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Abstract. Formal approaches to the design of interactive systems, asithe
principled desigrapproach rely on reasoning about properties of the system at
very high level of abstraction. Such specifications typycatovide little scope
for reasoning about presentations and theresentatiorof information in the
presentation. Theories of distributed cognition place@stemphasis on the role
of representations in the cognitive process, but it is neaichow such theories
can be applied to design.

In this paper we show how a formalisation can be used to ent@pgepresenta-
tional aspects, affording us an opportunity to integrapgasentational reasoning
into the design process. We have shown in [3] how properties the abstract
state place requirements on the presentation if the priepesite to be valid at
the perceptual level, and we have presented a model for soplenies. We base
our approach on this model, and examine in more detail thiiséverification
Given the widespread consensus that proper tool suppogtrisraquisite for the
adoption of formal techniques, we apply a higher-orderddfeorem prover to
the analysis.

1 Introduction

It has been proposed that formal techniques to modelling and specification naade
to improve the quality of interfaces to interactive systems. For exentipéprincipled
designapproach aims to enhance the design process by ensuring conformance to certain
carefully chosemlesign principles.

These principles, such as predictability, reactivity and support foutes’s task
attempt to relate the system specification to properties that have meanihg faser.
This affords the designer the ability to reason about the usabiliyeofystem at a very
early stage in the development life-cycle. Specifications which suppdhtreasoning,
for example those based on the interactor model [4], abstract away feopnébentation
as presentations typically include many details which are not relevant artdgnlg
subject to change. Yet recent work on distributed and external cognitigh,[10, 8],
postulates that representations (both internal and external) play a crileain the
cognitive process. Hutchins [6], uses this distributed view tdstihhe role emergent
properties of a cockpit instrument play in helping the pilot perfoimthsk. However,
itis not clear how such analysis could be used to inform and improvestsigulprocess.

Additionally, reasoning such as that described above generates requirem@nts o
the presentation, which must hold if reasoning over the abstract specifidgatio be
valid at the presentation level (ie. as the user perceives the system) [3].



1.1 A Formal Approach
The aims of this paper are twofold:

— to provide a rigorous and direct means for integrating representatieasdning in
the style of [6] into the design process.

— to further explore issues of verification and show how the verificatimcgss ex-
poses assumptions and requirements embedded in the presentation.

To address these issues we build upon the formalisation in [3]. €heflis of for-
mality stem in this case from the ability to take a rigorous and met@bdipproach to
a form of analysis which would otherwise be conducted in an ad-hoc fashnal that
we can apply the analysis tospecificatiorof the system which has a formal relation-
ship with the artefact. In [3] it is shown how representational requirésneould be
modelled in terms of a mapping between logical operators over the abstracastht
perceptual operators over the presentation. Taking a formal approach tovibliges
constructing a model of the abstract artefact under consideration, its eapaten, and
the mapping between them.

This is not to say that we advocate full formal specification of presenttian
proposition we see as neither practical nor valuable, but that a limitedfisaioin,
including details of theepresentatiorand the operators supported by the representa-
tion is sufficient for establishing the validity of a presentatioriwéspect to a property,
such as support for a given task.

One of the emphases in this paper is on showing how the use of theoosingr
can help in the automation of the verification process. In particular westviliv how
using a theorem prover forces usdpell outall the assumptions we are making about
the system and its presentation, and identify problems with bothréeeptation and
the system that should be behind it.

1.2 Overview

With this focus on machine-assisted verification in mind, we preseneinéht section

a summary of the nature of the properties to be verified, along wittog silxample.
Formalisation of this example reveals many representational issudw gettion fol-
lowing, we use this example in a proof using a higher-order ltdtggorem prover (PVS)

to illustrate how the verification reveals further aspects of the presentaind the is-
sues involved in providing machine assistance for the process. Tinalfaotation em-
ployed is VDM-SL, but the approach can be applied to any model-based spegificati
language.

2 A Model of Representation

We present in this section both a summary of the model in [3] and exjfilother the
formalisation process.



2.1 Presentation Model

We begin with a simple functional model of the presentation mappihgh represents
the abstract state (modelled as a set of attributes) to the presentatideligdas a set
of presentation elements, percept}. A given piece of information may of course have
many different possible representations.

1.0 p: Attribute-set — Percept-set

Unlike the abstract state, the percepts represent information whichitidevie the
user, with no approximation or information loss. The mappingfits#én (and neces-
sarily) approximates the abstract attributes.

