=0.2 and A2=0.05.

Fig. 17 shows results of the simulation without the occurrence of the condenser malfunction
during the production cycle. This corresponds to the normal operation for the tanks’ level and
for the controller outputs. It can be also observed, in the same figure, that the system is
properly simulated by the developed program, since during the time specified by the SFC the
tanks remain filled and empty, as well as, the switch logical state of the controller outputs.

On the other hand, Fig. 18 shows results of the simulation with the occurrence of the
condenser malfunction during the production cycle, which corresponds to the malfunction
operation. The malfunction occurred in a random way 15s after the start of the plant
functioning. Analyzing Figure 12 it can be concluded that the proposed program properly
simulates malfunction operation. Because it can be verified, taking into account figure 12, that
at the malfunction occurrence (time 15s) the solution present in the tank1 is immediately
drained for the tank2 and later emptied. In the same way, analyzing Figure 12, it can be
verified that at time 15s the switch off the mixer and the heater, and the alarm switch on,
occur simultaneously. This matches to the SFC specification of the controller.

Fig. 17. Level tanks in function of time in normal operation of the evaporator system.

Fig. 18. Switch state of the mixer, heater and alarm in normal operation of the evaporator
system.

Fig. 19. Level tanks in function of time with occurrence of condenser malfunction (time = 15s).

Fig. 20. Switch state of the mixer, heater and alarm with occurrence of condenser malfunction
(time =15s).



It is also necessary, in addition to the verification that the modelling of the system conforms to
the SFC of the system controller, to guarantee that in the case of condenser malfunction
solidification or explosion of the solution in the tanks does not occur. Thus it is necessary to
take into account the timing characteristics of the physical devices.

For example, in the simulations presented in Fig. 19 and Fig. 20 (which considered the
following values for the plant variables: Q1=1, Q2=0.5, G1=G2=1, Ht1=Ht2=1, A1=0.2 and
A2=0.05), the times obtained for filling and emptying tank1 were, respectively, 0.6533s (limit
6s) and 2,1255s (limit 19s), and for the tank 2, respectively, 2,2655s (similar to the time of
empty tank1) and 8,4361s (limit 26s). This simulation allowed showing that, with these plant
variables’ values, the system does not have serious functioning anomalies that can put in risk
humans lives and material goods.

In order to obtain the relation between the plant variables and the time of the critical
operations, some simulations were performed using several values of plant variables. Figure 10
and 11 show results of these simulations, respectively related to the empty tanks time (equal
for the tank1 and tank2) and fill tank1 time, which correspond at the times of the critical
operations of the evaporator system.

Fig. 21. Empty tank time in function of plant variables.

Fig. 22. Fill tank1 time in function of plant variables.

7.2. Formal Verification Results

The strategy adopted for formal verification considers that the program is written in Ladder
language (according to section 2) and the following work hypotheses, as presented on (Gaid et
al. 2005):

e the PLC executes the control program with a three phases cyclic behaviour;
e |EC61131-3 TON timer blocks are considered;

e the duration of PLC cycle is considered to be between €1 and €2 and we have adopted
€l equal to 0 and €2 equal to 1;

e the unit of time used for the plant is irrelevant;
e discovering the maximal value of €2 for the properties to hold was not our objective.

e The controller and the plant models, coupled as a closed-loop system, compose the
global model verified.

All the properties were verified in less than 2 seconds each, using UPPAAL version 4.0.3 and an
Intel Core Duo, 1,87GHz, machine with 4GB of RAM. The modular approach to building the
plant model is well suited to facilitate the tasks of writing the properties, as is the case of
properties P4, P5, P6 and P7. These properties consider undesirable states of the plant
modules’ models and we verify if these undesirable states are reached or not. For instance, if
the state explosion of the condenser is reached that means a damage and an undesirable



behaviour. This is expressed by the property P4: A[ ] not condenser.explosion where it is
expressed that the explosion state of the condenser is never reached.

8. Proposed approach for safe controllers design

In order to obtain safe controllers we present a systematized approach, using the analysis
techniques Simulation and Formal Verification, together, where Plant modelling plays a crucial
role. The proposed approach has two main ideas: first the use of the analysis techniques
(Simulation and Formal Verification) on a complementary way and, second, the use of well
defined and formalized plant models, for the Simulation and Formal Verification tasks.

The approach is divided in two steps that when performed in sequence, are efficient in
obtaining safe controllers. The two steps are described below.

First Simulation is used, and then Formal Verification is used. Fig. 23 presents the first step
with the use of Simulation, and Fig. 24 presented how the Formal Verification is used after
Simulation.

Fig. 23. Step 1 — Using Simulation with programming language Modelica and Dymola software.
Fig. 24. Step 2 — Using Formal Verification with timed automata and UPPAAL.

It is on the second step, and in the respective Plant modelling approach, that this paper is
focused: obtaining the Timed Plant Model.

After these two steps we can be sure that our specification is safe and as we use an automatic
translation of the specification to the program — based on the algebraic translation of the IEC
60848 SFC (Machado et. al 2006-b) - we can guarantee that the program is safe too.

