
A Generic Library for GUI Reasoning and Testing

Jo˜ao Carlos Silva

Departamento de

Inform´atica/CCTC

Universidade do Minho

Braga, Portugal

jcsilva@ipca.pt

Jo˜ao Saraiva

Departamento de

Inform´atica/CCTC

Universidade do Minho

Braga, Portugal

jas@di.uminho.pt

Jos´e Creissac Campos

Departamento de

Inform´atica/CCTC

Universidade do Minho

Braga, Portugal

jose.campos@di.uminho.pt

ABSTRACT
Graphical user interfaces (GUIs) make software easy to use by
providing the user with visual controls. Therefore, correctness of
GUI’s code is essential to the correct execution of the overall soft-
ware. Models can help in the evaluation of interactive applications
by allowing designers to concentrate on its more important aspects.

This paper presents a generic model for language-independent
reverse engineering of graphical user interface based applications,
and we explore the integration of model-based testing techniques
in our approach, thus allowing us to perform fault detection.

A prototype tool has been constructed, which is already capable
of deriving and testing a user interface behavioral model of appli-
cations written in Java/Swing.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g.,HCI)]: User
Interfaces

General Terms
Design, Languages, Verification

Keywords
Graphical User Interfaces, Reverse Engineering, Models, Testing

1. INTRODUCTION
It is becoming increasingly important to ensure that Graphical

User Interfaces (GUI) based applications behave as expected [14].
The correctness of the GUI is essential to the correct execution of
the software [3]. Regarding user interfaces, correctness is usually
expressed as usability: the effectiveness, efficiency, and satisfaction
with which users can use the system to achieve their goals [19].

Tools are currently available to developers that allow for fast de-
velopment of user interfaces [2] with graphical components. How-
ever, the design of interactive systems does not seem to be much
improved by the use of such tools. Interfaces are often difficult to
understand and use for end users [23]. In many cases users have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii,U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

problems in identifying all the supported tasks of a system, or in
understanding how to achieve their goals. Moreover, the code pro-
duced by such tools is difficult to understand and maintain.

In the context of an ongoing effort to develop tools to support
the automated analysis of interactive system designs1, we are in-
vestigating the applicability of reverse engineering approaches to
the derivation of user interface behavioral models amenable to ver-
ification of usability related properties.

Our objective consists in developing tools to automatically ex-
tract a model containing all possible GUI behaviors. The model
must specify when a particular GUI event can occur, which are the
related conditions, which system actions are executed and which
GUI state is generated next. Additionally, we want to be able to
reason and test this GUI model in order to analyse aspects of the
original application’s usability, and the quality of the implemen-
tation. Our first tool, named GUISURFER, is already capable of
deriving and testing an user interface behavioral model of applica-
tions written in Java using a subset of the Swing toolkit.

This work will not only be useful to enable the analysis of exist-
ing interactive applications, but can also be helpful when an exist-
ing application must be ported or simply updated [13]. In this case,
being able to reason at a higher level of abstraction than that of
code will help in guaranteeing that the new/updated user interface
has the same characteristics of the previous one.

In previous papers we have explored the applicability of slicing
techniques [25] to our reverse engineering needs, and developed
the building blocks for the approach (see [21, 22]) . The work was
focused on extracting the models from Java/Swing source code.
In this paper we extend that work in two directions. We present
a generic model for language-independent reverse engineering of
GUI-based applications, and we explore the integration of model-
based testing techniques in our approach, thus allowing us to per-
form fault detection [12].

2. MOTIVATION
Throughout the paper we will use a Java/Swing interactive appli-

cation as the running example. This application models an agenda
of contacts: it allows users to perform the usual actions of adding,
removing and editing contacts. Furthermore, it also allows users to
find a contact through its name.

The interactive application consists of four windows, named Lo-
gin, MainForm, Find and ContactEditor as shown in Figure 1.

The initial Login window (Figure 1, top-left window) is used to
control the access of the users to the agenda. Thus, a login and
password has to be introduced by the user. If the user introduces
a valid login/password and presses the Ok button, then the login
window closes and the main window of the application is displayed.