2.2 Logical and Perceptual Operators

Logical operators are those which may be defined over the abstract stategfiople,
magnitude comparison of two integers). Perceptual operators are thice may be
defined over the presentation, and are understood to be directly perfertnatble user
(eg. determining if two objects on a display are adjacent). In terms ofoifmealisa-

tion above, logical operators are defined o¥%etribute-set, and perceptual operators
are defined ovePercept-set. Both the logical and perceptual operators can hence be
formalised.

The concepts of logical and perceptual operators have previously been applied
Casner [2] who constructed a system for automatic presentation genenatipldcing
logical operators in a task description by graphical components supggrérceptual
versions of these operators. We take the converse view, and formulatequirements
on the presentation (for the specific example of task support), asviill

to support a given task, the presentation should provide perceptualadgnts
of the logical operators in the task

This of course refers to the portion of the task to be performed buske

We believe that formalising the transformation from logical to pergajpdperators
provides an explicit and rigorous basis for reasoning about represerdhigsues. For
example, the scale types of Stevens [9], applied by Zhang [11] to theséalyre-
lational information displays, can be formalised in terms of the gsaafdogical and
perceptual operators that each scale supports. In this way, we can use thersgerat
characterisethe representation. By trying to formulate perceptual operators over the
presentation model, we can expose hidden referents in our tasks. Thespreerves
both to increase our understanding of the system, and acts as an aid ta design



2.3 A Model of Presentation Based Properties

One approach is to view the perceptual model as a reification of the abstraet, tmatd
proving the consistency of state changes between the abstract and reified tatisel
us nothing about how the presentation supports the desired pexperti

For the reification to be valid, we must know that if a property holdsttee ab-
stract specification, it also holds on the presentation. We accomplishythislating
the abstract and perceptual models to a model in which the principle can tesseg.
Establishing the validity of the presentation then becomes a matteowirst) that the
logical operators over the abstract state and the perceptual operators oneprésen-
tation of this abstract state yield the same result in terms of the pxofsere figure 1).
We can express this formally as:

AbstractModel ___ ¥ __ Presentation Model

Abstract Ops: Perceptual Ops.

Model from Principle

Fig. 1. Alternative approach to verification

2.0 Abstract-op(Attribute-set) = Perceptual-op(p(Attribute-set))

2.4 Anillustrative example

In this section, we present a formalisation of an application discussetlitohins [6].
Hutchins’ approach involves a broader contextual view of the cockpiesysusing
understanding derived from ‘distributed cognition’. By usingstekample, we hope to
illustrate how our approach achieves a good coverage of the representaspeats
of the analysis, and indicate how this might relate to a design conteet.example
concernsthe use of ‘speed bugs’ to record minimum manoeuvering speedsiosraifh
air speed indicator.

The indicator takes the form of a circular scale on which a needle indicates the
current air speed. The ‘configuration change bugs’ take the form of metals on the
perimeter of the instrument, and are set by the flight crew prior to tipeoggh. The
configurations referred to are the four configurations of wing slat ancsé#ngs. One
task of the crew is to change between them to generate more lift as the ailovadt s
for landing. In addition, there is also a ‘salmon bug’, internal ® ithstrument, which
denotes the speed commanded to the auto-throttle system. In the finaheippney
must also ensure the aircraft is within a safe limit of the reference spdadh( should
be that commanded to the auto-throttle system).



Fig. 2. Simplified Air Speed Indicator, adapted from [6]

Logical Model What is interesting about this artefact and the tasks it supports is that
although on the surface it appears simple, there are in fact many piecesrofidtian
required to perform the operations involved in the tasks. This beconpsse when

we formulate an initial description of the configuration management task:

if current speeds within acceptable margin speed
of minimum manoeuvering spefx current configuration
then change taext configuration

We can see from this that there are four referents in the operation of clyermifigu-
ration: the current speed, the margin speed, the minimum manoeuveeied apd the
configurations being changed between (treated as one since they are pairegi). A lo
cal operator to support this task could be one which checks a speed and catidigur
and determines whether it is appropriate to change to the next configurétie task

of tracking potential disparity between the indicated air speed and reference@peed
the approach could be supported by a logical operator which takes a speeduansl ret
whether it a safe deviation froii,r.