Anyway, the methodology presented in this paper, for modelling the plant, is the same if it is
intended to verify the specification or the program.

9. Conclusions

The development of timed Plant models (for Formal verification purposes) as an abstraction of
hybrid models (used in Simulation) is very interesting from the point of view of the
performance that can be obtained in the Formal Verification tasks. Nowadays, formal
verification of timed systems allows us to deal with high dimension cases, enabling us to study
complex real world cases.

Another important aspect of the work is that, with the presented approach to building plant
models (using first Simulation and then Formal Verification), we can address two important
points:

e Firstly, by using Simulation, we can avoid a number of program errors in a reduced
time interval — this would not happen if these errors were detected only through the
use of Formal Verification techniques.



e Secondly, our modular approach provides us with an easier way to build plant models
which are well suited to facilitate the task of writing the properties formulae. In fact,
the consideration of undesirable states in the created plant models simplifies the task
of writing properties.

The use of the Modelica programming language, to obtain these modular plant models, is
useful to define the delays in which a property can, or cannot, be proved and also the delays to
elaborate the considered plant models.

simulation techniques allow us to test different delays of the plant functioning, and to see if a
property, considering different delays, is always true; or if different delays imply that a
property that is true, for a delay, will become false for another. This study is very important
from the point of view of system safety and is part of the on-going work performed on this
subject.
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Input

Output

start — process start
levell — % fill tank1

level2 — % fill tank2
malf — condenser
malfunction

V1 - open valvel
V2 — open valve2

V3 —open valve3
V4 — open valve4
H — switch Heater on

MR — switch Mixer on
Alarm —start alarm
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Plant Variable

sourcel, source 2 | Q1, Q2 - flow rate [m3/s]

G1, G2 — ground area [m?]
tankl, tank2 Ht1, Ht2 —height [m]
Al, A2 —drain hole area [m?]
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model Tankl

Hodelica.Blocks. Interfaces. RPeallutput levelSensor;
Hodalica.Statelbraph. Exanples. UTcilities. inflow intflowl;
Hodelica. StateFraph. Exanples.Ucilivies.oucflow oucflowl;
BEeal level "Tank level in &% of max height";
parameter Real A=l "ground area of Tank in m*";
parameter Peal a=0.Z "area of drain hole in n*";
parameter Peal hmaxes]l "max height of cank in m";
conscant FEeal guModelica.Constants.qg n;
Hodelica. Svavebraph. Exanples. Mtilicies. . inflow inflowZ;
SUation
der(lewval) = (inflowl Fi 4 inflow?Z Fi - oucflowl. Fol/ihmax™4) ;
if outflowl.open then
cutflowl Fo = sgro(Z*g®*hmax®lewal) *a;
elze
outflowl.Fo

end 1f;

0;

levalSensor = lewel;
end Tanl:

comnnector Modelica.Blocks. Interfaces. Reallutput =
cutput Pealfimal "'output Real' &s connector";

connector Modelica.Blocks. Interfaces.RealSignal
"REeal port {(both input/output possible)”
raplaceable type SignalType = Real;

extends SignalType;

end PealSignal;

commiector Hodelica.StateCGraph. Examples TTeilities. inflow

inport Units = MNodelica.3Tunits;

Thits. VoluneFlowlate Fi "intlow";
end intlow;

cormector MHodelica.Statelbraph. Exanples. Utilities.outflow
import Units = Modelicae.Slunits;

Thits, VolumeFlowRate Fo "outflow™;
EBoolean open "valve open”;
end outflow;
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modal Tanlk 2

Modelica Blocks. Interfaces. BealOutput lewvelSensor;
Modelica. Statebraph. Exanples. Ueilitiez. inflow inflowl;
Modelica. StateCGraph. Exanples Utjilities outflow outflowl;
Peal level "Tank level in % of nax height";
parameter Real A=l "ground area of tank in w'";
parameter Feal a=0.Z "ares of drain hole in w®";
paramster Real hnax=]l "max height of cank in m";
constant Real g=Modelica.Constants.g _n;
equation

der{level) = (inflowl.Fi - outflowl.Fo)/(hmax*4i);
if sucflowl.open then

out flowl.Fo = sgqro{Z*g*hmax*level) *a;
alze

out flowl. Fo
end if;
levelSensor = lewvel;

1}

0;

end Tank;

conmeactor Hodelica.EBlocks. Interfaces. Feallutput =
output Realfigmal "'output Peal' as conmector":

cormectoy Modelica.Blocks.Interfaces. FealSignal
"Real port {(both input /output possible)”
replaceable type Signallype = Real;

gxtends Signallype;
end RealSignal;

conmector Modelica. StateCraph. Examples Utilities.inflow

inport Units = Hodelica.SIunits;

Mits VolumeFlowlate Fi "inflow":

aend intlow,;

commector Modelica.StateCGraph. Exanples.Utilities. outflow

inport Tndtcs = Modaelica. STunits;

Thits.VoluneFlowRkate Fo "outflow";
Boolearn open "valwve open®™;
end outflow;
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