1http://www.di.uminho.pt/ivy

The final publication is available at the ACM DL via http://dx.doi.org/10.1145/1529282.1529307

Figure 1: A Java/Swing application

On the contrary, if the user introduces an invalid login/password,
then the input fields are cleared, a warning message is produced
and the login window continues to be displayed. The Java fragment
defining the action performed when the Ok button is pressed is as
follows:
private void OkActionPerformed(...)
{if (isValid(user.getText(),pass.getText()))
{new MainForm().setVisible(true);
this.dispose();}
else javax.swing.JOptionPane.showMessageDialog

(this,"User/Pass not valid","Login",0);
}

where the method isValid tests the pair username/password inserted
by users.

By pressing the Cancel button in the Login window, the user
exits the application. Authorized users can use the main window
(Figure 1, top-right window) to find and edit contacts (Find and
Edit buttons). By pressing the Find button in the main window,
the user opens the Find window (Figure 1, bottom-left window).
This window is used to search and obtain a particular contact’s data
from his name. By pressing the Edit button in the main window,
the user opens the ContactEditor window (Figure 1, bottom-right
window). This last window allows the edition of all contact data,
such as name, nickname, e-mails, etc. The Add and Remove buttons
enable edition of the e-mail addresses list of the contact. If there
are no e-mails in the list then the Remove button is automatically
disabled.

Until now, we have informally described the (behavioral) model
of our interactive application. Such descriptions, however, can be
ambiguous and often lead to different interpretation of what the
application should do. In order to unambiguously and rigorously
define an application we can use a formal model. Moreover, by
using a formal model to define the interactive application, we can
use techniques to refactor, manipulate and test such applications.
Figure 2 shows a possible formal model to specify the behavior of
our running example: a finite state machine where states represent
the GUI idle periods, i.e when there are no events or actions being
executed (blue boxes such as state1, state2, ect), and the transitions
between states are defined by the events associated to the GUI ob-
jects. These are modeled in Figure 2 by arrows like the labeled
arrow Press “Ok” button and valid user/pass. Moreover, GUI ac-
tions executed when a particular event occurs are represented using

red boxes like Open “MainForm” window box.
This model is less verbose than our initial informal description

and easier to understand. For example, the action performed when
the ok button is pressed defines a transition in the machine (c.f.
Figure 1 and the Java code fragment): to the same state if the user-
name/password is not valid, or into a different state, otherwise.

It should be noted that this machine is a deterministic finite state
machine. From state 1, for example, the transition labeled with
Press “Ok” button and valid user/pass moves to a different state
(state2 from MainForm window) and execute two GUI actions:
close the Login window and open the MainForm window.

Thus, we may use well-known finite state machine techniques
to refactor this model. For example, by computing the equivalent
smallest machine (i.e., a machine with the minimum number of
states). Furthermore, we can also use techniques to detect prop-
erties of the interface. For example, we can use graph-based al-
gorithms to compute if all the states are accessible from the initial
one, in order to detect whether a particular window of the applica-
tion will ever be displayed or not. We can also produce valid or
invalid sentences of the language defined by the machine to use as
test cases. These test cases can be used to prove more advanced
properties of the interface. For example: “If there are no contacts
in the agenda then users must not have access to ContactEditor
window”.

In this section we have shown an instance of applying our generic
method to a Java/Swing application. Indeed, the GUI model in Fig-
ure 2 (apart from some beautifying) was automatically generated
by our tool from the Java/Swing source code of the application. In
the next sections, we will describe the techniques, models and tools
that we have defined to achieve this result.

3. PROBLEM DOMAIN
In order to achieve our goal of developing a reverse engineering

approach for user interfaces testing, we must first define both what
type of user interfaces to test, and what type of model to generate
[14, 18]. In this section, we present an overview of the graphical
user interface we will focus on, and we describe related work.

The recent past has seen a lot of innovation in terms of interac-
tion technology, with use of computers moving away from classical

Login Window
MainForm Window

Find Window

ContactEditor Window

Figure 2: GUI behavioral model

WIMP2 interfaces. The most usual class of user interface, however,
are still WIMP-style interfaces, whose presentation structure con-
sists of a hierarchy of objects creating a front-end to software sys-
tems, and use a event-based programming model to link the graph-
ical objects to the rest of the system’s implementation. These user
interfaces produce deterministic output from user input, and system
status and events.

A GUI contains graphical widgets (buttons, menus, textfields,
etc). Each widget has a fixed set of properties. At any time during
the execution of the GUI, these properties have discrete values, the
set of which constitutes the state of the GUI. The software user in-
teracts with the objects by performing actions that manipulate the
graphical user interface widgets, thus generating events at the soft-
ware level. Events cause deterministic changes to the state of the
software. Briefly, from a user’s perspective graphical user inter-
faces accept as input user-generated and system-generated events
from a fixed set of events and produces a graphical output.