The first step in our formalisation is to construct a model of the ASI:

values
3.0 Smargin : Speed = 10 KNOTs— Margin for configuration change ;

4.0 Ssafe : Speed = 5 KNOTS— Variation from approach speed

types
5.0 Speed = R;

6.0 Configuration = Ny ;



7 AbstractASI:: V. : Speed — Current Speed

.0

A C. : Configuration — Current configuration

2 Sim : Speed™ — Minimum manoeuvering speeds
.3 V.ef : Speed — Reference speed of approach

We can now formalise the logical operation to support the configuratianage-
ment task as:
8.0 configChangeCheck : AbstractAST — B

.1 configChangeCheck (asi) &
2 asi.Ve < asi.Sim(Ce) + Smargin

The operation for checking the approach speed is as follows:

9.0 approachSpeedCheck : Speed x Speed — B
.1 approachSpeedCheck (Ve, Vyer) 2

2 Vref - Ssafe S Vc S Vref + Ssafe

We can see that this formal model provides a concise ‘computational’ Vigheo
operations, and the information required to carry them out.

Presentation Model The two main percepts are the ASI needle and the speed bugs.
The scale is also a percept, but we use it only to establish a relatidnstfieen angles
and sections of arc on the display, and absolute speeds.

We begin the specification with the data types representing the percepspier
ally the ASI needle is simply an angle from the uprightl¢g) position. A speed bug
has both a position (again, an angle from the upright), and an exteatgla which
describes an arc to either side of the position. The perceptual functibwe stale is to
relate angles on the display to speeds.

values
10.0 ScaleFactor : R = 1 — Unit speed per scale degree ;
11.0 SalmonExtent : Angle is not yet defined;

12.0 ConfigExtent : Angle is not yet defined

types
13.0 Angle = R;
14.0 ASINeedle:: posn : Angle ;

15.0 ASISpeedBug :: posn : Angle
A extent : Angle ;

16.0 ASIScale::interpret : Angle — R



The fullinstrument integrates these three components, note thaaweeshequence
of speed bugs, arranged in order of decreasing angle (and hence represented speed):

17.0 ASI_Instrument :: needle : ASINeedle

A bugs : ASISpeedBug™
salmonbug : ASISpeedBug
scale : ASIScale

inv asi & — Speed bugs cannot overlap
Vi,j € dom bugs -
i <j = asi.bugs(i).posn > asi.bugs(j).posn
A asi.bugs(i).posn — asi.bugs(i).extent
> asi.bugs(j).posn + asi.bugs(j).extent

oNOoOURr Wi

We are now in a position to formalise the presentation mapping betwese two
models. The presentatign maps am bstract AST value to anASI_Instrument value
which represents it.

18.0 p: AbstractASI — ASI_Instrument

1 pla) 2
2 mk-ASI_Instrument (p-Needle(a.V.), p-BugSeq(a.Smm),
3 p-Salmon(a.V,ef), p-Scale)

19.0 p-Needle (v) &
A mk-ASINeedle (v/ScaleFactor)

20.0 p-BugSeq (s:Speed™) bs: ASISpeedBug™
.1 post Vie doms - bs(i) = mk-ASISpeedBug (s(i) /ScaleFactor,
2 ConfigExtent)
3 Alen(s) = len(bs)

21.0 p-Salmon (v) &
1 mk-ASISpeedBug (v/ScaleFactor, SalmonExtent)

22.0 p-Scale() &

1 mk-ASIScale (Aa : Angle - a x ScaleFactor)

Perceptual Operators The first perceptual operator we examine is that to support the
task of checking the approach speed (represented by needle) against the reference speed
(represented by the salmon bug). As explained by Hutchins [6], theatpereduces

to checking whether the ASI needle position falls within the section©otavered by

the speed bug.

23.0 salmonBugCheck (needle, bug) &
il in_arc (needle, bug.posn — bug.extent, bug.posn + bug.extent)



24.0 in_arc (needle, agiars, Aend) 2
1 Astart < needle.posn < agpq

Part of what makes this artefact so effective from a representational poirveiy
the simplicity of the perceptual operators for tasks such as this.

Moving on to support for the configuration management task, firséyethis the
issue of comparing the current speed to the configuration change bugssThore
complex than for the salmon bug, as the spatial extent of the bugs dbesmespond
to the margin within which it is appropriate to change. Also, it is asatric, since
although it is acceptable to make changes within a certain margin above tmumin
manoeuvering speed, it is not acceptable to go below this speed before niaing t
configuration change.

