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Abstract. Although presented with a variety of ‘flavours’, the notion
of an interactor, as an abstract characterisation of an interactive com-
ponent, is well-known in the area of formal modelling techniques for in-
teractive systems. This paper replaces traditional, hierarchical, ‘tree-like’
composition of interactors in the specification of complex interactive sys-
tems, by their exogenous coordination through general-purpose software
connectors which assure the flow of data and the meet of synchronisation
constraints. The paper’s technical contribution is twofold. First a modal
logic is defined to express behavioural properties of both interactors and
connectors. The logic is new in the sense that its modalities are indexed
by fragments of sets of actions to cater for action co-occurrence. Then,
this logic is used in the specification of both interactors and coordination
layers which orchestrate their interconnection.
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1 Introduction

Modern interactive systems resort to increasingly complex architectures of user
interface components. With the generalisation of ubiquitous computing, the no-
tion of interactive system itself changed. Single interactive devices have been
replaced by frameworks where devices are combined to provide services to a
number of different, often anonymous, users accessing them in a competing way.
This may explain the increasing interest on rigorous methodologies to develop
useful, workable models of such systems. In such a setting, the concept of an in-
teractor was originally proposed by Faconti and Paternò [13], as an abstraction
for a graphical object capable of both input and output, typically specified in
a process algebra. This was further generalised by Duke and Harrison [12] for
modelling interactive systems. Interactors become able not only to communicate
through i/o ports, but also to convey information about their state through a
rendering relation that maps the latter to some presentation medium.

The framework outlined in [12], however, does not prescribe a specification
notation for the description of interactor state and behaviour. Several possibil-
ities have been considered. One of them, which directly inspired this piece of
research, was developed by the third author in [8] and resorts to Modal Action
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Logic (MAL) [19] to specify behavioural constraints. Another one [18] uses LO-
TOS to express a relation between input and output ports. Actually, the notion
of an interactor as a structuring mechanism for formal models of interactive sys-
tems, has been an influential one. It has been used, for example, with LOTOS
[13,17], Lustre [10], Petri nets [6], Higher Order Processes [11], or Modal Action
Logic [9].

Whatever the approach, modelling complex interactive systems entails cre-
ating architectures of interconnected interactors. In [8] such models are built
hierarchically through ’tree-like’ aggregation. Composition is typically achieved
by the introduction of additional axioms and/or dedicated interactors to express
the control logic for communication. This, in turn, adds dramatically to the
complexity of the proposed models. Moreover, it does not promote a clear sep-
aration of concerns between modelling interactors and the specification of how
they interact with each other.

This is exactly the point where the contribution of this paper may be placed.
We adopt an exogenous coordination approach to the composition of interactors
which entails an effective separation of concerns between the latter and the
specification of how they are organised into specific architectures and interact to
achieve common goals. Exogenous coordination draws a clear distinction between
the loci of computational effort and that of interaction control, the latter being
blind with respect to the structure of values and procedures which typically
depend on the application domains.

Our approach is based on previous work on formal calculi for component
coordination published in [4,2] and closely inspired by Arbab’s Reo model [1].
In this paper we propose a particular model wherein complex coordinators, called
connectors, are compositionally built out of simpler ones. This implies that not
only should it be generally possible to produce different systems by composing
the same set of interactors in different ways, but also that the difference between
two systems composed out of the same set of interactors must arise out of their
composition shemes, i.e., their glue code.

Research reported here is a follow-up of a previous attempt to use the co-
ordination paradigm to express the logic governing the composition of interac-
tors, reported in [3], where a process algebra framework was used to specify
connector’s behavioural constraints. This, however, proved difficult to smoothly
combine with interactors whose evolution is typically given by modal assertions.
In this paper an extension to Hennessy-Milner logic [14] is proposed to express
behavioural properties of both interactors and connectors. The novelty in the
logic is the fact that its modalities are indexed by sets of actions to cater for
action co-occurrence. Moreover, modalities are interpreted as asserting the exis-
tence of transitions which are indexed by a set of actions of which only a subset
may be known. Both co-occurrence and such a sort of partial information about
transitions seem to be essential for software coordination.

