
Templates as heuristics for proving properties of medical
devices

José Creissac Campos
Dep. Informática /

Universidade do Minho &
HASLab / INESC TEC

Braga, Portugal
jose.campos@di.uminho.pt

Paul Curzon and Paolo
Masci

EECS, Queen Mary University
of London

Mile End, London E1 4NS,
UK

p.curzon@qmul.ac.uk,
p.m.masci@qmul.ac.uk

Michael Harrison
School of Computing Science,

Newcastle University,
Newcastle-upon-Tyne, UK
Universidade do Minho &

HASLab/INESC TEC, Queen
Mary University London

michael.harrison@ncl.ac.uk

ABSTRACT
This paper briefly describes how property templates have
been used to analyse and explore the interactive behaviour
of a specific medical device (an IV infusion pump). It is pro-
posed that interactive devices that satisfy properties based on
the templates are easier and safer to use. The property tem-
plates act as heuristics for the development of suitable prop-
erties tailored to the details of the particular device. A mathe-
matically based approach is used to prove that a specification
of the device satisfies the properties.

Author Keywords
formal methods, interactive systems, usability heuristics

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
As tools for the mathematically based specification and anal-
ysis of software systems become more robust [8], the poten-
tial for their use in the development and safety analysis of
critical systems is increasing. This short paper illustrates how
a theorem proving approach has been used to analyse safety
related properties of an interactive device. The broader focus
of our analysis has been intravenous infusion and haemodial-
ysis. These devices are susceptible to (sometimes fatal) fail-
ure through use error. The US Food and Drugs Administra-
tion (FDA) are aware of these safety concerns and have been
exploring the role of safety requirements (some of which are
user-centred) to facilitate safety analysis [7, 1]. These safety
requirements are designed to mitigate potential consequences
of hazards, reducing risks in the design of the devices. We
propose a set of generic property templates that can be used

to generate appropriate safety requirements for interactive de-
vices. The templates are illustrated using the design of an
existing widely used IV infusion pump.

THE MODEL
The analysis begins with a specification of interactive aspects
of the behaviour of the device. This has been done using a
particular theorem proving system (PVS [6]). The specifi-
cation of the device under analysis is described in terms of
states and actions over states. To capture the shape of the
specification we take a more abstract and generic version of
it. States are described by attributes, for example basic at-
tributes such as pump variables or perceivable attributes such
as the information displayed in the top line of the display.
Actions are defined that transform states. Actions can change
pump variables, they can change the mode of the device, they
can change the display. Actions can be user actions or au-
tonomous actions such as describe the process of the pump.

Use errors arise because the effect of an action is not visi-
ble, or more importantly not noticed. There are several rea-
sons why this might happen — the behaviour of the action is
unexpected, either because the device is in a different mode
(it is changing the volume to be infused rather than the in-
fusion rate), or because an action behaves unexpectedly in a
given circumstance, for example a key that reverses an effect
(a down key when entering a number, reverses an up key in
almost all cases but not all).

Some elements of the state of the interactive system are per-
ceivable (for example, visible or audible). Autonomous and
user actions transform the state [4]. Furthermore, not all ac-
tions are permitted all of the time and the behaviour of actions
can depend on state attributes called modes. Modes appear
when there is a need to multiplex several possible user com-
mands into a single physical interface element. They may
lead to confusion for users about what the effect of an action
will be.

A basic model used to represent interactive systems can there-
fore be described as a set of actions a : A = S 7−→ S where
S is a set of states. A state is itself a set of attributes. Ac-
tions are partial functions. They are made total by includ-
ing a value “undefined” (⊥). A function per takes an action

1



and determines whether it is defined for a value in its domain
per : A→ (S→ T) such that per(a)(s) = true if a(s) 6= ⊥.

Some elements of the state are part of the interface. Attributes
of the state that are perceivable are defined by p : S → P
(where P is a set of perceivable attributes) and a relation
VIS = S × P determines whether there is a perceivable at-
tribute related to an attribute in the state S. The perceivable
attributes will be identified and selected in formulating the
property.

Finally there are modes (M) associated with the state of the
system m : S→ M.