Thus the perceptual operation must be one which determines (one sidgithity
of the ASI needle to the speed bug, relative to a margin whicloisepresented in the
presentation

25.0 configBugCheck (needle, bug) &
il in_arc (needle, bug.posn, bug.posn + (Smargin /ScaleFactor))

The presence of an element of the abstract stiig. i) indicates a hidden ref-
erent in the operation. This does not necessarily indicate a serious irayegfuthe
presentation, (for example, information may sometimes be providethey artifacts),
although it does point to a lack of integration with the other perceptsived in the
operation. In this casBn..ein IS @ constant which is not as critical as deviation from
the approach speed (Hutchins describes this task as being constrained by ithpérat
considerations” [6]). Thus, while this requires the pilot to hawene internal represen-
tation of an acceptable margin for the configuration change, the configucitaorge
task is not as heavily loaded as the approach speed task and so may be an acceptable
cognitive burden on the pilot.

But there is also the issue of the current and next configuratiormbliély, the
perceptual operator must relate the abstract artefact (a sequence of minimueumano
vering speeds) to a sequence of speed bugs around the perimeter of theeASiuMy/
use the ordering of the bugs as a simple formalisation, thus weognapperceptual
operator which indexes the sequence of speed bugs with the current catifigur

26.0 getCurrentBug (C.,bugs) &
1 index (Cc, bugs)

We can see in this expression a requirement that the user already know riet cur
configuration C.) or that it be represented in another artefact (which itself must enable
the user to extract the information perceptually). Another (and perhaps realistic)
formalisation would be based on proximity of the ASI needle. Thusribgt lowest’
speed bug on the ASl is the one we want.

27.0 getCurrentBug (needle, bugs) 2
il next_counterclockwise (needle, bugs)



28.0 next_counterclockwise (needle: ASINeedle, bugs: ASISpeedBug™) bug:
ASISpeedBug

.1 pre 3ie€ N-bugs(i).posn < needle.posn

.2 post Jie€ N-bugs(i) = bug A bugs(i).posn < needle.posn
3 AVj€eN-j<i = bugs(j).posn > needle.posn

Integrating these two operations into a composite operation toostibye configu-
ration change task yields:

29.0 asiConfigCheck : ASI_Instrument — B

1 asiConfigCheck (asi) &
2 configBugCheck (asi.needle, get CurrentBug (asi.needle, asi.bugs))

We can see from the above that the process of formalisation itself cotetsito our
understanding of the system, and possible shortcomings. Theewtidn will illustrate
how more complex assumptions embedded in the representation may beedisto

3 \Verification

Having defined both the abstract and presentation models, operators esemtiod-

els and the mapping between them, we can proceed with the verification phage of ou
analysis. Recall that the form of verification we are using involves estabtj an equiv-
alence between logical operators over the abstract state and perceptual opegators ov
the presentation.

3.1 The prover - PVS

In this section we will introduce PVS, the theorem prover that will bediin the ver-
ification process that follows. Our aim is to enable the reader to foll@sttbsequent
description of the performed verification. See [7] for a more thoroagieduction to
the system.

PVS is a typed higher-order logic theorem prover, which provides agrated en-
vironment for development and analysis of specifications. Specificatiorsgaaised
in theories. Typically a theory will introduce a number of types and toris (which
can be functions), and formulas associated with them (axioms and theorns, f
stance). Theories can be parameterised on types and constants. Entities dedared in
theory can be made available to others by exporting them (using ¥i@ORTING
clause). By default all declarations are exported. Entities that are exporsetheory
can be imported by another using tdPORTING clause.

PVS features a powerful type system. This is very useful when writiegifpa-
tions, but means that type checking becomes undecidable. To cope witthéhtgpe
checker generates proof obligations (TCCs - Type Correctness Conjittiabsust be



established by the theorem prover. If the system is unable to prov€ati@matically,
then the user is asked to do it.

The usual types are available in PVS: natural numbeis)( real numbersrgal),
sequencess¢quence[X]), sets fet[X]), tuples (#...#]), etc. These types are either
built-in in the system or defined in the prelude library. PVS also alfavthe definition
of predicate subtypes, dependent types and abstract data types. Althowgh mat
use these directly, they are used in the prelude to define some ofptbe we will be
using.