The rest of the paper is organised as follows. Section 2 introduces modal
language M, which is used to specify interactors in section 3, and software con-
nectors in section 4. Section 5 brings interactors and the coordination layer
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together through the notion of a configuration. A few examples are discussed to
assess the merits of proposed approach. Finally, a few topics for future work are
discussed in section 6.

2 A logic for behaviour

2.1 A modal language

Like many other computing artefacts, both interactors and connectors exhibit
reactive behaviour. They evolve through reaction, either to internal events (e.g.,
an alarm timeout) or to the accomplishment of interactions with environment
(e.g., the exchange of a datum in a channel end). Following a well established
convention in formal modelling, we refer to all such reaction points simply as
actions, collected on a denumerable set Act. Then we define modal operators
which qualify the validity of logical formaluæ with respect to action occurrence,
or, more generally, to action co-occurrence.

Having mechanisms to express co-occurrence becomes crucial in modelling
coordination code. For example, what characterises a synchronous channel, the
most elementary form of software glue to connect two running interactors, is pre-
cisely the fact that any interaction in its input end is simultaneous with another
interaction in the output end. Note that temporal simultaneity is understood
here as atomicity : simultaneous actions cannot be interrupted.

The modal language introduced in the sequel is similar to the well-known
Hennessy-Milner logic [14], but for a detail which makes it possible to express
(and reason about) action co-occurrence. The basic idea is that a formula like
〈a〉φ, for a ∈ Act, which in [14] asserts the existence of a transition indexed
by a leading to a state which verifies assertion φ, is re-interpreted by replacing
’indexed by a’ by ’indexed by a set of actions of which a is part of’. Therefore,
modalities are relative to sets of actions, whose elements are represented by
juxtaposition, regarded as factors of a (eventually larger) compound action.

In detail, modalities are indexed by either positive or negative action factors,
denoted by K and ∼K, for K ⊆ Act, respectively. Intuitively, a positive (respec-
tively, negative) factor refers to transitions whose labels include (respectively,
exclude) all actions in it. Annotation ∼ may be regarded as an involution over
P(Act) (therefore, ∼∼K = K).

Formally M has the following syntax, where W is a positive or negative action
factor and Ψ ranges over elementary propositions,

φ ::= Ψ | true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1→ φ2 | 〈W 〉φ | [W ]φ

Its semantics is given by a satisfiability relation wrt to system’s states. For the
non modal part this is as one would expect: for example s |= true, s 6|= false and
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2. For the modal connectives, we define

s |= 〈W 〉φ ⇔ 〈∃ s′ : 〈∃ θ : s
θ−→ s′ : W ≺ θ〉 : s′ |= φ〉

s |= [W ]φ ⇔ 〈∀ s′ : 〈∃ θ : s
θ−→ s′ : W ≺ θ〉 : s′ |= φ〉
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where

W ≺ X ,

{
W = K, for K ⊆ Act ⇒ K ⊆ X

W =∼K, for K ⊆ Act ⇒ K 6⊆ X

For example, if there exists a state s′ such that s
abcd−→ s′ and s′ verifies some

formula φ, then s |= 〈bd〉φ. Dually, assertion [∼abc]false states that all transitions
whose labels do not involve, at least and simultaneously, actions in set {a, b, c}
lead to states which validate false and their occurrence is, therefore, impossible.

Modal connectives can be extended to families of both ’positive’ or ’negative’
action factors as follows:

s |= 〈F 〉φ⇔ 〈∃ W : W ∈ F : 〈W 〉φ〉
s |= [F ]φ⇔ 〈∀ W : W ∈ F : [W ]φ〉

where F ⊆ (P(Act) ∪ ∼P(Act)). Just as actions in an action factor are rep-
resented by juxtaposition, as in 〈abc〉, action factors in a family thereof are
separated by commas, as in 〈J,K, L〉. Set complement to P(Act) ∪ ∼P(Act) is
denoted by symbol − as in [−K]false or 〈−〉true, the latter abbreviating −∅. The
first assertion states that only transitions exactly labelled by factor K can oc-
cur. The second one that there exists, from the current state, at least a possible
transition (of which no particular assumption is made).