This paper focuses on techniques to reverse engineer this class
of user interfaces. Our assumptions are the following:

1. An interactive system allows a dialogue between the com-
puter and one or more users.

2. Interactive systems are event driven systems since the com-
puter only responds after the user provides input, or some
internal event has happened.

3. The gap between the computer and users is implemented by
a graphical user interface.

4. User interfaces are composed of widgets which can be win-
dows, buttons, textfields, etc.

2Windows, Icon, Mouse, and Pointer

5. The user interacts by performing operations on the widgets,
and these operations originate events at the widget level.

4. MODEL-BASED GRAPHICAL USER IN-
TERFACE TESTING

In order to achieve our goal of developing an approach for user
interface manipulation and testing we introduce several techniques
and demonstrate that source code may be transformed to a specifi-
cation which captures their graphical user interface functionalities.
A model-based testing approach is applied to reason about GUI be-
havior correct.

4.1 GUI Reverse Engineering
In [21] we presented techniques to reverse engineer Java inter-

active applications composed by one single window. In this paper,
we extend our work and present a generic module for the reverse
engineering of any GUI.

Using a parser, an Abstract Syntax Tree (AST) is obtained from
the source code of the system for which the user interface related
code is to be analyzed. Then we identify all fragments in the ab-
stract syntax tree that are members of the GUI layer. We use the
GUI constructors to focus the slicing in the subtrees that represent
the GUI. Slicing is based on the program dependency graph. Fig-
ure 3 describes our approach to model-based GUI testing through
a reverse engineering process. The module GUI code slicing ex-
tracts graphical user interface AST fragments through code slicing.
This is a generic module to extract GUI fragments from any AST,
i.e. Java/Swing, wxHaskell, C#, etc. This allows us to identify
all of the program fragments that interacts with the graphical user
interface. We do a traversal of the tree (based on the program de-
pendency graph) and detect all GUI nodes. This process allows us

Figure 3: Model-based GUI testing process

to ignore unnecessary details and see just the user interface layer.
Next, we describe our GUI code slicing methodology.

In order to extract the user interface behavior from the source
code of the interactive applications, we need to construct a slic-
ing function that isolates a sub-program from the entire program.
The straightforward approach is to define a recursive function that
traverses the AST of the program under consideration and returns
the subtrees. Because we want to reuse our approach across differ-
ent programming languages and paradigms, we need to use generic
techniques that work for any AST and not for a particular language
only. Thus, our re-enginnering combines two language-independent
techniques, namely Strategic Programming (ST) [26, 27] and pro-
gram slicing [25].

Strategic programming is a form of generic programming, allow-
ing programmers to concisely define generic tree-traversal func-
tions. Such strategic functions can work on different data types
(e.g., lists, binary trees, etc), and ASTs. Thus, ST provides the
right setting to express our generic tree-traversal functions. Pro-
grams slicing is a technique for simplifying programs by focusing
on selected aspects of semantics. Program slicing is also a generic
technique that is able to slice programs of any programming lan-
guage based on their program dependency graph [10].

Using strategic programming we make use of a pre-defined set
of (strategic) generic traversal functions that traverse any AST us-
ing different traversal strategies (e.g. top-down,left-to-right, etc).
Thus, the programmer has to focus in the nodes of interest, only.
In fact, the programmer does not need to have a knowledge of the
entire grammars/AST, but only of those parts he is interested in (the
Swing sub-language in our case). As a result, the programmer does
not need full knowledge of the grammar to write recursive func-
tions that isolate the graphical user interface sub-program from the
entire program.

To implement our approach we use the Uminho Haskell Software
[1]: a set of libraries and tools developed in the Haskell [11] purely
functional programming language. The software includes generic
libraries for strategic programming and slicing. As a consequence,
we use Haskell to develop a GUI code slicing library which con-
tains a generic set of traversal functions that traverse any AST.