Alibrary is a collection of theorems. The prelude is a special librarysettbeories
are always available, without the need for explicit importing.

PVS is used interactively. Its interface is mainly implemented as an Emacs major
mode, which integrates functionality for editing specifications and ipgbtheorems.
When performing a proof, the system presents a goal in the form of @esggand
prompts the user for an appropriate command. If the command does wettBelse-
quent, it will generate a new sequent or a number of new sequents (imashgnd
the user will be asked to prove them in turn. When all subgoals are ptbeeatiginal
goal has been proved.

The user interacts with the prover by issuing commands to be applibd tetjuent.
There are commands for induction, quantifier reasoning, rewritingplgication using
decision procedures and type information, and propositional sirggiifin using binary
decision diagrams.

3.2 Writing the specification in PVS

The translation from VDM to PVS is straightforward [1]. The specifigatis organised
into three theories. One for the logical model (thed§T), another for the perceptual
model (theonperceptual AST), and a final theory that combines the previous ones and
introduces the equivalences to be proved (thed$yverification).

Figure 3 presents the PVS theory for the logical model as described inrs@cfio
The theory starts by introducing the four typ&geeds is declared as a sequence of
Speed, andabstractAST as a tuple with four element¥ ¢, Cc, Smm, andVref). After
the types, two constants are introducedSsrargin andSsafe — both of typeSpeed.
Note that they are left uninterpreted (ie. no actual values are given). Tiadhatbs_asi
is declared and used in the axiom that follows (axiamabs_asi2). This axiom asserts
the invariant obbstract ASI. Finally, the theory declares the two logical operators.

The theory in figure 3 was obtained by translating the VDM specificaticnwi
be shown, the verification process will prompt us to introduce sonam@és in the
specifications. In Appendix A we present the final ASI theory that resutwu the
verification process. Thgerceptual ASI theory is defined similarly. The final version
(after verification) is given in Appendix B.

Note that we have added an axiohui§_posn_ext), expressing an invariant condi-
tion needed for the\SISpeedBug type theory, which was not included in the VDM
specification. This restriction was identified by PVS as a TCCABISpeedBug. The
last theoryASlverification (see figure 4), imports the two previous theories and intro-
duces the equivalences to be proved as conjectures (ie. putative theorems).



ASI: THEORY
BEGIN

Speed TYPE = nat

Speeds TYPE = sequenciSpeedl

Configuration TYPE = nat

AbstractASI: TYPE = [# Vc: SpeedCc: ConfigurationSmm: SpeedsVref: Speeg]

Smargin: Speed
Ssafe Speed

absasi: vAR AbstractASI
inv_absasi2: AxioMm V (i,j: nal): i < j< Smm(absasi)(i) > Smmabsasi)(j)

configChangeCheckasi: AbstractAS)) : bool = Vc(as) < Smmasi(Cc(asi)) + Smargin
approachSpeedChedl/c, Vref : Speed) : bool = Vref - Ssafe< Vc A Ve < Vref + Ssafe

END ASI

Fig. 3. Initial version of the logical model

ASlverification: THEORY
BEGIN

IMPORTING ASI, perceptual ASI
vc, vref: VAR Speed

approachspeedtask: CONJECTURE
approachSpeedChefilc, vref) = salmonBugChedkho_Needlgvc), rho_Salmor{vref))

absasi: VAR AbstractASI

configurationchangetask: CONJECTURE
configChangeChec¢kbsasi) = asiConfigCheclp(absasi))

END ASlverification

Fig. 4. ASlIverification theory



3.3 Approach speed task

The first conjectureapproach_speed_task) declares the equivalence between the oper-
atorsapproachSpeedCheck andsalmonBugCheck. When we start the proof attempt
for this conjecture we get the sequent:

Sequent 1 approachspeedtask:

{1} (¥ (vc: Speedvref: Speeq:
approachSpeedChelc, vref) =
salmonBugCheakho_Needl€vc), rho_Salmor{vref)))

If we apply agr i nd (a powerful, somewhat brute force, rule which, among other com-
mands, applies rewriting and simplification) we are left with fourgagds to prove. The
sequent for the first subgoal is (where priming is used to indicateskoonstanty:

Sequent 2 approachspeedtask.1:

{-1}vc’ >0

{-2} vref >0

{-3} vref - Ssafe< vc’

{-4} v¢' < Ssafe+ vref

[{1} (v¢' / ScaleFactoK SalmonExtent+ vref / ScaleFactor

What PVS is asking us to prove is that, if the current velocity)(is inside the safe
margin of the reference speed-¢f’), then the needle must be below the speed indicated
by the edge of the salmon bug when positionedraf’ in the dial (consequent 1).

