
Integrating Automated Verification into Interactive Systems Development�

José C. Camposy

HCI Group, Department of Computer Science, University of York, York, UK
Jose.Campos@cs.york.ac.uk

Abstract

Our field of research is the application of automated rea-
soning techniques during interactor based interactive sys-
tems development. The aim being to ensure that the de-
veloped systems embody appropriate properties and princi-
ples. In this report we identify some of the pitfalls of current
approaches and propose a new way to integrate verification
into interactive systems development.

1. Introduction

The widespread use of computers puts increasing de-
mands on user interfaces. On the one hand, systems must
be intuitive and easy to use, on the other hand they must
ensure safety and avoid risk. Due to their increasing com-
plexity, reasoning about systems behaviour has become in-
creasingly hard. This raises the question of how to ensure
quality during development.

The use of formal methods has long since been proposed
as a solution to this problem. The advantages are two-fold:
they enable better design understanding and communica-
tion; and mathematical reasoning can be used to validate the
design. This last point is especially useful when we think of
ensuring system quality, as it allows us to assess the system
from early stages in the development process.

Because reasoning about specifications of complex sys-
tems will be a complex and error prone exercise in itself,
ways of automating the reasoning process have been sought.
Two well established approaches to automated reasoning
are model checking [7] and theorem proving. While these
techniques have been used mainly in the field of hardware
verification [8], their application to the verification of reac-
tive systems in general is also being studied [18].

�Published In 13th IEEE International Conference: Automated Soft-
ware Engineering — Doctoral Symposium Proceedings, pages 13–15. Oc-
tober 1998.

yJosé Campos is supported by Fundação para a Ciência e a Tecnologia
(FCT, Portugal) under grant PRAXIS XXI/BD/9562/96.

Despite being a particular case of reactive systems, in-
teractive systems have specific concepts and concerns. So,
novel approaches have been sought. In this context, the no-
tion of Interactor [12, 20] has been introduced as a way to
structure specifications of interactive systems.

Our field of research is the application of automated rea-
soning techniques during interactor based interactive sys-
tems development. The aim being to ensure that the devel-
oped systems embody appropriate properties and principles.

2. Review

Four major approaches to the formal (automated) veri-
fication of interactive systems have been identified so far
[4, 6]. Three use model checking: Abowd, Wang & Monk
[1] use SMV [19], Paternó [20] uses the Lite tool-set [17],
d’Ausbourg, Durrieu & Roche [9] use a model checking
related technique based on Lustre; and one uses theorem
proving: Bumbulis [3] uses the HOL theorem prover.

In order to better compare these approaches we have de-
fined a framework with which to compare them [6]. It iden-
tifies three entities involved in interaction: User, User In-
terface, and an Underlying System. Interaction proceeds
through interaction mechanisms: Events and Status Phe-
nomena are atomic, Task, and Mode are used to structure
the user interface. The framework identifies also three ba-
sic types of properties to be verified: Visibility, Reachabil-
ity, and Reliability. Table 1 summarises the results of the
review in terms of what each approach addresses (X), par-
tially addresses (�), or does not address (�).

The conclusions drawn from the review are two-fold. At
the technological level, it was seen that both model check-
ing and theorem proving have difficulties when dealing with
the added complexity introduced by interactive systems.

At the methodological level, there is a need to further in-
vestigate what should/can be proved of interactive systems
using automated reasoning tools. Previous approaches have
tried to map what could be expressed in traditional verifi-
cation tools into the interactive systems space. In order to
make the most of automated reasoning we must try to do the
opposite: identify what properties are interesting and map

Table 1. Summary of the comparison
SMV Lotos Lustre HOL

Entities Users � � � �

User Interf. � X X X

Underl. Sys. � � � �

Inter. Events � X X �

Mech. Stat. phenom. � � X �

Modality � X � �

Task � � � �

Mode � � � �

Prop. Visibility � X X �

Reachability X X X �

Reliability X � � �

them into automated verification tools.
If we combine the above two concerns, we can identify

a third issue that needs addressing: when should we do the
proofs? — i.e., at what level of abstraction, and at what
stage of development should we be working? Tradition-
ally, verification has been used to assess design against ab-
solute measures of quality. Regarding HCI, matters are not
so clear cut. Furthermore, if we are using principled design,
it would be useful to test the design decisions against the
appropriate principles as soon as possible.