Most results on Hennessy-Milner logic carry over M. In particular, it can be
shown that modal equivalence in M entails bisimulation equivalence for processes
in CCS-like calculus extended with action co-occurrence. Although this is not
the place to explore the structure of M, the following extension laws are needed
in the sequel: for all a, a′ ∈ Act, K, K ′ ⊆ Act,

[a]φ ⇐ [aa′]φ and 〈a〉φ ⇐ 〈aa′〉φ (1)
[K]φ ⇐ [K, K ′]φ and 〈K〉φ ⇒ 〈K, K ′〉φ (2)
[K]φ ∧ [K ′]φ ⇔ [K, K ′]φ (3)
〈K〉φ ∨ 〈K ′〉φ ⇔ 〈K, K ′〉φ (4)

Proofs proceed by unfolding definitions. For example, the first part of (1) is
proved as follows:

s |= [a]φ

⇔ { definition }

〈∀ s′ : 〈∃ θ : s
θ−→ s′ : {a} ⊆ θ〉 : s′ |= φ〉

⇐ { set inclusion }

〈∀ s′ : 〈∃ θ : s
θ−→ s′ : {a, a′} ⊆ θ〉 : s′ |= φ〉

⇔ { definition }

s |= [aa′]φ
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It is also easy to see that, for K and K ′, both positive or both negative,

[K, K ′]φ ⇒ [K ∪K ′]φ (5)
〈K, K ′〉φ ⇐ 〈K ∪K ′〉φ (6)

2.2 Typical properties

To exemplify the use of the logic and introduce some notation to be used in
the sequel, let us consider a number of properties useful for the specification of
both interactors and coordination schemes. Most of the latter are designed to
preclude interactions in which some action factor K is absent. This leads to the
following property schemes

only K , [∼K]false and forbidK , only ∼K

Properties above entails conciseness in expression. For example, assertion only K∧
only L ∧ forbidM abbreviates, by (3), to only K, L,∼M . A dual property asserts
the existence of at least a transition of which a particular action pattern is a
factor, i.e., perm K , 〈K〉true. Or, not only possible, but also mandatory,
mandatory K , 〈−〉true ∧ only K.

More complex patterns of behaviour are expressed by nesting modalities,
as in [K]〈L〉φ, which expresses a sort of invariant: after every occurrence of an
action with factor K, there is, at least, a transition labelled by actions in L which
validates φ. The complement of 〈−〉true is [−]false which asserts no transition is
possible. Notice that their duals — 〈−〉false and [−]true — are just abbreviations
of constants false and true, respectively.

3 M-interactors

3.1 A language for M-interactors

As stated in the Introduction, our aim is to use a single specification notation for
both interactors, which, in this setting, correspond to the computational entities,
and connectors, which cater for the coordination of the former. Modal language
M is, of course, our candidate for this double job — this section focuses on its
first part.

The definition of a M-interactor is adapted from [12], but for the choice of
the behaviour specification language. Formally,

Definition 1. An interactor signature is a triple (S, α, Γ ), where S is a set of
sorts, α a S-indexed family of attribute symbols, and Γ a set of action symbols.
An M-interactor is a tuple (∆, ρ, γ, Ax∆) where ∆ is an interactor signature,
ρ : P←− α and γ : P←− Γ are rendering relations, from attributes and actions,
respectively, to some presentation medium P, and Ax∆ a set of axioms over ∆
expressed in the M language.
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The set of ports provided by an interactor is defined by ρ, γ, and Γ . Ports
induced by ρ are output ports used to read the value of attributes and are always
available. This condition is expressed by 〈∀ p : p ∈ range ρ : 〈p〉true〉. Ports in
Γ are input/output ports and their availability is governed by axioms in Ax∆.

Syntactically, the definition of an interactor has three main declarations:
of attributes, actions and axioms. The first two define the signature. The ren-
dering relation is given by annotations on the attributes. Actions can also be
annotated to assert whether or not that they are available to the user. Fig. 1
shows a very simple example of an interactor modelling an application window.

interactor window
attributes

vis visible,newinfo : bool
actions

hide show update invalidate
axioms

[hide] ¬visible
[show ] visible
[update] newinfo
[invalidate] ¬newinfo
forbidhide show
forbidupdate invalidate

Fig. 1. A window interactor

Two attributes are declared, indicat-
ing whether the window is visible or
displays new information.