Assumption 1 The need to prove this derives from our assumption, at the perceptual
level, that the extent of the salmon bug indicates the safe margini@laogferent) of

the reference speed. Hence we need to introduce a formal relation betweeretfie ext
of the bug and the safe margin speed - a constraint spanning the abstraparaeg-

tual levels. This is done by definifgplmonExtent as an interpreted constant which
represents, at the perceptual level, the valugsafe:

SalmonExtent Angle = Ssafe/ ScaleFactor

Once this is done it becomes easy to prove sequent 2. The other three sequent
are of similar nature and easily proven once the relation above is esthliShe
proof tree for the final proof is shown in figure 5. The rewritinfy SalmonExtent
to Ssafe/ScaleFactor is not shown explicitly as it is done automatically by thei nd
rule.

! Skolem constants are arbitrary representatives for digghtiariables.
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Fig. 5. Proof tree forapproach_speed_task

3.4 Configuration change task

Having proved the equivalence of the logical and perceptual operators apgiteach
speed task in the revised version of the specification, we will now attendatthe same
for the configuration change task. The conjectures that represent the eqawalre
introduced in theonA Slequivalence (see figure 4). The first sequent for this conjecture
is:

Sequent 3 configurationchangetask:

{1} (Vv (absasi: AbstractAS):
configChangeChec¢hkbsasi) = asiConfigCheclp(absasi)))

We start the proof by skolemizing and expanding definitions. Evelytuad reach a
point where, after introducing the definition wéxt_counterclockwise, the proof splits
into two subgoalsdonfigurationchangetask.landconfigurationchangetask.?d.

Proceeding with the first subgoal, after expanding definitions and sdthenatic
simplifications the proof is again divided into two further subgd@snfiguration-
_changetask.1.landconfigurationchangetask.1.2. The first is represented by the fol-
lowing sequent, wherecbugindex is a skolem constant representing the index of the
first bug just below the needle (which we interpretimfigChangeCheck as represent-
ing the current configuration):



Sequent 4 configurationchangetask.1:

{-1} posn(rho.BugSe¢Smm(absas))(ccbugindey) <
posr(rho_NeedléVc(absasli)))
{-2} (v i+ nay:
j < ccbugindex=
posr(rho.BugSedSmm(absasi))(j))
> posr(rha_Needl€Vc(absasl)))
{1} (Vc(absasl) < Smm(absasl)(Cc(absasi)) + Smargin=
configBugCheclrho_Needl€Vc(absasi)),
rho_.BugSedSmm(absasi))(ccbuginde))

The sequent can be read asaébdle points to a velocity above or equal to the bug
ccbugindex (antecedent -1), and all bugs abevdugindex are also above the needle
(antecedent -2), then, testing that the current (abstract) veldcigbsasf) is below
the minimum manoeuvering speed of the current configur&iongiabsasi) (Cc(absasf))
plus the safe margin, yields the same result as performingnigBugCheck on the
needle and the bug just below the needle.

[
T
(lemma "next_counterclockwise")
\
T
(apply (repeat (inst?)))
\
T
(prop)
‘ =
(skolem -2 "ccbugindex”)
\
il i
Simplifying (lemma "inv_abs_asi")
\
- -

\
(lemma "cc_bugs") Simplifying
\

—_—
= =

Fig. 6. Schematic proof tree faronfiguration_change_task



This is not unexpected and should be true, as we interpret the bugejast the
needle as indicating the current configuration. To prove it, we must leg@bstablish
that Cc(abs_asi’) (the configuration index at the logical level) ancbugindex (the
configuration index at the perceptual level) point to the same minimamoeuvering
speed.