The following Haskell prototype function is a member of the

GUI code slicing library:

slice :: AST -> Const -> InitPos -> SliceType ->
[(Const,[AST],InitAST,EndAST)]

This function allows us to extract a list of fragments in a partic-
ular abstract syntax tree. Basically, the slice function receives four
parameters:

• AST: The abstract syntax tree from any source code;

• Const: The constructor to be used to extract fragments by
pattern matching;

• InitPos: The initial position in the AST for the code slicing
process;

• SliceType: The slice type which can equal 1 or 2. The first
one, makes code slicing until any extraction, the last one con-
tinues code slicing within extracted sub trees.

The result is composed by all fragments in the abstract syntax
tree that match the constructor.

As an example, to extract all button definitions from a Java/Swing
source code’s AST we could call the following instruction:

slice javaAST “JButton” 1 1

From a WxHaskell source code’s AST, the same action could be
executed as:

slice wxHaskellAST “button” 1 1

This is a generic function which is configured with the AST and
the constructor pattern to be extracted.

At this point, we have a set of abstract syntax tree fragment that
just consists of instructions that affect the user interface. Anchor
points for these fragments are detected by syntactic pattern match-
ing.

Figure 3 shows also that module GUI abstraction uses these frag-
ments to produce a behavioral user interface description (Haskell
behavioral GUI model). The fragments relevant to the GUI reverse
engineering are limited to graphical user interface instructions, con-
trol flow information and methods invocation.

Thus, the problem of understanding the interface has been re-
duced to the problem of understanding the slice with respect to a
certain user interface component.

To explain the developed GUI code slicing module in more de-
tail, let us consider the following Java/Swing code fragment, which
defines a new button through the JButton class:

addButton = new javax.swing.JButton();

After parsing this code fragment we obtain the following frag-
ment of the AST:

Statem(Exps(Eassign(Evar [Ident add]), Assign(
Enewalloc(Anewclass(ClassType [Ident javax, Ident
swing, Ident JButton]) (Args [])))))

Having the knowledge of this particular fragment of the Java
grammar/AST, we are able to define a function that given the com-
plete AST extracts all JButton object assignments. First, we need
to collect the list of assignments in a Java program. We define this
function in Haskell as follows:

• We make use of the slice function in order to define a func-
tion that traverses the AST in a top-down fashion.

• Next, we need to define the slicing parameter to use while
traversing the AST. This parameter identifies the tree nodes
where work has to be done. In the complete Java AST the
nodes of interest correspond to the constructor Eassign
(see AST above). Thus, our slice function simply returns
a singleton list with the left-hand side of the assignment and
the respective expression. All the other nodes are simply ig-
nored!

This function, named statementsAssignment, looks as follows:

statementsAssignment ast = slice ast ”Eassign” 1 1

Having collected the list of assignments we can now filter that
list also by code slicing in order to produce the list containing all
JButtons objects in the Java/Swing code.

The code slicing library works for any abstract syntax tree and
not only for the Java AST under consideration in this paper. As a
result, the function we define not only extracts the Swing fragment
from a Java program, but may also be re-used to slice another GUI
toolkit for other languages/ASTs.

Obviously, we can easily configure these functions language-
specific constructors.

Another important task is the extraction of the instructions list
executed from a particular source code anchor point. In other words,
to implement this reverse engineering process from source code we
must extract the instructions sequence executed when a particular
event occurs. This information is obtained through code slicing
within a particular instruction block and considering all external
invocations. As an example the function implemented to extract all
external invocations from an AST is:

statementsExternalMethod ast = slice ast ”Emth” 1 2

Applying several generic functions the methodology returns a
transitive instructions closure (a partial program dependency graph).

From these fragments of the original AST it’s finally possible to
extract the GUI layer and reason about it.

4.2 Models for GUI reasoning
The reverse engineering approach of Figure 3 is based on three

steps: GUI layer extraction, GUI behavioral abstraction and finally
model-based GUI testing. The first one, as described in the above
section, allows us to extract the graphical user interface layer. Un-
derstanding the code related to the user interface consists of re-
covering a plausible specification by abstracting the user interface
structure and behavior. So, the overall model-based GUI testing
process will extract only the GUI code layer.

In order to define the GUI slicing code mentioned above, we
defined a small set of abstractions for the interactions between the
user and the system. The abstractions that we look for in the source
code are user inputs, user selections, user actions and finally output
to User.

Thus, we look for any widget that enables users to input data
(user input), any widget that enables users to choose between sev-
eral different options such as a command menu (user selection),
any action that is performed as the result of user input or user se-
lection (user action) and any widget that enables communication
from application to users such as a user dialogue (output to user).

