
Test Case Generation from Mutated Task Models

Ana Barbosa
Universidade do Porto

Faculdade de Engenharia
Departamento de Engenharia

Informática
Rua Dr. Roberto Frias, s/n

4200-465 Porto
PORTUGAL

ei05089@fe.up.pt

Ana C. R. Paiva
Universidade do Porto

Faculdade de Engenharia
Departamento de Engenharia

Informática
Rua Dr. Roberto Frias, s/n

4200-465 Porto
PORTUGAL

apaiva@fe.up.pt

José Creissac Campos
Departamento de

Informática/CCTC
Universidade do Minho

Campus de Gualtar
4710-057 Braga

PORTUGAL
jose.campos@di.uminho.pt

ABSTRACT
This paper describes an approach to the model-based
testing of graphical user interfaces from task models.
Starting from a task model of the system under test, oracles
are generated whose behaviour is compared with the
execution of the running system. The use of task models
means that the effort of producing the test oracles is
reduced. It does also mean, however, that the oracles are
confined to the set of expected user behaviours for the
system. The paper focuses on solving this problem. It
shows how task mutations can be generated automatically,
enabling a broader range of user behaviours to be
considered. A tool, based on a classification of user errors,
generates these mutations. A number of examples illustrate
the approach.

Author Keywords
Task models, model based GUI testing

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
Interfaces. D.2.5. Software Engineering: Testing and
Debugging.

General Terms
Human Factors, Reliability

INTRODUCTION
Graphical User Interfaces (GUIs) are nowadays the
pervasive means of interaction between users and computer
systems. Clearly, the quality of the GUI is a determining
factor in the decision to use a system or not. At the very
least, it will have an impact in the effectiveness, efficiency
and satisfaction with which the system is used [1].
GUI quality is a multifaceted problem. Two main aspects
can be identified. For the Human-Computer Interaction
(HCI) practitioner the focus of analysis is on Usability, how

the system supports users in achieving their goals (which
can range from being productive to having fun, depending
on the specific system being considered). For the Software
Engineer, the focus of analysis is on the quality of the
implementation (from the degree of coverage of
requirements, to the maintainability of the code). Clearly
there is interplay between these two dimensions. Usability
will be a (non-functional) requirement to take into
consideration during development, and problems with the
implementation (e.g., bugs in the code) will create
problems to the user, hindering usability.
In a survey of usability evaluation methods, Ivory and
Hearst [2] identified 132 methods for usability evaluation,
classifying them into five different classes: (User) Testing;
Inspection; Inquiry; Analytical Modelling; and Simulation.
They concluded that automation of the testing process is
greatly unexplored. Automating the testing process is a
relevant issue since it will help reduce analysis costs by
enabling a more systematic approach to testing.
Another possible division of evaluation methods is between
those that require users to use the system, and those that
rely on models or simulations of the system for the
analysis. In the first case, the costs remain high due to the
need for testing sessions with real users of the system to be
carried out. Moreover, and given the high costs of user
testing, the analysis will not be exhaustive in terms of all
the possible interactions between the users and the system.
This means that problems with the implementation might
remain unnoticed during the analysis. In the second case,
an assumption is being made that the implementation will
be faithful to the model. This begs the question of how to
test the implementation (ideally, without resorting to
human users).
The ability to automatically generate, and run, relevant test
cases on a target GUI would support the analysis of the
implementation while reducing costs. The problem, then, is
that while there are several tools for GUI testing, many
such tools do not automate the generation of test cases
and/or the testing process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’11, June 13-16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