Available actions model the change
of visibility and information displayed
in the window. Their effect in the state
of the interactor is defined by the a-
xioms in the figure. In this example,
the rendering relation is defined by
the vis annotation, which indicates
that all attributes are (visually) per-
ceivable.

Although the behavioural pro-
perties specified in this example are
rather simple, in general, it is neces-
sary to specify when actions are per-
mitted or required to happen. This is
achieved with the perm and manda-
tory assertions, typically stated in a
guarded context. Thus,

– perm K→Φ, where Φ is a non modal proposition over the state space of the
interactor, as perceived by the values of its attributes. The assertion means
that if actions containing action factor K are permitted then Φ evaluates to
true.

– Φ→mandatory K, meaning actions containing action factor K are inevitable
whenever Φ evaluates to true.

A useful convention establishes that permissions, but not obligations, are as-
serted by default. I.e., by default anything can happen, but nothing must happen.
This facilitates makes adding or removing permissions and obligations incremen-
tally when writing specifications.

3.2 Composing interactors

In the literature, and specifically in [8], interactors are composed in the ’classi-
cal’ way, i.e., by a specification import mechanism, illustrated below by means
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interactor space
attributes

vis state : {open, closed}
actions

open close
axioms

perm open → state = closed
[open] state = open
perm close → state = open
[close] state = closed

Fig. 2. The space interactor

interactor spaceSign
aggregates

window via oI
window via cI

attributes

vis state : {open, closed}
actions

vis open close
axioms

perm open → state = closed
[open] state ′ = open
perm close → state = open
[close] state ′ = closed
only open oI .update oI .show ∨ only close cI .update cI .show

Fig. 3. A classical solution

of a small example. In the literature, and specifically in [8], interactors are com-
posed in the ’classical’ way, i.e., by a specification import mechanism, illustrated
below by means of a small example. This will be contrasted in section 5 to a
coordination-based solution. Consider a system that controls access to a specific
space (e.g, an elevator), modelled by the interactor in Fig. 2. Now suppose two
indicators have to be added to this model, one to announce open events, the
other to signal close events. We will use instances of the window interactor from
Fig. 1 to act as indicators. The ’classical’ aggregation strategy, as in [8], requires
that two instances of the window interactor be imported into one instance of
space to build the new interactor. The rules that govern their incorporation are
as follows:

– the open (respectively, close) indicator must be made visible and have its
information updated whenever the system is opened (respectively, closed).

Additionally, it should be noted that whenever a window is made visible, it might
overlap (and hide) another one. The resulting interactor is presented in figure
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3, where a new axiom expresses the coordination logic. The fact that M allows
for action co-occurrence means that constraints on actions become simpler and
more concise than their MAL counterparts, as used in [8]: in our example only
an additional axiom is needed. Nevertheless, this solution still mixes concerns
by expressing the coordination of interactors cI and oI at the same level than
the internal properties of the underlying space interactor. How such two levels
can be disentangled is the topic of the following sections.

4 The coordination layer

Actually, coordination entails a different perspective. As in [1] this is achieved
through specific connectors which abstract the idea of an intermediate glue
code to handle interaction. Connectors have ports, thought of as interface points
through which messages flow. Each port has an interaction polarity (either input
or output), but, in general, connectors are blind with respect to the data values
flowing through them. The set of elementary interactions of a connector C forms
its sort, denoted by sort.[[C]]. By default the sort of C is the set of its ports, but
often such is not the case. For example, a synchronous channel with ports a and
a′ has a unique possible interaction: the simultaneous activation of both a and
a′, represented by aa′.

Connectors are specified at two levels: the data level, which records the flow
of data, and the behavioural one which prescribes all the activation patterns for
ports. Formally, let C be a connector with m input and n output ports. Assume
D as a generic type of data values and P as a set of (unique) port identifiers.
Then,

Definition 2. The specification of a connector C is given by a relation data.[[C]] :
Dn ←− Dm, which relates data present at its m input ports with data at its n
output ports, and an M assertion, port.[[C]], over its sort, sort.[[C]], which specifies
the relevant properties of its port activation pattern.