Given the user interface code of an interactive system and this set
of abstractions, we can generate its graphical user interface abstrac-
tion. To execute this step we combine the GUI code slicing library
with techniques and tools for specifying and verifying systems.

From the sliced source code, we extract a GUI behavioral model
of the interface. Next we present the developed GUI Haskell model
(GuiModel):

type EventRef = String
type CondRef = String
type WindowName = String
type ExpRef = Int
type GuiModel = Map (EventRef,CondRef) [ExpRef]
type Pres = Map ExpRef (EventRef,Bool)
type End = [ExpRef]
type Close = [ExpRef]
type NewWindow = Map ExpRef WindowName

Basically this model specifies a window behavior through a par-
tial finite mapping (GuiModel) from pairs of events and condition
references to a sequence of actions references. Each EventRef
and CondRef data links to a particular event subtree from the orig-
inal abstract syntax tree. EventRef links to events and CondRef
links to conditional Java code information. In other hand End
meta-model contains a list of all exit actions and Close contains
a list of all window close actions. NewWindow contains all actions
which open a new window. Finally, Pres allows us to recognize
actions which change events status. As an example a button press
event could be disabled by an particular action3.

To describes the GuiModel we will consider the login window
from Figure 1. Basically, the login window allows to validate users
through username and password. The window contains several
widgets allowing user authentication.

Applying the prototype to the Login window’s code, enables us
to extract information about all widgets presented at the interface,
such as JButton, JLabel, JTextField, etc. Once the AST for the
application code is built we can apply different slicing operations
as needed. These are filters that allow us to analyse particular GUI
components.

In this case study, we will consider for simplicity only the JBut-
ton widget. Applied to the code of the login window and consider-
ing this GUI filter, the GUISURFER tool automatically generates a
Haskell GUI behavior specification (GuiModel) including the ini-
tial application state (init), events (press Ok button, press Cancel
button, etc) and respective conditions:

guimodel::GuiModel
guimodel=fromList
[(("Cancel","cond1"),[1]),(("Ok","cond2"),[2,3]),
(("Ok","cond3"),[4]),
(("init","condInit1"),[5,6,7,8,9])]
pres::Pres
pres=fromList [(8,("Cancel",True)),(9,("Ok",True))]
end::End
end=[1]
newWindow::NewWindow
newWindow=fromList [(2,"MainForm"),(5,"Login")]

In this case study, events reference Ok and Cancel describe re-
spectively the press Ok button and press Cancel button actions.

The Pres function specifies actions which change events status.
These actions are related with all button states:

[(8,("Cancel",True)),(9,("Ok",True))]

As an example, action reference 8 enables the Cancel button. End
function contains the exit action reference.

Considering the Ok event representation ((”Ok”, ”cond2”), [2, 3]),
((”Ok”, ”cond3”), [4]), we can see that there are two sequences
3In the Java language programming we use the setEnabled method.

of action references associated. These are “[2, 3]” and “[4]”. The
execution of one sequence of actions depends on its condition’s
logical value (cond2 or cond3). These conditional expressions are
automatically extracted from source code. To explain this extrac-
tion process, let us study the following associated Java source code
(executed when Ok button is pressed):

private void OkActionPerformed(...)
{if (isValid(user.getText(),pass.getText())==true)

{new MainForm().setVisible(true);
this.dispose();}

else javax.swing.JOptionPane.showMessageDialog
(this,"User/Pass not valid","Login",0);

}

In GuiModel, the OkActionPerformed method’s content is re-
duced to the expression if (cond2) [2, 3] else [4] where:

• cond2 represent the following condition:
(isV alid(user.getText(), pass.getText()) == true)

• cond3 represent the negation of the above condition;

• Expression reference [2] correspond to the instruction:
newMainForm().setV isible(true);

• Expression reference [3] correspond to the instruction:
this.dispose();

• Expression reference [4] correspond to the message dialog
instruction within else statement.

Thus OkActionPerformed method execution causes two distinct
cases in GuiModel: The first one occurs when condition cond2 is
true ((”Ok”,”cond2”),[2,3]) and the second one when cond2 is false
((”Ok”,”cond3”),[4])

Each GuiModel data (events, conditions and actions) are linked
to their tree representation in the original abstract syntax tree. So, at
any time it’s possible to consult their internal structure and visualize
the associated source code.

