
Supporting requirements formulation in software
formal verification

José Creissac Campos

Departamento de Informática/CCTC
Universidade do Minho

jose.campos@di.uminho.pt

José Machado

Departamento de Engª Mecânica/CT2M
Universidade do Minho

jmachado@dem.uminho.pt

Abstract

Formal verification tools, such as model checkers,
have reached a stage were their applicability in the
design and development of dependable and safety criti-
cal systems has become viable. While the formal verifi-
cation step in tools such as model checkers is fully
automated, writing appropriate models and properties
is a skillful process. In particular, a correct under-
standing of the logics used to express properties is
needed to guarantee that properties correctly encode
the original requirements. In this paper we present a
properties editor tool which can help in simplifying the
process of encoding requirements as logical formulae
for verification purposes.

1. Introduction

Formal verification is becoming established as a
useful and powerful technique for guaranteeing the
correctness of software. Tool support for formal verifi-
cation must now go beyond the actual verificatio step
and address issues from the editing of models and
properties, to helping the interpretation of verification
results. One specific aspect that deserves attention is
the writing of properties to be verified.

Properties must encode relevant requirements of the
system. The formalization of requirements is still
pretty much an open issue. Going from a written ac-
count of system requirements to a formal description of
those requirements, is no easy task. In this paper we do
not address that problem directly. Instead, we take a
pragmatics approach, and look at how to facilitate the
writing of the formal properties. To that end, we are
developing a tool that enables engineers to obtain cor-
rect properties formalization, even with limited knowl-
edge of the logic in which properties are expressed.

2. Property specification patterns

Expressing properties in a formal language can be a
complex task. As discussed, in order to address this, a

tool to help property creation is being developed. The
tool is based on the notion of property patterns.

A pattern is a means to capture proven solutions to
known problems, and demonstrate how they can be
used in practice to solve the same or similar problems
in new situations [1]. Dwyer et al. [2] carried out an
extensive review of published property specifications,
and proposed a system of property specification pat-
terns. Each pattern features a description, including the
pattern’s intent, usage examples, relationships to other
patterns, and mappings to different logics (e.g., LTL
and CTL [3]). Campos and Machado [4] carried out a
similar study for the area of Discrete Event Systems
(DES). They found that many of Dwyer et al.’s pat-
terns can be applied, but also found a number of new
patterns occurring in the DES literature. In particular,
they identified the need to restrict the formulation of
the properties to a subset of all the states in the model
(e.g. to consider stable states in the model only [5]).

An example of a pattern is the “Precedence” pattern
which implies the requirement that some event or state
P must occur before some other event or state Q. Its
formulation in CTL is:

A[¬Q W P]
which is read as: it is always the case (A) that Q cannot
happen (¬Q), until (W) P happens.

Typically, however, model checkers (c.f., NuSMV),
do not support the week until operator (W). Hence, the
property above must in practice be expressed as:

¬E[¬P U (Q∧¬P)]
which states the same but in a rather more convoluted
manner: it is never the case that P will not happen be-
fore Q.

Figure 1 shows an extract of the Precedence pattern.
As can be seen, properties get more complex when
scoping and stable states are considered.

3. The Patterns Editor tool

Using the patterns mentioned above implies first se-
lecting the most appropriate patterns, and then instanti-
ating it with appropriate values. This can be an error

prone process. The Properties Editor tool (see Figure 2)
supports both aspects of the problem.

Property Pattern: Precedence
Intent: To express that some event or state P must
occur before some other event or state Q. Concep-
tually this pattern is the opposite of the response
pattern. Notice that the pattern is defined for the
current state only. If needed it can be combined
with the universality pattern.
Basic Formulation:
CTL: A[¬Q W P]
LTL: ¬Q W P
Whatever the system behavior, P will always hap-
pen before Q happens.
Scoping (CTL)
After St: A[¬St W (St∧ A[¬Q W P])]
After St until Sp: AG((St ∧ ¬Sp) →A[¬Q W (P ∨
Sp)])
Scoping (LTL)
After St: G(¬St) ∨ F(St ∧ (¬Q W P))
After St until Sp: G((St ∧ ¬Sp) → [¬Q W (P ∨Sp)])
Stable Formulation
CTL: A[¬ (stable∧Q) W (stable∧P)]
LTL: ¬(stable∧Q) W (stable∧P)
P always precedes Q in stable states.
Examples: (…)

Figure 1. An example pattern

On the left hand side, the tool presents the available
patterns organized hierarchically. Users are able to
browse the available patterns, and investigate the intent
and known usages of each of them in order to select the
appropriate pattern for their needs. Additionally, users
can select the scope and logic to use when generating
the property. On the right side, information about the
pattern is provided, and users can define instantiations
for the variables in the pattern. The resulting property
is generated at the bottom right.

In the example in the figure, the goal was to express
that the system should reach some predefined tempera-
ture before a specific valve could be open. After in-
specting the pattern collection, the Precedence pattern
mentioned above was chosen. In this case, its stable
formulation was chosen. The “reaching desired tem-
perature” and “opening valve” events are represented
by the s_temp_ok and s_open_v variables, respec-
tively. Hence, these variables were used to instantiate
parameters P and Q. The resulting CTL formula is:
¬E[¬(stable ∧ s_temp_ok) U

(stable ∧ s_open_v ∧¬s_temp_ok)]

Notice that no CTL was actually written by the user.
He had only to select the appropriate pattern and indi-
cate appropriate instantiations for its parameters.

Figure 2. The Property Editor tool

4. Conclusions

In this paper we have looked at the issue of support-
ing the expression of property specifications. Tool
support is being developed to address this issue. To-
gether with its pattern collection, the Property Editor
tool allows the expression of complex properties using
basic knowledge of propositional logic only.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley Professional Computing Series.
Addison-Wesley, 1995.

[2] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. “Patterns in
property specification for finite-state verification”. In Proc.
ICSE’98, pp 411–420. IEEE Computer Society Press, 1998.

[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. “Automatic
verification of finite-state concurrent systems using temporal
logic specifications”. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[4] J. C. Campos, J. Machado, and E. Seabra. “Property pat-
terns for the formal verification of automated production
systems”. In Proc. 17th IFAC World Congress, pp 5107–
5112. IFAC, 2008.

[5] J.Machado, B.Denis, and J.-J. Lesage. A generic ap-
proach to build plant models for DES verification purposes.
In Proc. WODES’06, pp 407–412, July 2006.