4.1 Elementary connectors.

The most basic connector is the synchronous channel which exhibits two ports,
a and a′, of opposite polarity. This connector forces input and output to become
mutually blocking. Formally, data.[[ a // a′ ]] = IdD, i.e., the identity relation
in D, and

sort.[[ a // a′ ]] = {aa′} port.[[ a // a′ ]] = only aa′

Its static semantics is simply the identity relation on data domain D and its
behaviour is captured by the simultaneous activation of its two ports.

Any coreflexive relation provides channels which can loose information, thus
modelling unreliable communications. Therefore, we define, an unreliable channel
as data.[[ a

3 // a′ ]] ⊆ IdD and

sort.[[ a
3 // a′ ]] = {a, aa′} port.[[ a

3 // a′ ]] = only a
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The behaviour expression states that all valid transitions involve input port a,
although not necessarily a′. This corresponds either to a successful communica-
tion, represented by the simultaneous activation of both ports, or to a failure,
represented by the single activation of the input port.

As an example of a connector which is not stateless consider fifo1, a channel
with a buffer of a single position. Formally, data.[[ a � // a′ ]] = IdD and

sort.[[ a � // a′ ]] = {a, a′} port.[[ a � // a′ ]] = [a]only a′,∼a

Notice that its port specification equivales to [a](only a′ ∧ forbid a), formalising
the intuition of a strict alternation between the activation of ports a and a′.

If channels forward information, drains absorb it. However they play a funda-
mental role in controlling the flow of data along the coordination code. A drain
has two input, but no output, ports. Therefore, it looses any data item crossing
its boundaries. A drain is synchronous if both write operations are requested
to succeed at the same time (which implies that each write attempt remains
pending until another write occurs in the other end-point). It is asynchronous if,
on the other hand, write operations in the two ports do not coincide. The data
part coincides in both connectors: D× D. Then

sort.[[ a � H �
a′ ]] = {aa′} port.[[ a � H �

a′ ]] = only aa′

sort.[[ a � O �
a′ ]] = {a, a′} port.[[ a � O �

a′ ]] = only a, a′ ∧ forbid aa′

4.2 New connectors from old

Connectors can be combined in three different ways: by placing them side-by-
side, by sharing ports or introducing feedback wires to connect output to input
ports. In the sequel, note that behaviour annotations in the specification of
connectors can always be presented in a disjunctive form

port.[[C]] = φ1 ∨ φ2 ∨ · · · ∨ φn (7)

where each φi is a conjunction of

[K] · · · [K]︸ ︷︷ ︸
n

only F

Also let t|a and t#a, for t ∈ Dn and a ∈ P, represent, respectively, a tuple of
data values t from which the data corresponding to port a has been deleted, and
the tuple component corresponding to such data. Then,

Join. This combinator places its arguments side-by-side, with no direct interac-
tion between them. Then,

data.[[C1 � C2]] = data.[[C1]] × data.[[C2]]
sort.[[C1 � C2]] = sort.[[C1]] ∪ sort.[[C2]]
port.[[C1 � C2]] = port.[[C1]] ∨ port.[[C2]]
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The relevance of sorts becomes now clear. Take, for example, the aggregation of
two synchronous channels Their joint behaviour is

port.[[( a // a′ � c // c′ )]] = only aa′ ∨ only cc′

A transition labelled by, say, aa′c does not violate the behaviour prescribed
above, but it is made invalid by the sort specification, which is {aa′, cc′}.

Share. The effect of share is to plug ports with identical polarity. The aggregation
of output ports is done by a right share (C i

j > z), where C is a connector, i
and j are ports and z is a fresh name used to identify the new port. Port z
receives asynchronously messages sent by either i or j. When input from both
ports is received at same time the combinator chooses one of them in a non-
deterministic way. Let data.[[C]] : Dn ←− Dm. Then, the data flow relation
data.[[C i

j > z]] : Dn−1 ←− Dm for this operator is given by

r (data.[[C i
j > z]]) t ⇔ t′ (data.[[C]]) t ∧ r|z = t′|i,j ∧ (r#z = t′#i ∨ r#z = t′#j)

At the behavioural level, its effect is that of a renaming applied to the M-formula
capturing the behavioural patterns of C, i.e.,

port.[[(C i
j > z)]] = {z ← i, z ← j} port.[[C]]

over

sort.[[(C i
j > z)]] = {z ← i, z ← j} sort.[[C]]

Figure 4 represents a merger formed by sharing the output ports of a synchronous
channel and a 1-place buffer.

 
a // a′

b � // b′

!
a′

b′ > w =

a ��
w

b �

AA

Fig. 4. A merger : only aw ∨ [b]only w,∼b.