Model-based testing methods automate the generation of
test cases from a model of the system under test. However,
these methods present several difficulties. In the particular
case of interactive systems, one such problem is the need to
build detailed models of the GUIs [3]. One way to
overcome these difficulties is to increase the level of
abstraction of the models. In [4], it is shown how task
models can be used to achieve this goal of using more
abstract models in the model based testing of GUIs. Task
models, however, describe the normative operation of a
system only. They do not capture the common mistakes
that users might make, or alternatives to the expected
normative usage.
This paper focuses on user errors, and examines the
feasibility of using task models to test GUIs against
erroneous user behaviour in a model-based testing setting.
It achieves this by building on the existing approach
described in [4]. The approach uses ConcurTaskTrees
(CTT) [5] as the task modelling notation. This paper
proposes an algorithm to carry out changes to the original
models (mutants) by introducing typical user errors. For a
definition of this algorithm Reason’s user errors
classification [6] was used. Then several existing
applications were analyzed in order to detect patterns in the
construction of their task models. The proposed algorithm
detects those patterns in the task model and provides a
strategy for generating mutants capturing the effect of the
different types of errors on them.
To validate the approach, the CMTTool (CTT Model
Transformation Tool) was developed. This tool takes a task
model and applies the algorithm defined in the approach,
thus generating several mutants of the task model for
testing purposes. To assess the quality of the generated
models, the approach was applied in the model-based
testing of a number of GUI applications. The results
obtained by analyzing these case studies showed that the
approach allowed the detection of faults arising from
unexpected behaviours of the users. This shows evidence
that the approach supports the inclusion of typical
erroneous user behaviour in the automated task models
based testing of user interfaces.
In the next four sections, the paper discusses task models
and model-based GUI testing (State of the Art); presents
the proposed approach and associated tool support (The
Approach and the Tool); presents a number of examples of
application of the tool to real GUIs (Case Studies); and
ends with a discussion of the results and pointers for future
and ongoing work (Conclusions and Future Work).

STATE OF THE ART
Task Models
In the context of interactive systems development, a task is
an activity that should be performed in order to reach a
particular goal. Used as a requirements analysis artefact,
task models capture knowledge about the work the system
to be developed will be supporting. Used as a design
artefact, task models are a representation of the system’s

interactive layer logic, and describe assumptions about how
the user will interact with the device. In any case, task
models are usually normative. They describe the correct
procedures users (should) follow to achieve defined goals
in the system.
Several task-modelling languages have been proposed over
the years. Some relevant examples include GOMS (Goals,
Operators, Methods, Selection Rules) [7], UAN (User
Action Notation) [8], TKS (Task Knowledge Structures)
[8], or CTT (ConcurTaskTrees) [9]. These are all examples
of the family of hierarchical task analysis notations, the
most common approach to task analysis. In this style of
approach, the task model is a hierarchical decomposition of
tasks into sub-tasks that must be carried out to achieve a
given goal. For a discussion of alternative approaches see,
for example, [7].
GOMS focus is on user behaviour. The actions users
perform on the interface, and how they select which actions
to use. TKS focus on the knowledge needed to use the
system. UAN and CTT describe both user and system
actions. UAN defines a language to describe user actions at
the level of mouse and keyboard events. Tasks are
described in a tabular notation relating user actions to
system responses and user interface states. CTT defines a
language to describe the temporal relationships between
tasks (based on the LOTOS specification language [10]).
The notation does not fix the level of abstraction used to
model atomic tasks.
CTT has become a popular language for task modelling and
analysis, due to its graphical notation, formal semantics and
tool support. The TERESA tool [9] supports editing and
analysis of CTT models, and a number of features relating
to the animation of task models that have proven useful in
our work.

Model Based GUI Testing Tools
Model Based Testing (MBT) has been widely investigated
for API testing (e.g., [11-12]), and therefore MBT based
approaches are more common for API than for GUI testing.
However, approaches applying MBT for GUI testing do
exist, e.g., Memon’s work [13-14], and Paiva’s work [15].
They differ in the kind of model they use and in the
coverage of the test criteria used to guide the test case
generation process. However, both authors have concerns
with the effort required to construct the models.
The tool developed by Memon (GUITAR) generates test
cases from an Event Flow Graph (EFG) model. In the EFG,
a directed edge from one node to another represents an
event-flow relationship between two events. Memon tried
to diminish the effort in constructing the model by
developing a GUI ripping tool to extract EFG from an
existing GUI [14].
In his following work [13], Memon generates a sub-graph
of the EFG by removing nodes and edges that are not
observed in the usage information obtained from the
application’s real users, and augments it with probabilistic