As we can see each state, event or condition in the behavioral
model is related to it abstract syntax tree fragment. Therefore, this
will allow us in the future to make a refactoring or transformation
process to the source code.

Currently, the tool is also capable of automatically generating
a finite state machine (FSM) model of the interface [20]. Next we
describe an example of the FSM that we can automatically generate
from the application source code (considering the particular GUI
filter above described).

In the finite state machine of Figure 4, each state defines a rep-
resentation of a GUI window in one particular period of time. The
arrow specifies an event moving from one state to another. All
events are associated to a particular condition and sequence of ac-
tions such as in the GuiModel. To move from one state to another,
the associated condition (cond) must be validated. Conditions are
extracted directly from conditional instructions in the source code.
As an example, an event’s if condition then action1 else action2
conditional instruction is abstracted to two different states. A first
one with the actions1’s graphical user interface instructions set that
occurs when the condition is true, and a second one with the ac-
tion2’s graphical user interface instruction set.

As we can see, the GUISURFER prototype extracts automatically
a GUI model like the model described in Figure 2 from section
2. The prototype achieves our main objective. We generate au-
tomatically a GUI behavioral model directly from an application’s
source code. For each application window, we generate a behav-
ioral model which describes its window states, events, conditions
and actions.

We now want to be able to reason about this GUI model. We will
show how we can use testing techniques to analyse aspects of the
original application’s usability characteristics.

4.3 GUI Testing
The reverse engineering approach described in this paper allows

us to extract an abstract GUI behavior specification. Our next goal
is to perform model-based GUI testing [4]. To this end, we make
use of the QuickCheck Haskell library tool. QuickCheck [6] is a
tool for testing Haskell programs automatically. The programmer
provides a specification of the program, in the form of properties
which functions should satisfy, and QuickCheck then tests that the
properties hold in a large number of randomly generated cases.
Specifications are expressed in Haskell, using combinators defined
in the QuickCheck library. QuickCheck provides combinators to
define properties, observe the distribution of test data, and define
test data generators.

Considering the application described in the previous section and
its abstract GUI model-based we could now write some rules and
test them through the QuickCheck tool.

To illustrate the approach, we will test if the application satisfies
the following rule: users can only access the following windows
Login, MainForm, Find, ContactEditor. We consider a GuiModel
representation for each application’s window.

The rule is specified in the Haskell language on top of the GuiModel
windows cases. From the GuiModel windows set we automatically
generate randomly cases. We extract valid GUI sentences from
a GUI behavioral model. Then the rule is tested in a large num-
ber of cases (10000 in this GUI testing process!). The number of
random cases and event lengths are specified by the GUISURFER
user. Each random case is a sequence of valid events associated
with their conditions, actions and the respective window. In other
words, each case is a sequence of possible events, so all respective
conditions are true in this context. As example:

[("Login","Ok","cond2",[2,3]),
("MainForm","Find","cond3",[3]),
("Find","Search","cond1",[]),
("Find","Cancel","cond2",[1]),
("MainForm","Exit","cond1",[1])]

In this particular sentence, the user presses Ok button in the Lo-
gin window with a valid username/password (condition reference
cond2 represent the isValid method, cf. section 2). Associate ac-
tions references 2 and 3 represent respectively Login window clos-
ing and MainForm window opening. Then from MainForm win-
dow, the user presses the Find button (condition reference cond3
test if there are contacts in the agenda). In the MainForm win-
dow action reference 3 corresponds to Find window opening ac-
tion. From Find window, the user makes a search and then cancel
the window. Finally with the last action, the user exits the applica-
tion pressing the Exit button (”MainForm”,”Exit”,”cond1”,[1]).

Considering vs a valid sentence, we can specify the above rule
as:

rule vs = [a|(a,b,c)<-vs] ==
["Login","MainForm","Find","ContactEditor"]

Testing through QuickCheck the application’s GuiModel with
this rule , we obtain the following result:

OK, passed 10000 tests.
87% events sequence length: 5.
11% events sequence length: 4.
1.5% events sequence length: 3.
0.5% events sequence length: 2.
0% events sequence length: 1.

Find window

Login window

MainForm Window

ContactEditor Window

Figure 4: Application’s GUI state machine

The rule was tested in 10000 randomly generated cases. All of
them satisfies the rule.