THE PROPERTIES TO BE VERIFIED OF THE MODEL
The properties that are used in the analysis have a common
form. They are generally concerned with the effect or other-
wise of a change in state attributes. Properties either specify
something about any state transition that might take place,
for example visibility specifies that a state change is visible:
filter(s1) 6= filter(s2) ⇒ p(filter(s1)) 6= p(filter(s2))
where s1 and s2 are two consecutive states in the model,
filter extracts particular attributes and p selects a set of per-
ceivable attributes relevant to the change. Often a property of
this kind is constrained by a predicate guard. guard restricts
the states to those that are considered relevant to the particular
property under consideration. For example, only states that
are in a particular mode will lead to the property being true.
Alternatively a property focuses on the behaviour of a par-
ticular action or set of actions. For example given that some
pre-condition guard(s) is true and the action a is permitted,
(per(a)(s) ∧ guard(s))⇒ (filter(a(s)) 6= filter(s)).

The job of the analyst is to express these properties, choosing
relevant filters and guards. These choices will lead to an un-
derstanding of where the interactive system might cause user
confusion.

THE EXAMPLE
The chosen device (the Alaris GP infusion pump [3] — see
Figure 1) has characteristics that are common to many de-
vices that control processes. The clinician user sets infusion
pump parameters and monitors the infusion process using the
device. Most infusion pumps have three basic states: infus-
ing, holding and off. In the infusing state the volume to be
infused (vtbi) is pumped into the patient intravenously at a
pre-determined infusion rate. While in the infusing state the
vtbi can be exhausted, in which case the pump continues in
KVO (Keep Vein Open) mode and alarms. When the pump
is in holding state, values and settings can be changed using
a combination of function keys and chevron buttons (for the
device layout, see Figure 1). A subset of the features can
also be changed when infusing. Chevron buttons are used to
increase or decrease entered numbers incrementally. Depend-
ing on current mode they can be used to change infusion rate,
volume to be infused and time, or alternatively allow the user
to point at options for selection in a menu, for example in bag
mode and in query mode. Bag mode allows the user to se-
lect from a set of infusion bag options, thereby setting vtbi
to a predetermined value. Query mode, which is invoked by
pressing the query button, generates a menu of set-up options.

Figure 1. The pump user interface and actions

These options depend on how the device is configured by the
manufacturer, and include the means of locking the infusion
rate, or disabling the locking of it, or setting vtbi and time
rather than vtbi and infusion rate. There is also the possibility
of changing the units of volume and infusion rate. The device
allows movement between display modes via three function
keys (key, key and key). Each function key has a display
associated with it, indicating its present function.

THE PROPERTY TEMPLATES
The analysis approach uses templates to generate properties
that are tailored to the device. As will be seen through ex-
ample, expanding and tailoring the templates leads to insight
about the device design as well as producing properties that
will, if true of the design, lead to an interface that is more
predictable and easy to use. The templates, to be described in
more detail (derived from [2]) are: completeness, feedback,
consistency, visibility, reversibility and universality. Informal
descriptions of the heuristics, along with descriptions in the
model, are described below. The use of one of the templates
will be illustrated using the infusion pump example.

Completeness
This template is used to express that it is possible to reach any
other state (or subset of states, for example mode) in one (or
a few) steps. For example, being able to reach “home” from
anywhere in one step is a completeness property.

The property template is expressed as always being possi-
ble to take action (a user action) from any state that satis-
fies a predicate guard : S → T to another class of states
determined by a predicate goal : S → T . The guard is
introduced to make it possible to exclude states that may
not be relevant. The property completeness is defined as:
∀ s ∈ S : guard(s) ∧∼ goal(s)⇒ ∃ a ∈ A : goal(a(s)).

Two modes are relevant in the case of the Alaris: paused
and infusing where the chevron keys can be used to adjust
the infusion rate, unless the infusion rate has previously been
locked by the user. These are the normal default operating
modes for the device.

2



Feedback
Feedback properties require that a change in the state (usually
specific attributes of the state rather than the whole state) is
visible or alternatively that an action always has an effect that
is visible. The first version of the property is defined in terms
of state changes where states satisfy a particular constraint
guard and the attributes that provide the focus for a particu-
lar instance of the property are specified by filter. The pred-
icates and functions, as indicated in the example developed
later, are instantiated with the details of the actual specifica-
tion.