information in each node (event) that describes the
occurrence probability of the event. Test cases are then
generated taking into account the probability of the events
occurring.
Another problem faced when considering model-based GUI
testing related to the mapping between events in the model,
and physical actions in the GUI. The GUI Mapping tool
developed by Paiva [15] is an extension of the model-based
testing tool Spec Explorer, developed by Microsoft
Research. The GUI model is written in Spec# with state
variables to model the state of the GUI and methods to
model the user actions on the GUI. Spec Explorer generates
a finite-state machine (FSM) by exploration of the Spec#
model and then test cases are generated from the FSM
according to coverage criteria like full transition coverage.
To run tests automatically over a GUI some additional
(intermediate) code is needed to simulate the user actions
on interactive GUI controls. The GUI Mapping Tool
generates such code automatically, based on the mapping
between model actions and GUI controls where
corresponding real actions occur. Although the
intermediate code is generated automatically, Paiva agrees
that the effort needed for the construction of Spec# GUI
models is too high. Similarly to Memon, she also tried to
diminish the effort in constructing a model by using a
reverse engineering process to extract a preliminary model
from an executable GUI. This model is completed
afterwards and validated in order to generate test cases.
Another attempt to reduce the time spent with GUI model
construction was described in [16] where a visual notation
(VAN4GUIM) is designed and translated to Spec#
automatically. The aim was to have a visual front-end that
could hide formalism details from testers. However, a
VAN4GUIM model is in an abstract level lower than task
models. Another attempt to reduce the effort in
constructing GUI models is to increase the level of reuse.
In [17], Cunha tried to increase reuse by identifying
recurrent GUI behaviour (UI patterns) and defining test
strategies for each of those patterns.
Following on from [4], the approach described in this paper
addresses the issue of diminishing the effort in the
construction of GUI models by increasing the level of
abstraction of those models to task models.

THE APPROACH AND THE TOOL
CTT Task Models
A task model in CTT is a tree of nodes, where the goal is at
the root of the tree and leaves are atomic tasks. Temporal
operators relate adjacent pairs of nodes at the same level in
the tree.
The Case Studies section presents several examples of CTT
task models. Four different types of tasks can be identified
in those examples: interaction tasks () are atomic tasks
representing user input to the application; application tasks
() are atomic tasks representing application output to the
user; user tasks () are atomic tasks representing decision

points on the user's part; abstract tasks () are used to
structure the model and appear as internal nodes in the tree.
The semantics of the model is defined by the possible
traversals of the tree. Tree traversal is done left to right in a
depth first fashion, and is governed by the temporal
operators relating pairs of nodes (plus two additional
operators that are applied to single nodes – see below). A
total of eight operators can be used [5]:

• choice operator ([]): T1 [] T2 means that one of T1
and T2 will happen;

• order independency operator (|=|): T1 |=| T2 means
that T1 and T2 will happen in any order;

• concurrent operator (|||): T1 ||| T2 means that T1
and T2 will happen concurrently (the operator |[]|
is used to express information exchange between
the tasks)

• disabling operator ([>): T1 [> T2 means that T2
interrupts T1 (which will not be resumed);

• suspend/resume operator (|>): T1 |> T2 means that
T2 suspends T1, but T1 resumes once T2 has
finished;

• enabling operator (>>): T1 >> T2 means that T2
happens after T1 is finished ([]>> is used to
express information exchange between the tasks);

• iterative operator (*): T1* means task T1 happens
repeatedly;

• optional operator ([]): [T1] means task T1 might
happen or not.

Consider the task model in Figure 15 (the last in the paper).
The goal of the task (the root of the tree) is to start the Unit
Converter (“Start UnitConverter”). To achieve the goal the
user starts by opening the unit converter (“Press
OpenUnitConverter”), after which (enabling operator) the
system responds by showing it (“Show UnitConverter”).
After the unit converter is displayed, repeatedly (iterative
operator applied to “AreaConvert”) the user enters digits
(“Enter Digit”) and the system responds with displaying
results (“Display Results”). Information about the digits
entered in “Enter Digit” is passed to “Display results”
(enabling operator with information exchange).
As mentioned above, CTT does not define the level of
abstraction for writing the atomic tasks in the models.
Neither does it constrain how tasks are to be named. In
order to automatically generate oracles from the task
models, some conventions about how CTT atomic tasks
should be named were defined in [4]. More specifically, a
set of valid keywords to be used when writing atomic task
names was defined. These keywords are also used here and
are:

• Start <task> — defines the start of a new task (and
creates a new namespace);

• Enter <field> <value> [<type>] — the user enters
value of type type in field (String is the default
type and can be omitted);

• Press <button> [<window>] — the user presses
button in window, if the window is not specified
the current window is assumed;

• Show <window> — the application opens window
as a non-modal window;

• ShowM <window> — the application opens
window as a modal window (i.e., it must be closed
before the user can interact again with the parent
window);

• Display <value> <window> — the application
displays value in window;

• Close [<window>] — the application closes
window, if the window is not specified then the
current window is assumed.