Five maximum sequence length events correspond to 116650 dif-
ferent cases. We check the rules with 10000 of them. Obviously
we can check the rule with a wide range of cases. We demonstrate
here that it is possible to analyse a GUI model using a model-based
testing technique. Though our approach is non-exhaustive, this is a
technique which allows us to test the quality of models at a lower
cost than other exhaustive techniques such as model checking.

This paper’s focus is on GUI testing. Coverage criteria for GUIs
are important rules that provide an objective measure of test quality.
We plan to include coverage criteria to help determine whether a
GUI has been adequately tested. These coverage criteria use event
sequences to specify a measure of test adequacy. Since the total
number of permutations of event and condition sequences in any
GUI is extremely large, the GUI’s hierarchical structure must be
exploited to identify the important event sequences to be tested.

5. RELATED WORK
In the Software Engineering area, the use of reverse engineering

approaches has been explored in order to derive models directly
from the existing interactive system.

Different approaches have been used. One possibility is to use
dynamic analysis. A typical approach is to run the interactive sys-
tem and automatically record its state and events. Memon et al.
[15] describe a tool which automatically transverses a user inter-
face in order to extract information about its widgets, properties
and values. Chen et al. [5] propose a specification-based technique
to test user interfaces. Users graphically manipulate test specifica-
tions represented by finite state machines which are obtained from

running the system. Systa studies the run-time behavior of Java
software trough a reverse engineering process [24]. Running the
target software under a debugger allows for the generation of state
diagrams. The state diagrams can be used to examine the overall
behavior of a component such as a class, an object, or a method.
Paiva proposes a process to reverse engineer structural and behav-
ioral formal models of a GUI application by a dynamic technique.
A skeleton of a state machine model of the GUI is generated au-
tomatically and represented in a specification language. From this
model abstract test cases are generated and executed over the GUI
application [17].

Another alternative is the use of statical analysis. The reverse
engineering process is based on analysis of the application’s code,
instead of its execution, as in the previous approaches. One such
approach is the work by d’Ausbourg et al. [7] in reverse engineer-
ing UIL code (User Interface Language – a language to describe
user interfaces for the X11 Windowing System, see [9]). In this
case, models are created at the level of the events that can happen
in the components of the user interface (e.g., pressing a button).

Moore [16] describes a technique to partially automate reverse
engineering character based user interfaces of legacy applications.
The result of this process is a model for user interface understand-
ing and migration. The work shows that a language-independent set
of rules can be used to detect interactive components from legacy
code. Merlo [8] proposes a similar approach. In both cases static
analysis is used.

In this work, we are using static analysis as in [16]. When com-
pared to their work our challenges are reverse engineering code for
graphical user interfaces, as opposed to character based user inter-
faces in [16].

At the moment we are working with Java/Swing. However, our
approach is generic and can be applied to any programming lan-

guage. We are interested in models that reflect the design of the
user interface and the interaction that it creates. Hence, we need
models that are more abstract than those produced in, for example,
[15].

6. CONCLUSIONS AND FUTURE WORK
The major contribution of this work is the development of the

GUISURFER prototype, an approach for improving model-based
Java/Swing applications testing through reverse engineering. The
model-based testing of interactive systems is a complex task. There-
fore, many contributions have been achieved. These contributions
are the identification of common characteristics of user interfaces,
the abstraction of interactive systems, the development of a model-
based testing prototype and the description of a case study testing
an abstract user interface model through the reverse engineering
process.

We demonstrated how the user interface layer can be extracted
from any source code. We identified a set of widgets (graphical
objects) that can be modeled. We identified also a set of user in-
terface actions. Finally, we presented a methodology to extract a
behavioral and test user interface model.

The work presents an approach to the reverse engineering of GUI
applications. The approach is very flexible, indeed we have al-
ready applied the same techniques to extract similar models from
Haskell/WxHaskell interactive applications. From the abstract syn-
tax tree representation we are able to derive a GUI meta model
and state machine. Theses models enables us to reason about both
usability properties of the design, and the quality of the implemen-
tation of that design. Our objective has been to investigate the fea-
sibility of the approach.

Coverage criteria and the refactoring/transformation of users in-
terface code from the user interface aspects modeled in GuiModel
are important features to implement as future work.

Acknowledgments
This work was partially supported by the Portuguese Research Foundation
(FCT) and FEDER (European Union) under contracts: POSC/EIA/56646/2004,
SFRH/BD/30729/2006 and SFRH/BSAD/782/2008.