The challenge, then, is trying to make the best of the
available verification technology by means of defining an
appropriate methodological framework which will allow us
to identify how and when verification should be applied.

3. The Thesis

In view of the complexity of the systems, and of the lim-
itations of the available technology, the best approach to
achieve the goals set forth above is to allow for a flexible
scheme of verification. With this in mind we established
the following objectives:

� non commitment to a specific technique — we want to
be able to use model checking and theorem proving as
appropriate, and not to be tied to a particular verifica-
tion strategy.

� use of partial models — models that try to address
all relevant aspects of an interactive system are too
complex; instead, we want to use partial models, each
model focusing on different design aspects (cf. [13]).

These two points, together with the observation that
identifying (let alone proving) interesting properties in “fin-
ished” models becomes difficult, lead us to the realization
that instead of being used as a post facto check on the qual-
ity of the specification, verification should be used to inform
design decisions during development [5]. This can be done

by using partial models that highlight the design features
under consideration, and allows us to use the most appro-
priate verification technique for each model.

All the above leads to the definition of four lines of work:

� verification as a support to design — verification
should be used to inform design decisions rather than
to check the final design;

� understanding properties — we need to establish a
framework that enables us to reason about how to go
from design principles to verifiable properties;

� model checking for interactor specifications — we
need to determine how model checking can be applied
to interactor based specifications;

� theorem proving for interactor specifications — simi-
larly, we need to determine how theorem proving can
be applied to interactor based specifications;

and the definition of the central proposition of the thesis as:
Formal verification techniques (automated reasoning tools
in particular) can be used to inform design decisions during
interactive systems development.

A novel approach to the integration of automated veri-
fication into interactive systems development will be pro-
posed, and it will be shown how model checking and theo-
rem proving can be used in the context of the approach.

4. Progress

In this section, we briefly describe the work done so far.

4.1. The role of formal verification

We propose that verification should be used to inform
design choices during development, and not only as a check
on the correctness of the specified system. The complete
rationale behind this proposal is presented in [5]. Some of
the points that are made are: that the role properties play
depends not only on the system under consideration, but
also on the particular specification that is adopted; that it
is difficult to base design decisions on prescriptive theories
alone, so the possibility of early assessment of design de-
cisions would be useful; that seeing the verification step as
a final step in the development process, and trying to use
off the shelf properties, might lead us to end up looking at
properties of the specification instead of the system; and
finally, that the particular specification style adopted influ-
ences which verification tools can be used.

The use of verification to inform design can be achieved
by using, not a monolithic specification which tries to en-
compass all of the system, but a set of models each focusing
on particular features of the system. This type of approach

has a number of benefits. Namely: we use verification to
validate the choices that are made in relation to what is im-
portant of the system, not its specification; we are able to
apply the most appropriate verification technique in each
case; conversely, we can develop each model in the most
suitable way, regarding the tool that will be used; also, us-
ing models that focus on properties means we will be able
to verify properties that otherwise would be too difficult to
check; finally, we might be able to reuse the proofs when
thinking of related properties of different systems.

4.2. Using model checking

We are exploring the use of model checking in the verifi-
cation of interactor based specifications. This is being done
at two levels: using a traditional model checker (SMV [19]),
and using the �-calculus model checker in PVS.

4.2.1 SMV

A compiler has been developed (see [5]) that enables us to
analyse Interactors specifications in SMV. For an introduc-
tion to Interactors see [12]. In short, interactors are objects
which allow their state to be perceived through some pre-
sentation (cf. visible clause below). Interactors provide a
framework for specification and do not prescribe a particu-
lar notation.