These keywords were inspired by the Framework for
Integrated Tests (FIT) [6]. Describing the process that lead
to this specific set of keywords is outside the scope of this
paper. The process is described in [4].

Typical mistakes of the user
According to Reason, in [18], the cognitive process of
performing tasks is divided into three stages. The first stage
consists in planning. During this stage the objective of the
task, and the sequence of actions to achieve that objective,
the plan, are identified. The second stage consists in storing
the plan in memory until it is executed. The third stage
involves implementing the plan (implementation of agreed
actions).
During this cognitive process errors may arise, associated
with each stage. In [18], three types of user errors are
identified: slips, lapses and mistakes. The errors of type
slips correspond to the implementation stage of the
cognitive process, and consist in the wrong execution of an
action, e.g., the user performs the sequence of actions in the
wrong order. Lapses are errors that occur during storage
and consist of the incorrect omission of an action, e.g., the
user forgets to perform one action. Mistakes are a type of
errors occurring in the planning phase and are the
establishment of a wrong plan to achieve the objective, i.e.,
the plan chosen for achieving the objective is not adequate.
The first two types of errors (slips and lapses) can be
represented in the task model by the omission of tasks,
changes in the operators, changes in the order of the tasks
or combinations of these approaches. The third type of
errors (mistakes) can be represented, using the elaboration
of different strategies to achieve the objective. Each
strategy corresponds to a different task model, thereby
checking which is the strategy followed by the application
under test.

Methodology
The task-based MBT methodology proposed in this paper
takes the above types of errors into consideration and
comprises five main steps (Figure 1).

Figure 1: Methodology

The first step corresponds to the design of the task model
using the CTT notation. This model is exported to XML
file, by using the Teresa tool [19]. The second step is the
introduction of typical user errors in the original model
producing model mutants. This step is carried out by the
CMTTool developed in this work. CMTTool will take the
original task model and perform various transformations,
constructing new XML files. The mutated models allow
testing the GUI against errors, such as slips and lapses. For
each mutant, the corresponding finite state machine (PTS –
Presentation Task Set) will be generated and exported to
XML, using the Teresa tool [19]. In the case of errors of
type mistake, several task models will be developed, each
corresponding to a different strategy to achieve the goal. In
this case, it is not necessary to construct mutants with the
CMTTool, jumping directly to the PTS generation step for
each of those models. The fourth step generates a Spec#
test oracle from the models, mutants, and their PTSs. This
generation is automated, using the TOM tool [4, 20].
Finally, Spec Explorer [21] will generate test cases
(according to coverage criteria) from the test oracles
constructed previously and will execute them.

Transformation algorithm
An algorithm was designed to introduce user errors, such as
slips and lapses, in the original task model, i.e., to construct
model mutants. This algorithm was designed so that it
could work for any task model without depending on the
specific GUI that was being modelled.
The first step was to study task models and the CTT
operators described above, and define strategies to
introduce typical user errors in such models. The goal is not
to cover all possible mutations but only those that reflect
typical user errors. This has the advantages of focusing the
testing activity, helping control scalability problems.
Currently, the approach considers leaf tasks only, but it can
be extended to consider tasks at other levels in the task tree.
The strategies are described in the sequel.

Sequence of tasks
Two interaction tasks, T1 and T2, defined in sequence
related by CTT operators such as >> or []>>, have to be
executed in the order they are defined. In these situations, it

is interesting to test if the execution order is indeed relevant
because, if the GUI allows it, the user may interact with it
performing those tasks in the wrong sequence. So, the
algorithm generates a mutant with those tasks in an
opposite order.
In the case of two tasks related by the operator []>>, e.g.,
T1[]>>T2, where there is passage of information from T1
to T2, the algorithm changes the order of the tasks and
deletes the pre-condition of T2 if it depends on the
information passed between them. Otherwise, it would be
impossible to generate afterwards test cases with the
execution of T2 before executing T1.
When the last task of a sequence of tasks is an application
task, the algorithm does not change its order because it will
be a task performed by the application as a result of
executing the task sequence and will be used to check if the
result obtained by executing the tasks is the one expected.

Non-mandatory order
A sequence of tasks with no mandatory order is a set of
tasks separated by operator |=|. In this case, what matters is
to test whether, in fact, tasks can be performed in any order.
So, it would be necessary to test if the result obtained by
executing T1>>T2 is the equal to the one obtained by
executing T2>>T1. Excluding application tasks, the
algorithm generates several mutants with all possible
combinations of task orders and replaces the operator |=| by
the sequence operator >>.