The formulations of the two properties are defined below.
Note that there are two formulations of state feedback that
depend on how the specification is structured (for example an
attribute may simply be marked as visible in the specification
or there may separately specified “perceivable” attributes).

state feedback (version 1) (guard(s1) ∧ guard(s2) ∧
(filter(s1) 6= filter(s2))) ⇒ (p(filter(s1)) 6=
p(filter(s2)))

state feedback (version 2) (guard(s1) ∧ guard(s2) ∧
filter(s1) 6= filter(s2)) ⇒ (V IS(filter(s1)) ∧
V IS(filter(s1)))

action version a : S → S is such that for some s ∈ S such
that per(a)(s) and guard(s) then if, for some filtering func-
tion, filter(s) 6= filter(a(s)) then V IS(filter(s)) ∧
V IS(filter(a(s))) and p(filter(s)) 6= p(filter(a(s)))

These properties are usually strengthened or weakened to en-
able proof as appropriate to context and safety requirements.
Feedback properties for the Alaris device include:

• any action other than a chevron key changes the mode, and
the change of mode is visible

• any chevron key always changes either a pump variable or
cursor position in the menu, depending on the mode

• if a pump variable is changed then that change is visible
(actually this property is more limited because the relevant
variable in some cases is only visible after the change)

• if the mode changes then the mode is visible.

Consistency
Completeness and feedback properties describe consistent
characteristics of the device. Further examples of consis-
tency can be described of families of actions: a ∈ Ac where
Ac ⊆ ℘(S → S) and per(a)(s) for some s ∈ S then
consistent(a(s)) = consistent(s) where consistent is a
projection on S. The general characteristic of these prop-
erties is that an action (or group of actions) has similar ef-
fect. Examples include properties of actions that they al-
ways change mode, a ∈ S → S has the property that if for
some guard : S → T such that guard(s) and per(a)(s) then
m(a(s)) 6= m(s). Alternatively a group of actions may have
the common property that they never change mode: a ∈ S→
S is mode invariant consistent if for some guard : S → T
such that guard(s) and per(a)(s) then m(a(s)) = m(s)

These more specific mode related properties are also relevant
to those basic attributes that specify the underlying process
of the system that lies behind the interface (in the example,
the infusion pump): if ba extracts the “basic attributes” of the
device ba : S→ B if s ∈ S such that guard(s), then for some
action a such that per(a)(s)⇒ ba(s) = ba(a(s))

Examples of these kinds of consistency in the Alaris are:

1. actions designated as function keys always change the en-
try mode

2. a chevron key will always change the pump variable in-
dicated by the entry mode if the entry mode designates a
pump variable (note that in some modes chevron keys are
used to navigate the cursor)

3. when a function key is associated with a soft display of ok
then the value of the relevant pump variable is changed to
the value set within the entry mode

4. when a function key shows a soft display of quit then the
value set in the mode is discarded and the pump variable
reverts to the value it had when it entered the mode.

Goal reversibility
An action can always be reversed. An action a is reversible if
given a guard guard : S → T , and for any filter : S → FS
which extracts a set of focus attributes of the state, for any
s ∈ S : guard(s) there is a reverse action b : S→ S such that
filter(a(b(s)) = filter(s)

Visibility
For each s ∈ B there corresponds a pa ∈ P such that
VIS(s, pa). These properties specify an invariant relation be-
tween state attributes and display attributes. Examples of
these properties are: the current entry mode is always unam-
biguously displayed; function key displays always appear the
same in each entry mode; when entry of a particular device
variable is ready then the value of that variable is visible.

Universality
Properties that specify an invariant relation between attributes
of the state: for for example in a particular mode, the function
keys will always show the same displays.

DEVELOPING A PROPERTY FOR THE ALARIS
A consistency property for the Alaris key action, when the
function display for that key is “ok” is that it always reaches
a state in which the top line of the display shows “holding”,
unless the infusion rate is 0. When the rate is 0 the top line
shows “set rate”. In terms of the model the goal of the pro-
posed property is that

goal_ok(st) =
(device(st)‘infusionrate=0 &
topline(st) = setrate) OR
(device(st)‘infusionrate \=0 &
topline(st) = holding)

The guard is

3



preguard_ok(st) =
(fndisp1(st) = fok) &
NOT device(st)‘infusing

This specifies that associated with key there is a function
key display which shows “ok”. It also specifies that the device
must be paused for the property to be true. The property to be
proved is that:

okgoal_consistent(st: alaris) =
(pre_ok(st) &

preguard_ok(st)) =>
goal_ok(st)

This property is proved using structural induction over all
the possible actions permitted by the device (as specified by
alaris transitions(pre,post)):

okgoal_consistent_thm: THEOREM
FORALL (pre, post: alaris):

(init?(pre) =>
okgoal_consistent(pre)) &

((alaris_transitions(pre,post) &
okgoal_consistent(pre))