In the present case, we are using Modal Action Logic
(MAL) [21] to specify interactors behaviour. In the input
language accepted by the compiler, an interactor describing
whether a window is mapped on the screen looks like this:

interactor window
attributes

mapped � boolean
visible

mapped

actions
map� unmap

axioms
1. ��� mapped

2. � mapped� �map�next�mapped�
3. mapped� �unmap�� next�mapped�

Besides the clauses shown in the example, the interactor
notation allows for three additional clauses: importing (al-
lows inheritance), fairness (allows the definition of a fair-
ness expression to be used by SMV), and define (enable us
to give names to expressions as can be done in SMV). Mul-
tiple interactor specifications can be written by organising
interactors in a hierarchy. In order to translate these hierar-
chies of interactors into SMV, we use the notion of module.
So, each interactor will be a module in SMV.

To test properties of the specification, a further clause
was introduced in the language: test. It is used to specify a
CTL formula whose validity is to be verified by SMV.

In [5] it is shown how the compiler and SMV can be used
to reason about different design possibilities in the develop-
ment of an e-mail client.

4.2.2 PVS

PVS comes with a theory that defines the CTL operators in
terms of the �-calculus. Alternatively we can define tempo-
ral operators for other logics. In [6, Appendix C] we have
defined the operators for ACTL.

In order to use the model checker, the specification needs
to be structured as a predicate over pairs of states, where
the state type must be finite. We can then use the temporal
operators to write putative theorems. PVS performs BDD
simplification over the finite-state machine defined by the
predicate over pairs of states, rewrites the temporal opera-
tors in terms of �-calculus, and runs the resulting state ma-
chine and �-calculus predicate in the model checker.

The present approach to model interactors and properties
in this way is still tentative. We plan to expand on it in
order to explore how the combination of theorem proving
and model checking can be used to enhance the analytic
power of both techniques.

4.3. Using theorem proving

While theorem provers do not have facilities to perform
temporal reasoning, they are better than model checkers
when it comes to reasoning over more information oriented
features of systems. At the moment, three possible uses for
theorem proving are envisaged: the validation of the ade-
quacy of perceptual operators as suggested in [11] (see be-
low), using it as an additional layer over model checking,
and embedding a temporal logic in PVS (c.f. [16]).

4.3.1 Perceptual operators

The type of analysis described in [11] has to do mainly with
symbolic manipulation of expressions in order to prove their
equality. The basic idea is that properties that are proved of
an abstract specification must also be shown to held at the
level of the concrete presentation of the system. To do this
we represent both a model of the abstract specification of
the system and a model of the concrete presentation that is
proposed as PVS theories, and then use PVS to determine
if predicates over the abstract model are equivalent to cor-
responding predicates over the presentation model.

In [10] we apply this line of reasoning to the analysis
of an aircraft air speed indicator, regarding its fitness to as-
sist the pilot in the task of maintaining the correct aircraft
configuration during landing (cf. [15]). Three PVS theo-
ries were developed. One to specify the logical model of
the air speed indicator as well as the logical operators that
support the task; another to specify the concrete circular air

speed indicator, with its needle and speed bugs (which in-
dicate at which air speeds the aircraft configuration should
be changed), and the mapping from the logical to the per-
ceptual level; and finally a third theory which introduces the
conjectures to be verified. As an example we present here
one of the conjectures which is analysed in [10]:

configuration change task � CONJECTURE
configChangeCheck�abs asi� �
asiConfigCheck���abs asi��

What this conjecture expresses is that checking for the
need to change the aircraft configuration should yield the
same result regardless of the check being done at the log-
ical level (configChangeCheck) or at the perceptual level
(asiConfigCheck). � is the mapping from the logical to the
perceptual level.

In [10] we show how performing this type of consistency
check improves our understanding of the specification, and
allows us to identify assumptions about the system which
are embedded in the representation but not made explicitly
represented anywhere. As an example, during the proof of
the conjecture above, we were led to realize how, at the pre-
sentation level, the speed bugs implicitly acquire the func-
tion of indicating the aircraft current configuration.

5. Conclusion

We have motivated the field of formal (automated) ver-
ification of interactive systems, and identified the main ap-
proaches to the area (see [4] for a more detailed review).