Optional/mandatory task
Sometimes, the users forget to execute one of the tasks
needed to achieve a goal. In a CTT model it is possible to
distinguish between optional tasks (within brackets) and
mandatory tasks (without brackets). It may be useful to test
if optional tasks are effectively optional and if the
mandatory tasks are effectively mandatory.
For a sequence of tasks T1>>[T2]>>T3 in which T2 is
optional, the algorithm generates four mutants with the
following sequence of tasks:

1. T1>>T2>>T3,
2. T1>>T3 to check if the T2 is really optional,
3. T1>>T2 to check if T3 is really mandatory,
4. T2>>T3 to check if T1 is really mandatory.

In the case of a mandatory task, mutants are generated with
the task removed. In the case of a sequence of tasks
T1>>T2[>T3 where T2 executes until T3 starts, the mutant
omitting T2 will be T1>>T3.
If the operator []>> is used between two tasks, e.g.,
T1>>T2[]>>T3, when the tool generates the mutant
T1>>T3 it deletes the pre-condition of T3 if it depends on
the information passed by T2 to T3.

Task choice
When a sequence of tasks is separated by the choice
operator [], e.g., T1[]T2[]T3, it means that the user can
choose to perform one of those tasks. For each set of tasks

separated by [] operator, the algorithm generates mutants,
keeping one of those tasks and omitting the other ones. The
result of executing the test cases generated will say if the
set of tasks are really a choice. For the sequence
T1[]T2[]T3, the algorithm generates 3 mutants: one with
task T1, one with task T2 and another with task T3.

Disabling
T1[>T2 means that task T1 is active until T2 is performed,
and that at any time during the execution of T1, T2 can be
performed. This can also lead to errors when the user
attempts to perform T1 after performing T2. Thus it
becomes necessary to test if T1 is really disabled after
performing T2. The tool generates a mutant with the
following sequence of tasks T1>>T2>>T1’, where T1’ is a
copy of the task T1 to check if the execution of T2 disables
T1.

Iterative task
A task followed by *, e.g., T*, means that T can be
executed iteratively. When an iterative task has a sequence
of subtasks ending with a task of type “Press” and all the
other tasks are interaction tasks of the type “Enter”, the
model may describe a form filling interface. A behaviour
that may be useful to test may be to check if between
following iterations, the previous inserted information is
kept or is throw way. A typical user error is to forget to fill
out a required field and fill only that field in the second
iteration assuming the all the other information is kept
filled. However, not all interfaces record information from
one to the following iteration, so, most of the times, the
user has to re-fill all fields. One way to simulate these
errors is to omit a mandatory task in the first iteration, and
perform only that task in the next iteration, thus checking if
the information was recorded between iterations.

Test case generation and execution
The tool TOM [4, 20], generates test oracles in Spec# [22]
transforming the atomic tasks of the task model in model
actions. Afterwards, these oracles are used by the Spec
Explorer tool [21] for the generation and execution of tests.
In Spec#, actions can be of several types: controllable,
probe, observable and scenario. CTT interaction tasks
correspond to controllable actions in Spec#, because they
describe user actions. CTT application tasks correspond to
probe actions in Spec# because they represent actions that
only read the system state without updating it. These tasks
allow checking if the application is in the desirable state at
a certain time.
For test case generation, the Spec Explorer tool [21] allows
the definition of the domain values for the actions’
parameters. With this information, Spec Explorer generates
a finite state machine (FSM) by exploring the Spec# model
and afterwards generates test cases according to a coverage
criterion. To execute the test cases, a mapping is needed
between actions of the model and methods of an adapter
code that will simulate those actions on the GUI under test.
After establishing this map, the tests can be executed

automatically by Spec Explorer and the GUI Mapping Tool
[15] after which a test report is generated.

CASE STUDIES
Several case studies were conducted over some existing
web applications in order to evaluate the approach. Each
case study was used to test some of the typical errors of the
user, based on the test strategies proposed. The selected
applications were:

• an online hotel reservation system (Online Vip
Hotels reservation);

• the houses’ search menu of a real estate agent
(Search houses);

• the login page of a wiki system (DokuWiki);
• a currency converter (Currency convertor); and
• unit converter (online converter).

Online Vip Hotels reservation
VIP Hotels Group owns a chain of hotels in various
regions. Through his address, www.viphotels.com, you can
access various features. The online booking functionality
allows searching available rooms in hotels of the group for
the selected dates and afterwards the booking may be
performed. Only the search functionality was tested in this
case study. Figure 2 shows the menu of online reservations.