Assumption 2 Thus we expose the second assumption - that the bug just below the
needle indicates the current configuration. The effect of this assumpgtiornaissign a
meaning (in terms of configuration) to regions of the airspeed indidata - a vital
representational property that Hutchins dwells on in some detail [6prdoeed with

the proof, we formalise the assumption with the following axiom

cc_bugs: AXIOM
vV (i: nat):
((posn(buggasi)(i)) x ScaleFactoK Vc(absasi))A
(—Ei (] nat):
j < iA
(posn(buggasi(j)) x ScaleFactoK
Vc(absasi))) =
i = Cc(absasi)

After applying the axiom, we proceed once again by expanding definitiahsiapli-
fying. Eventually, the subgoal is further subdivided into two godils, both of which
are easy to prove. We are left with subgoahfigurationchangetask.2 This subgoal
is represented by the sequent:

Sequent 5 configurationchangetask.2:

|
{1} (3 (i: nab:
(Smm(absasi)(i) / ScaleFactox Vc(absasi) / ScaleFactor

Assumption 3 This condition is generated by the preconditionéxtcounterclockwise
Combining this with the axiorac_bugsyields a third assumption about the system. As
failing to change configuration before dropping below the minimum eeanering is

a critical item, it is generally assumed that this is never the case. Withmwtlkdge

of this constraint, we would have to conclude that the presentatioradequate for
representing configuration and would have to be changed or used in coojuwith
some other perceptual artefact. Formalising the assumption, we ictdlde following
invariant forAST:

inv_absasi: AxioM V(absasi: ASI) : Vc(absasi) > Smmabsasi)(Cc(absasi)



A very interesting aspect of this assumption is that it iperationalconstraint (that

the pilotmustkeep the aircraft in an appropriate configuration for the speed), on which
the success of the representation (that it reflects the current configuiatiaged, and
further illustrates how abstract and representational properties arenimed. Using

the above invariant the proof for this subgoal can be finished. Thef pree for the
final proof is shown in figure 6.

3.5 Summary

In the process of verification, we identified three significant changesgifiotm of
assumptions about the system, to the specification. Each of these assisrigderived
as a direct result of the sequent at which it is introduced. Two of theddidiiged
aspects of the abstract level that needed to be better represented at the peraagtual le

— the extent of the salmon bug had to be explicitly related to the safe spasgin,
in order for the perceptual operatamfigBugCheck to work properly;

— the relationship between bugs and current configuration had to be madtexpl
order for both operators of the configuration change task to be equivalent

The third brought out the implications of some of the assumptioa were making
about the interface and showed us that those issues were not been inclodedir

stract model. The most important point to grasp is that each of the atismsmpdded
to enable completion of the proof had a representational basis and conceatedop-

erties of the presentation.

In summary, checking for consistency between an abstract specification of the in
teractive system and the presentation for that system, allowed us notoblstter
understand the issues involved at the interface level and what assuswgoa being
made, but also to see how assumptions made at the perceptual level relate thack to
system itself. Additionally, the verification process was valuablean ittallowed us to
identify a number of minor bugs in both specifications.

Finally, although these proofs are not so complex that it would feasible do them
by hand, we found the prover to be helpful in two ways:

— PVS has a number of powerful proving commands that, most of the timeagan s
us a lot of time and patience — as we use more and more concrete specifications
of the perceptual level, so the theorem prover will become more and mefd irs
this regard

— at a different level, by beingptally impartial, the theorem prover better exposes
assumptions we are making about the system. Had the verification beempfo
by hand, some of those assumptions might have crept into the pnooticed.



4 Conclusions

The stated aims of this paper were to provide a means for integratingsesgational
reasoning into a design process, and to explore further the verifiqgatimess.

We have shown that by employing@mal model which allows us to address rep-
resentational issues, we provide both a rigorous and precise framégvaeasoning
about representation, and confidence that reasoning over the abstract statathioé
presentation level.

We have also shown how the verification process improves our undersgamid
the specification, and in particular brings out assumptions about gtersywhich are
embedded in the representation. We consider it an interesting aspect ofottespr
that some issues have emerged purely from the effort of formalisatibareas oth-
ers emerge only when we attempt to verify the relationship between thealogid
perceptual operators.