7. REFERENCES
[1] UMinho Haskell Software – Libraries and Tools -

http://wiki.di.uminho.pt/twiki/bin/view/research/pure/puresoftware.
[2] G. Abowd, J. Bowen, Alan Dix, M. Harrison, and R. Took.

User interface languages: a survey of existing methods.
Technical report, Oxford University, 1989.

[3] B. Berard. Systems and Software Verification. Springer
edition, 2001.

[4] Peter Bumbulis. Combining Formal Techniques and
Prototyping in User Interface Construction and Verification.
PhD thesis, University of Waterloo, 1996.

[5] J. Chen and S. Subramaniam. A gui environment for testing
gui-based applications in java. Proceedings of the 34th
Hawaii International Conferences on System Sciences, 2001.

[6] Koen Claessen and John Hughes. Quickcheck: A lightweight
tool for random testing of haskell programs. In ICFP, ACM
SIGPLAN, 2000, 2000.

[7] Bruno d’Ausbourg, Guy Durrieu, and Pierre Roché. Deriving
a formal model of an interactive system from its UIL
description in order to verify and to test its behaviour. In
DSV-IS 96. 1996.

[8] Merlo E., Gagne P. Y., Girard J.F., Kontogiannis K., Hendren
L.J., Panangaden P., and De Mori R. Reengineering user
interfaces. IEEE Software, 12(1), 64-73, 1995.

[9] Dan Heller and Paula M. Ferguson. Motif Programming
Manual, volume 6A of X Window System Seris. O’Reilly &
Associates, Inc., second edition, 1994.

[10] Susan Horwits and Thomas Reps. The Use of Program
Dependence Graphs in Software Engineering. In 14th
International Conference on Software Engineering, pages
392–411, Melbourne, Australia, may 1992. ACM.

[11] Simon Peyton Jones, John Hughes, Lennart Augustsson,
et al. Report on the programming language haskell 98.
Technical report, Yale University, February 1999.

[12] Clark Edmund M. and Jeannette Wing M. Formal Methods:
State of the Art and Future Directions. Carnegie mellon
university edition, 1996.

[13] Moore Melody. A survey of representations for recovering
user interface specifications for reengineering. Technical
report, Institute of Technology, Atlanta, 1996.

[14] A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. PhD thesis, Department of
Computer Science, University of PittsBurgh, july 2001.

[15] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI
ripping: Reverse engineering of graphical user interfaces for
testing. Technical report, University of Maryland,USA, 2003.

[16] M. M. Moore. Rule-based detection for reverse engineering
user interfaces. Proceedings of the Third Working
Conference on Reverse Engineering, pages 42-8, Monterey,
CA, november 1996.

[17] Ana C. R. Paiva, João C. P. Faria, and Pedro M. C. Mendes,
editors. Reverse Engineered Formal Models for GUI Testing,
10th International Worksho on Formal Methods for
Industrial Critical Systems Berlin, Germany, July 1-2, 2007.

[18] Fabio Paternò. Model-Based Design and Evaluation of
Interactive Applications. Springer-Verlag, London, 2000.

[19] ISO/TC159 Sub-Commitee SC4. Draft International ISO
DIS 9241-11 Standard. International Organization for
Standardization, September 1994.

[20] R.K. Shehady and D.P. Siewiorek. A method to automate
user interface testing using variable finite state machines. In
Proceeding of the 27th International Symposium on
Fault-Tolerant Computing, 1997.

[21] J.C. Silva, José Creissac Campos, and João Saraiva.
Combining formal methods and functional strategies
regarding the reverse engineering of interactive applications.
In DSV-IS 2006, Dublin, Irland. Springer, 2006.

[22] J.C. Silva, José Creissac Campos, and João Saraiva. Models
for the reverse engineering of java/swing applications. ATEM
2006, Genova, Italy, October 2006.

[23] A. G. Sutcliffe. Human-Computer Interface Design.
MacMillan, 2nd edition, 1995.

[24] T. Systa. Dynamic reverse engineering of java software.
Technical report, University of Tampere, Finland, 2001.

[25] Frank Tip. A survey of program slicing techniques. Journal
of Programming Languages, september 1995.

[26] Eelco Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9. 2003.

[27] Joost Visser and João Saraiva. Tutorial on strategic
programming across programming paradigms. In 8th
Brazilian Symposium on Programming Languages, Niteroi,
Brazil, May 2004.