Figure 2: Vip Hotels online reservation.

Figure 3: Task model of the Vip Hotels online reservation menu

As can be seen by examining the model in Figure 3, after
opening the Vip Hotels group page, the Hotel Reservations
menu is immediately available. The menu options can be
chosen in any order. However, the city (Cidade) must be
selected before the hotel. This happens because the list of
hotels to choose depends on the chosen city (there is a
dependency between those tasks because the first one

passes information to the second). After filling in the
requested information, it is possible to see, in a new
window, the search results (rooms available) by performing
the task “Press BookNow”. The CMTTool is used to
generate mutants according to the predefined algorithm.
One of the mutants generated for this case study will be
analyzed in the sequel.
A typical user error is to exchange the order of a sequence
of tasks. One of the mutants generated exchanged the order
of “Enter Cidade” and “Enter Hotel” tasks (Figure 4).

Figure 4: Detail of the mutated model

The TERESA tool generated the PTS and afterwards, the
TOM tool generated the Spec# model. Test cases were
generated and executed with Spec Explorer. The input
values used were:

• City (Cidade) = Lisboa;
• Hotel = Vip Inn Berna;
• Search by = Rooms;
• From = 2/09/2010;
• To = 30/09/2010.

The Vip Hotels online reservation allows choosing the
hotel first and then the city however, after selecting the
hotel and afterwards the city, the value of the hotel changes
to its default value which is “All”. Then, when performing
“Press BookNow” the results obtained are different from
the ones obtained by executing the tasks in their original
order. To avoid this kind of user error, the interface should
be made less flexible, allowing setting the value of the
Hotel only after setting the city (Cidade) value.

Search houses
The website of Agimoura (www.agimoura.com) has a set
of features to buy, sell, search houses, among others. In this
case study, only the quick search feature properties were
analyzed in greater detail. It is a simple search for which
information must be provided, such as: the type of housing,
the type of information to configure the search (e.g.,
County, Place, Price, Reference, Type, etc.) and details
about the information selected to configure the search
(Figure 5).

Figure 5: Search houses menu.

One typical error that may occur is the case where the user
forgets to perform one of the mandatory tasks, e.g., filling
in one of the search options (“SetOpcoes”) (Figure 6). To
describe this situation, the algorithm generates a mutant
with the task “Enter Info” omitted.
When executing the test cases generated by spec Explorer,
for the above mutation, it was not possible to press the
search button at the end because this button was disabled.
So, it is possible to conclude that it is really mandatory to
fill in the “Enter Info” field.

Figure 6: Task model of the Agimoura website

One interesting point to notice here is that, when testing
GUIs with mutated models, such as this one, a failing test
does not necessarily indicates a problem. It might instead
be showing that the user interface prevents erroneous user
actions from occurring.

DukuWiki
This case study aimed to test the Login/Password dialog
(Figure 7) of the wiki-type DokuWiki.

Figure 7: Login of the DokuWiki

As can be seen in the task model of Figure 8, there is an
iterative task in the model: “Login”. The goal was to test if,
in following iterations, the inserted information is saved.
To test this situation, the algorithm generates several
mutated models, e.g., Figure 9.
As can be seen in the model of Figure 9, the task "Enter
Password" was omitted from the first iteration of the cycle
and executed in the second iteration, in order to check if the
login information is kept between successive iterations. To
perform this check it was necessary to create two types of
probe actions. The first one (“Display LoginResults”)
checks the failure of the sign-in process after the first
iteration. This should happen because the password field is
not filled. The second one (“Display LoginResults_Copy”)
verifies the success of the sign-in process at the end of the

second iteration, indicating whether or not there was
recording of information. After executing the generated test
cases, it was possible to conclude that the login information
is recorded between successive iterations.

Figure 8: Task model of the login

Figure 9: Mutated task model: iterations

Currency converter
The XE Converter is a universal currency converter to
convert an amount from one currency to another. This
application can be accessed at the following URL:
www.xe.com/ucc/. Figure 10 shows the menu of this
application.

Figure 10: XE converter

As can be seen in the model in Figure 11, after accessing
the converter, it is possible to select the conversion options
you want (task “SetOptions”). The sub-tasks within
“SetOptions” can be performed in any order until “Press
Go!” is performed. Thereafter, the previous tasks are no
longer active, they are disabled ([> operator), and the result
of the conversion is displayed. The algorithm generates
several mutants of the model.