Each of the assumptions brought out by the verification process had amtémp
representational significance and a direct correspondence with Hutchinssnallyde
the first concerned a simple relationship between abstract state and represetitat
second established tlimplicit representation of current configuration by the configu-
ration change bugs. The final assumption exposed an operational cansttaah is
not part of the abstract system model, yet which is vital for the succe$egfresen-
tation. Thus it is not merely a question of errors or omissions engpecification, but
additional information and understanding which emerges from the apalysi

Representations are, of course, only one part of the distributed oggeitstem;
one interesting area for future work would be to consider a wider rafigegnitive
resources, for example by employing the resources model of [10].
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A ASIPVS theory

ASI|: THEORY
BEGIN

Speed TYPE = nat

Speeds TYPE = sequenciSpeedl

Configuration TYPE = nat

AbstractASI: TYPE = [# Vc: SpeedCc: ConfigurationSmm: SpeedsVref: Speed#]
Smargin: Speed

Ssafe Speed

absasi: VAR AbstractASI

inv_absasi: AxioM Vc(absasi) > Smm(absasi)(Cc(absasi))

inv_absasi2: AxioMm V (i,j: nal): i < j< Smm(absasi)(i) > Smmabsasi)(j)
configChangeCheckasi: AbstractAS)) : bool = Vc(as) < Smmasi(Cc(asi)) + Smargin
approachSpeedChedNc, Vref : Speed) : bool = Vref - Ssafe< Vc A Ve < Vref + Ssafe

END ASI

B perceptualASI PVS theory

perceptualASt THEORY
BEGIN



ASSUMING
IMPORTING ASI
ENDASSUMING
Angle: TYPE = nonnegreal
ASINeedle: TYPE = [# posn: Angle#]
ASISpeedBug TYPE = [# posn: Angle, extent: Angle#]
ASISpeedBugs TYPE = sequenciASISpeedBuf
ASIScale: TYPE = [# interpret: [Angle — nonnegreal #]

ASlInstrument
TYPE = [# needle ASINeedlebugs: ASISpeedBugssalmonbug ASISpeedBugscale: ASIScalet]

ScaleFactor posreal

BugExtent Angle

SalmonExtent Angle = Ssafe/ ScaleFactor

bug posnextent: AxioM V (bug: ASISpeedBuy: posr(bug) - extenfbug) > 0
asi: VAR ASlInstrument

absasi: VAR AbstractASI

inv_ASlIinstrument AXIOM
vV (i,j: nat):
i< j=
(posn(buggasi)(i)) > posr(buggasi(i))A
posr(buggasi(i)) - extentbuggasi(i))
> posr(buggasi(j)) + extentbuggasi(j)))

cc_bugs: AXIOM
Y (i: nap):
((posr(buggasi)(i)) x ScaleFactoK Vc(absasi)A
(—Ei (] nat):
j <A
(posr(buggasi)(j)) x ScaleFactoxK
Vc(absasi))) =
i = Cc(absasi)

rho_Needl€(v : Speed): ASINeedle = (#posn = v / ScaleFactol)

rho_BugSeq(s : Speedy) : ASISpeedBugs=



A (i: nab): (#posn = s(i) / ScaleFactgrextent = BugExten#)
rho_Salmor{(v : Speed): ASISpeedBug= (#posn = v / ScaleFactgrextent = SalmonExten#)
rho_Scale: ASIScale = (#interpret = A (a: Angle): ScaleFactox a#)

p((a: AbstractAS)) : ASlInstrument=
(#needle = rho_NeedléVc(a)),
bugs = rho_BugSe@Smm(a)),
salmonbug= rho_Salmor{Vref(a)),
scale = rho_Scale#)

in_arq((needle ASINeedlg, (astarfaend: Angle)) : bool = astart< posr(needl§ A posr(needl§ < aend
nextcounterclockwise [[ASINeedle ASISpeedBugs — ASISpeedBup

nextcounterclockwise AXIoM
V (needle ASINeedlebugs: ASISpeedBugdbug: ASISpeedBugy
(3 (i: nat): posrbuggi)) < posr(needlg) =
(nextcounterclockwisgneedlebugsy = bug<
(3 (i: nab):
buggi) = bugh
posn(buggi)) < posrneedlgA
(V (j: nap:
j < i= posr(buggj)) > posrneedlg)))

getCurrentBug(needle ASINeedlg, (bugs: ASISpeedBugs:
ASISpeedBug= nextcounterclockwisgneedlebugg

salmonBugChedKneedle ASINeedlg, (bug: ASISpeedBuy) : bool =
in_arqneedle posr(bug) - extentbug), posr(bug) + extenfbug))

configBugCheck(needle ASINeedlg, (bug: ASISpeedBug) : bool =
in_ara needleposr(bug), posrbug) + Smargin/ ScaleFactor

asiConfigChecl(asi: ASlinstrumen}) : bool =
configBugCheckneedléasi), getCurrentBugneedl€asi), buggasi))

END perceptualASI