=> okgoal_consistent(post))

Attempting to prove the theorem fails, generating counter-
examples indicating that the guard is not strong enough. The
guard needs strengthening to exclude several modes. Through
a process of repeated proof and counter-example discovery, a
guard is developed that excludes this and other possibilities:

preguardok(st: alaris): boolean =
fndisp1(st) = fok AND
NOT device(st)‘infusing? AND
NOT ((topline(st) = options ) OR

(topline(st) = vtbitime AND
(entrymode(st) = vttmode)) OR
(topline(st) = dispvtbi AND

((entrymode(st) = bagmode) OR
(entrymode(st) = tbagmode))))

DISCUSSION AND CONCLUSIONS
Formal specification is challenging for non-experts. Produc-
ing the specification of the interactive system is complex.
Once constructed it is then necessary to verify that the formal
specification represents the implemented device accurately.
Finally it is necessary to demonstrate that the device, as spec-
ified, satisfies the properties. This paper indicates how the
specification of the interactive system may be simplified by
structuring it: as user actions that transform states, distin-
guishing modes and perceivable attributes of the state. The
problem of generating appropriate proofs becomes one of in-
stantiating template properties to the specification and then
using a theorem prover (PVS) to prove the properties are true
of the specification. This is a relatively routine process. The
formulation of theorems is much simplified, the interpreta-
tion of counter-examples generated by the automated prover
is relatively straightforward with experience. The possibil-
ity of animating the formal models to create prototypes of
the modelled interfaces, and the possibilities these prototypes
raise in terms of discussing the results of verification with

stakeholders, provides further opportunities for making these
proofs clear. This approach is described in [5] and goes some
way to help dealing with the problem of verifying that the
formal specification is a realistic representation of the device.

ACKNOWLEDGEMENTS
José Creissac Campos and Michael Harrison were funded by
project ref. NORTE-07-0124-FEDER-000062, co-financed
by the North Portugal Regional Operational Programme
(ON.2 O Novo Norte), under the National Strategic Ref-
erence Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through
the Portuguese foundation for science and technology (FCT).
Paul Curzon, Michael Harrison and Paolo Masci were funded
by the CHI+MED project: Multidisciplinary Computer Hu-
man Interaction Research for the design and safe use of in-
teractive medical devices project, UK EPSRC Grant Number
EP/G059063/1.

REFERENCES
1. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O., Ray,

A., and Zhang, Y. Generic infusion pump hazard analysis
and safety requirements. Tech. Rep. MS-CIS-08-31,
University of Pennsylvania, February 2009.

2. Campos, J. C., and Harrison, M. D. Systematic analysis
of control panel interfaces using formal tools. In
Interactive systems: Design, Specification and
Verification, DSVIS ’08, N. Graham and P. Palanque,
Eds., no. 5136 in Springer Lecture Notes in Computer
Science, Springer-Verlag (2008), 72–85.

3. Cardinal Health Inc. Alaris GP volumetric pump:
directions for use. Tech. rep., Cardinal Health, 1180
Rolle, Switzerland, 2006.

4. Duke, D. J., and Harrison, M. D. Abstract interaction
objects. Computer Graphics Forum 12, 3 (1993), 25–36.

5. Masci, P., Zhang, Y., Jones, P., Curzon, P., and
Thimbleby, H. W. Formal verification of medical device
user interfaces using PVS. In ETAPS/FASE2014, 17th
International Conference on Fundamental Approaches to
Software Engineering, Springer-Verlag (Berlin,
Heidelberg, 2014).

6. Owre, S., and Shankar, N. A brief overview of PVS. In
Theorem Proving in Higher Order Logics, TPHOLs 2008,
O. A. Mohamed, C. Muñoz, and S. Tahar, Eds., vol. 5170
of Lecture Notes in Computer Science, Springer-Verlag
(Montreal, Canada, Aug. 2008), 22–27.

7. US Food and Drug Administration. Infusion pump
improvement initiative. Tech. rep., Center for Devices and
Radiological Health, April 2010.

8. Woodcock, J., Larsen, P. G., Bicarregui, J., and
Fitzgerald, J. Formal methods: Practice and experience.
ACM Computing Surveys 41, 4 (2009), 19:1–19:36.

4


	Introduction
	The model
	The Properties to be verified of the model
	The example
	The property templates
	Universality

	Developing a property for the Alaris
	Discussion and Conclusions
	Acknowledgements
	REFERENCES 