Figure 11: Task model of the XE converter

Figure 12: Mutated task model: disabling tasks

The one that checks if the tasks are really disabled is shown
in Figure 12. As can be seen in the Figure 12, the task
“SetOptions” is repeated (with the name
“SetOptions_Copy”) after the “Press Go!” task. The input
values used to execute the test cases were:

• amount: 1;
• from this currency: Euro - EUR;
• to this currency: United States Dollars - USD.

During the execution of the test cases, it was possible to
verify that the tasks within “SetOptions_Copy” were not
available.

Online converter
The online converter (see the form depicted in Figure 13)
(www.peters1.dk/webtools/conversion.php?sprog=en) was
used to test the approach regarding mistakes, i.e., the use of
wrong plans to achieve a goal. Two different plans were
built: Figure 14 and Figure 15.
The plan described by Figure 14 models entering several
digits at the input value field (“Enter Digit”), and at the end
“Press Submit” to see the conversion result.
The plan described in Figure 15 models entering one digit
at a time, and seeing the result after each input digit without
the need to perform a specific action for that. That is, it
models a user that is assuming the system will react to each
digit press by updating the result values.

Figure 13: Online converter

Both plans were tested against the online converter
application. Results showed that Plan B is not supported by
the software application. This happens because the result
values are updated only after the Calculate button is
pressed, and not after entering each input digit as was
expected.

Figure 14: Plan A to convert units

Figure 15: Plan B to convert units

CONCLUSIONS AND FUTURE WORK
Model-based testing automates the generation and
execution of test cases from a model of the system under
test. However, the need to build detailed models of the
systems under test creates a barrier for the adoption of this
testing approach. Previous work has looked at the
possibility of using task models in the model based testing
of GUIs [4]. Task models, however, describe the normative
operation of a system only. They do not capture the
common errors that users might make, or alternatives to the

expected normative usage they might consider. This was
initially addressed by manually introducing changes in the
task models (i.e., creating mutations of the task models).
This paper builds on this previous work by developing an
automated approach to the generation of these mutations.
Using a number of cases studies, the paper shows how it is
possible to systematically introduce changes in a task
model in order to generate behaviours corresponding to
errors users typically make. This mutation process is
supported by the CMTTool, which was built specifically to
the effect. Together with the TOM tool, it supports a
process of model-based testing of GUIs from task models,
where the test oracles focus on expected user behaviour,
both correct (via the original task model), and erroneous
(via the task’s mutations). Hence, together the two tools
increase the degree of coverage of the more likely user
behaviours of the model based testing approach.
The user interfaces used in the case studies were small and
targeted at experimenting with different types of tasks. As
such, they did not bring into light scalability problems.
Investigating scalability is an area for future work.
Nevertheless, for large models where this problem may be
visible, the approach can always be applied to sub-models
of the original one.
The CTT language is currently a popular task modelling
language due to its tool support and precise semantics. As
such, it should present a low barrier for the use of the
approach. One drawback of the current status of the
approach however, is the number of different tools that
must be brought together for its application. To solve this,
we will have to bring all the tools together in a single
deliverable. Now that all the pieces are in place, the process
should be made easier.
The GUI Mapping tool, in particular, uses proprietary
software libraries and cannot be made available. We are
working on an alternative tool based on an open library.
While we believe that the mutations being used enable us to
capture relevant user interface problems, we do not yet
have the data to back this claim. To this end, we plan to
carry out a study comparing the results of applying the
approach against problems actually felt by users. This will
enable us to assess the quality of the mutations by
determining the degree of coverage achieved. Once user
data is available, the fact that the testing approach is
automated means we will be able to experiment with
different mutations to determine the best set of mutations,
and further explore scalability issues.
At a more technical level, an area where work is being
carried out is in automating the generation of the input
values to be used during the testing process. To that end,
we are studying the possibility of integrating formal models
of the application into the task model, in order to be able to
rigorously analyse the input data types, partitioning them
into equivalence classes.

ACKNOWLEDGMENTS
The authors wish to thank José Luís Silva, the author of the
TOM tool, for making the tool available, and for his
support with using it.
José Campos acknowledges support from the CROSS
project (An Infrastructure for Certification and Re-
engineering of Open Source Software), funded by the
ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT -
Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project
FCOMP-01-0124-FEDER-010049.