On the other hand, aggregation of input ports is achieved by a left share
mechanism (z <i

j C). This behaves like a broadcaster sending synchronously
messages from z to both i and j. This case is slightly more complex: before
renaming, all computations of C in which ports i and j are activated indepen-
dently of each other must be synchronised. Therefore, we take all disjuncts in
port.[[C]] in which ports i and j are involved, form their conjunction to force
co-occurrence, and apply renaming. Formally, let φθ be a disjunct in port.[[C]]
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(recall (7)) involving only ports in θ. Define φi = 〈
∨

φθ ∈ port.[[C]] : i ∈ θ : φθ〉
and, similarly, φj . Therefore, for σ = {z ← i, z ← j},

port.[[(z <i
j C)]] = σ(φi ∧ φj) ∨ 〈

∨
φθ′ ∈ port.[[C]] : i /∈ θ′ ∧ j /∈ θ′ : φθ′〉

and, again,

sort.[[(z <i
j C)]] = {z ← i, z ← j} sort.[[C]]

On the other hand, relation data.[[z <i
j C]] : Dn ←− Dm−1 is given by

t′ (data.[[z <i
j C]]) r ↔ t′ (data.[[C]]) t ∧ r|z = t|i,j ∧ r#z = t#i = t#j

As an example let us calculate the sharing of input ports a and b in a con-
nector composed by three, otherwise non interfering, synchronous channels,

port.[[z <a
b ( a // a′ � b // b′ � c // c′ )]]

⇔ { definition }

{z ← a, z ← b}(only aa′ ∧ only bb′) ∨ only cc′

⇔ { renaming and (3) }

only za′, zb′ ∨ only cc′

⇔ { (5) }

only za′b′ ∨ only cc′

which asserts that input on z co-occurs with output at both a′ and b′. Replacing
b // b′ by a one-place buffer leads to the connector depicted in Fig. 5 which
is calculated as follows

port.[[z <a
b ( a // a′ � b � // b′ � c // c′ )]]

≡ { definition }

{z ← a, z ← b}(only aa′ ∧ [b]only b′,∼b) ∨ only cc′

≡ { renaming }

(only za′ ∧ [z]only b′,∼b) ∨ only cc′

Hook. This combinator encodes a feedback mechanism, drawing a direct con-
nection between an output and an input port. This has a double consequence:
the connected ports must be activated simultaneously and become externally
non observable. The formal definition is omitted here (but see [5]) because this
combinator is not used in the examples to follow. For the sake of curiosity, note
the following ’extreme’ situations arising from hooking a synchronous channel
and a 1-place buffer, respectively,

(only aa′) �a
a′ = only ∅ = true

[a](only a′,∼a) �a
a′ = [∅](true ∧ false) = false

as one may have expected given the buffer strict alternation activation discipline.
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z <a
b

0BB@
a // a′

b � // b′

c // c′

1CCA =

a′

z

//

� // b′

c // c′

Fig. 5. A broadcaster and a detached channel.

5 Configurations of M-interactors

Having introduced M-interactors and the coordination layer on top of the same
modal language, we may now complete the whole picture. The key notion is
that of a configuration, i.e., a collection of interactors interconnected through a
connector built from elementary connectors, combined trough the combinators
defined above. Formally,

Definition 3. A configuration is a tuple 〈I, C, σ〉, where I = {Ii| i ∈ n} is a
collection of interactors, C is a connector and σ a mapping of ports in I to ports
in C. The behaviour of a configuration is given by the conjunction of the modal
theories for each In ∈ I, as specified by their axioms, and the port specification
port.[[C]] of connector C, after renaming by σ.

Fig. 6. A coordination-based solution.

To illustrate the en-
visaged approach, consider
again the example discussed
in section 3. A coordination-
based solution, depicted in
Fig. 6, replaces the hierar-
chical import of window into
spaceSign interactor, by a
configuration in which the
two instances of the for-
mer and one instance of the
original space interactor are
connected by

BC , B � B

a connector which joins to-
gether two broadcasters B.
Each B is formed by two

synchronous channels and a lossy channel, sharing their input ports, i.e.