We have identified some of the pitfalls of the current ap-
proaches and proposed a new way to integrate verification
into interactive systems development.

We have also briefly described the work done so far (see
also [6, 5, 10] for more details).

References

[1] Gregory D. Abowd, Hung-Ming Wang, and Andrew F.
Monk. A formal technique for automated dialogue develop-
ment. In Proceedings of the First Symposium of Designing
Interactive Systems - DIS’95, pages 219–226. ACM Press,
August 1995.

[2] F. Bodart and J. Vanderdonckt, editors. Design, Specification
and Verification of Interactive Systems ’96, Springer Com-
puter Science. Springer-Verlag/Vien, June 1996.

[3] Peter Bumbulis. Combining Formal Techniques and Proto-
typing in User Interface Construction and Verification. PhD
thesis, University of Waterloo, 1996.

[4] José C. Campos and Michael D. Harrison. Formal verifica-
tion of interactive systems: A review. In Harrison and Torres
[14], pages 109–124.

[5] José C. Campos and Michael D. Harrison. The role of ver-
ification in interactive systems design. In Design, Specifi-
cation and Verification of Interactive Systems ’98, Springer
Computer Science, pages 155–170. Eurographics, Springer-
Verlag/Wien, 1998.

[6] José Creissac Campos. Formal verification of interactive sys-
tens. 1st year qualifying dissertation, Department of Com-
puter Science, University of York, June 1997.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

[8] Edmund M. Clarke and Jeannette M. Wing. Formal meth-
ods: state of the art and future directions. ACM Computing
Surveys, 28(4):626–643, December 1996.

[9] Bruno d’Ausbourg, Guy Durrieu, and Pierre Roche. Deriv-
ing a formal model of an interactive system from its UIL
description in order to verify and to test its behaviour. In
Bodart and Vanderdonckt [2], pages 105–122.

[10] G. Doherty, J. C. Campos, and M. D. Harrison. Represen-
tational reasoning and verification. In Proceedings of the
BCS-FACS Workshop: Formal Aspects of the Human Com-
puter Interaction, pages 193–212. Computing Research Cen-
tre, Sheffield Hallam University, September 1998.

[11] Gavin Doherty and Michael D. Harrison. A representational
approach to the specification of presentations. In Harrison
and Torres [14], pages 273–290.

[12] David J. Duke and Michael D. Harrison. Abstract interaction
objects. Computer Graphics Forum, 12(3):25–36, 1993.

[13] Bob Fields, Nick Merriam, and Andy Dearden. DMVIS:
Design, modelling and validation of interactive systems. In
Harrison and Torres [14], pages 29–44.

[14] M. D. Harrison and J. C. Torres, editors. Design, Specifi-
cation and Verification of Interactive Systems ’97, Springer
Computer Science. Springer-Verlag/Vien, June 1997.

[15] E. Hutchins. How a cockpit remembers its speed. Cognitive
Science, 19:265–288, 1995.

[16] Pertti Kellomäki. Mechanical Verification of Invariant Prop-
erties of DisCo Specifications. PhD thesis, Tampere Univer-
sity of Technology, 1997.

[17] José A. Mañas et al. Lite User Manual. LOTOSPHERE
consortium, March 1992. Ref. Lo/WP2/N0034/V08.

[18] Zohar Manna and Amir Pnueli. Temporal Verification of Re-
active Systems: Safety. Springer, 1995.

[19] K. L. McMillan. The SMV system. Carnegie-Mellon Univer-
sity, draft edition, February 1992.

[20] Fabio Paternó. A Method for Formal Specification and Ver-
ification of Interactive Systems. PhD thesis, Department of
Computer Science, University of York, 1995.

[21] Mark Ryan, José Fiadeiro, and Tom Maibaum. Sharing ac-
tions and attributes in modal action logic. In T. Ito and A. R.
Meyer, editors, Theoretical Aspects of Computer Software,
volume 526 of Lecture Notes in Computer Science, pages
569–593. Springer-Verlag, 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