REFERENCES
1. ISO 9241-11. Ergonomic requirements for office work

with visual display terminals (VDTs) -- Part 11:
Guidance on usability. First Edition ed. 1998:
International Organization for Standardization.

2. Ivory, M.Y. and M.A. Hearst, The State of the Art in
Automating Usability Evaluation of User Interfaces.
ACM Computing Surveys, 2001. 33(4): p. 470-516.

3. Paiva, A.C.R., Automated Specification-Based Testing
of Graphical User Interfaces, in Department of
Electrical and Computer Engineering. 2007,
Engineering Faculty of Porto University (Ph.D thesis):
Porto. p. 228.

4. Silva, J.L., J.C. Campos, and A.C.R. Paiva. Model-
based user interface testing with Spec Explorer and
ConcurTaskTrees. in 2nd International Workshop on
Formal Methods for Interactive Systems. 2007.
Lancaster, UK.

5. Paternò, F., Model-Based Design and Evaluation of
Interactive Applications. 1999, London, UK: Springer-
Verlag.

6. Mugridge, R. and W. Cunningham, Fit for Developing
Software: Framework for Integrated Tests. 1st Edition
ed. 2005: Prentice Hall. 384.

7. Card, S.K., T.P. Moran, and A. Newell, The Psychology
of Human-Computer Interaction 1986: Lawrence
Erlbaum Associates. 469.

8. Hamilton, F., Predictive evaluation using task
knowledge structures, in Conference companion on
Human factors in computing systems: common ground.
1996, ACM: Vancouver, British Columbia, Canada. p.
261-262.

9. Mori, G., F. Paternò, and C. Santoro, CTTE: Support
for Developing and Analyzing Task Models for
Interactive System Design. IEEE Transactions on
Software Engineering, 2002. 28(9).

10. Bolognesi, T. and E. Brinksma, Introduction to the ISO
specification language LOTOS. Computer Networks

and ISDN Systems - Special Issue: Protocol
Specification and Testing, 1987. 14(1).

11. Hartman, A. and K. Nagin. The AGEDIS Tools for
Model Based Testing. in ISSTA'04. 2004. Boston,
Massachusetts, USA: Springer.

12. Jacky, J., et al., Model-Based Software Testing and
Analysis with C#. 2007: Cambridge University Press.
366.

13. Brooks, P.A. and A.M. Memon, Automated GUI testing
guided by usage profiles, in Proceedings of the 22nd
IEEE international conference on Automated software
engineering (ASE'07). 2007, IEEE CS: Washington,
DC, USA. p. 333-342.

14. Memon, A., I. Banerjee, and A. Nagarajan. GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. in Proceedings of the 10th
Working Conference on Reverse Engineering
(WCRE'03). 2003. Washington, DC, USA: IEEE CS.

15. Paiva, A.C.R., et al. A Model-to-implementation
Mapping Tool for Automated Model-based GUI
Testing. in Proceedings of the 7th International
Conferece on Formal Engineering Methods
(ICFEM'05). 2005.

16. Moreira, R.M.L.M. and A.C.R. Paiva, Visual Abstract
Notation for GUI Modelling and Testing: VAN4GUIM,
in Proceedings of the 3rd International Conference on
Software and Data Technologies (ICSOFT'08), J.

Cordeiro, et al., Editors. 2008, INSTICC Press: Gaia,
Portugal.

17. Cunha, M., et al., PETTool: A Pattern-Based GUI
Testing Tool, in 2nd International Conference on
Software Technology and Engineering (ICSTE'10).
2010. p. 202-206.

18. Reason, J., Human Error. 1990: Cambridge University
Press.

19. Paternò F. Santoro C. Mäntyjärvi J., Mori G., Sansone
S., Authoring pervasive multimodal user interfaces,
International Journal of Web Engineering and
Technology, vol. 4 pp. 235 - 261. Inderscience
Enterprises Ltd, 2008.

20. Campos, J.C., J.L. Silva, and A.C.R. Paiva, Task
models in the model-based testing of user interfaces.
Technical Report, 2009, Universidade do Minho.

21. Veans, M., et al., Model-based testing of object-oriented
reactive systems with Spec Explorer, in Formal
Methods and testing: an outcome of the FORTEST
network. 2008, Springer-Verlag. p. 39-76.

22. Barnett, M., K.R.M. Leino, and W. Schulte. The Spec#
Programming System: An Overview. in CASSIS'04 -
International workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart devices. 2004.
Marseille.