B , z <w
c (w <a

b ( a // a′ � b // b′) � c
3 // c′)

An easy calculation yields port.[[B]] = only za′, zb′, z, which, by (5), equivales
to only za′b′. In a configuration in which, through a renaming σ, port z is linked
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to S.open, a′ to oI.update, b′ to oI.show and c′ to cI.hide, one may prove (i.e.,
discover, rather than assert) a number of desirable properties of the configura-
tion. For example, from axiom perm S.open, a default axiom of interactor space
in section 3, and σ only za′b′, one concludes that

perm S.open oI.update oI.show

i.e., there are transitions in which all the three ports are activated at the same
time. But, because the connector does not allow actions not including the simul-
taneous activation of such three ports, the joint behaviour of the configuration
asserts not only possibility but also necessity of this transition, i.e.,

perm S.open oI.update oI.show ∧ only S.open oI.update oI.show

This is stronger than the corresponding axiom added to interactor spaceSign
in Fig. 3, although it can be deduced from the modal theory of this interactor
(which, of course, includes perm open). Note we are focussing only on one of the
two B connectors in BC, thus this conclusion does not interfere with a similar
possibility for the other connection of interactor instances S and cI (recall the
behavioural effect of � is disjunction).

On the other hand, one also has perm S.open cI.hide because action zc′ is in
sort.[[B]], but, now only as a possibility, because an unreliable channel was used
to connect these ports. From this property and only S.open oI.update oI.show
above, we can easily conclude that cI.hide cannot occur independently of S.open,
oI.update and oI.show. Again, this is stronger than the interactor model in Fig.
3, where the hide action was left unrestricted.

As a final example, consider an interactor which has to receive the location
coordinates supplied by two different input devices but in strict alternation. The
connector to plug these three interactors is the alternate merger depicted in Fig.
7, formally, defined as

b<d′

f a<d
c ( c // c′ � d

H // d′ � f � // f ′)c′

f ′ >w

a_

H

_

��
w

b
�

EE

Fig. 7. An alternate merger.

Its behavioural pattern is

port.[[AM]] = only awb ∧ [b]only w,∼b

Clearly, each activation of port a is syn-
chronous with b and w. But then data re-
ceived in b (say, the coordinates of the one
of the devices) is stored in the buffer. Next
action is necessarily w, whose completion
empties the buffer.
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6 Conclusions and Future Work

It was our intention to set the foundations for an approach to modelling interac-
tive systems entailing a true separation of concerns between modelling of individ-
ual components (interactors) and their architectural organisation. For this a new
modal logic (the M language) was introduced, which is similar to the Hennessy-
Milner logic [14] but for the fact that its modal connectives are indexed by sets
of actions (actions factors). These action factors are interpreted over the com-
pound actions (themselves represented by sets) that label transitions using set
inclusion. This makes it possible to express properties over co-occurring actions
in the logic.

Although the main drive behind the development of M was the need for a
modal logic expressive enough to define the coordination layer, the language was
also used to specify interactors, thus providing a single language for expressing
the behaviour of both interactors and connectors that bind them.

The approach presents two major benefits over [13] or [8]. First of all, it pro-
motes a clear separation of concerns between the specification of the individual
interactors and the specification of how they interact with each other. Further-
more, it frees us from the rigid structure imposed by hierarchical organisation.

At this point, it is worthwhile pointing out that when composing interactors
into different configurations, the resulting behaviour becomes an emergent fea-
ture of the model. Hence, we discover, rather than assert, what the system will
be like. This is particularly relevant in a context were one is interested in ex-
ploring the impact of different design decisions at the architectural level. Recent
related work on the use of (some type of) logic to specify component behaviour
include [7] and [15], the latter with an emphasis on property verification.

A number of lines of research have been opened by the current endeavour. A
main one concerns temporal extension. Actually, language M seems expressive
enough to express connector’s behaviour, but not so when facing more elaborate
interactor’s specifications. A typical case relates to expressing obligation require-
ments. We are currently studying how M can be extended in a way similar to
D. Kozen’s µ-calculus [16] in order to address these temporal issues.
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