
Polytypic Recursion Patterns

L. S. Barbosa, a J. B. Barros, a J. J. Almeida a

a Computer Science Department, University of Minho, Portugal
{lsb,jbb,jj}@di.uminho.pt

Abstract

Recursive schemes over inductive data structures have been recognized as category-
theoretic universals, yielding a handful of equational laws for program construction
and transformation. This paper introduces the implementation of such recursion
patterns as type parametric, or polytypic, functionals in the Camila prototyping
language. Several examples are discussed.

1 Introduction

Polytypic or generic programming [8,10] deals with algorithmic constructions
that are defined uniformly over a (large) class of data types and, therefore,
abstracted with respect to their type constructors. In fact, a polytypic pro-
gram distinguishes itself from a polymorphic one in that the parameter is a
type constructor (i.e., a map, like “tree” or “sequence”, from types to types)
rather than a type (e.g., an “integer” or a “tree of strings”). The potential
advantage of genericity is that it makes possible to write programs to deal
with an entire class of problems once and for all, instead of writing new code
for each different instance. Besides this increased potential for reuse, generic
programs get stripped of irrelevant detail, becoming eventually more reliable
and easier to reason about.

The notions of a functor and of its algebra, borrowed from category the-
ory, provide the right level of abstraction to derive polytypic programs. Recall
that a category is basically a space of similar structures — the objects — and
structure-preserving transformations — the arrows. Categories may therefore
act as representations of particular computation models by taking types as
objects and operations upon them as arrows. In such a setting, giving a type
constructor amounts to specify both a way of building new types from old

? Partially supported by LogComp (PRAXIS XXI - 2/2.1/TIT/1658/95).

Preprint submitted to Elsevier Preprint 27 December 2005

and of lifting to the new types the operations defined on their components.
In functional programs over sequences, the later is known as the map func-
tional. These two aspects are joined together in the notion of a functor, i.e.,
a transformation of categories acting uniformly upon objects and arrows.

Is there a common principle underlying standard recursive programs over,
e.g., natural numbers, sequences or binary trees? A reasonable answer would
stress the relationship between the recursion pattern and the structure of the
data involved. There are, of course, different recursion patterns, with varying
degrees of applicability, but all of them can be recognized as depending on
the shape of the data structure that the algorithm consumes, generates or (as
discussed in section 6) simply “rests on”. Therefore they can be incorporated
on real programming languages as polytypic functionals. This is the point
of the present paper. Five common kinds of recursive patterns, abstracted
over the type constructors, are primitively incorporated in Camila. Suitable
instantiations are automatically generated for each user-defined datatype.

Camila [1] is an experimental platform for formal software development,
providing a functional prototyping kernel and a refinement calculus [15] for
model-oriented specifications [11]. If there is a slogan characterizing this ap-
proach to software engineering, it will state something like “specify the data
models and the rest will be given”. Our contribution amounts to include re-
cursion patterns in such a “rest”. The paper should be read as a “proof of
concept”, in the sense that it reports on a practical implementation of recent
and challenging developments. The Camila basic datatypes and the defini-
tion mechanism are introduced in the next section. Then, section 3 discusses
canonical recursive schemes over inductive data types and the way they are in-
corporated in the language. Section 4 provides a non trivial case-study — the
Davis-Putman procedure for testing validity of propositional formulae. Some
work in progress in reported on section 5.

The categorical view of datatypes, which underlies this research area, dates
back to the ADJ group [5], and more recently, to the contributions of T. Hagino
[7] and G. Malcolm [12]. The relevance of universal properties to program
derivation was first recognized by Backhouse in [3]. References [14,13] and
[16] introduce the recursion functionals discussed here. Reference [4] provides
a tutorial introduction.

2 Data Modeling in Camila

Camila has been designed as a language for rapid prototyping of model-
oriented specifications. and resembles a centenary notation of naive set the-
ory, something we are used to regard as a tool to think with. In fact, the
Camila prototyping environment is just a calculator for a fragment of set
theory. For most practical purposes one can take as a semantic universe for

Camila specifications the category Set of sets and set-theoretic functions.
However this is not exactly so: an order-enriched category is needed as long
as one wants to deal with partiality and guarantee unique solutions to type
equations 1 . Datatypes are specified as combinations of regular functors and
the direct powerset functor P , over the semantic category. Therefore, as basic
constructors Camila provides Cartesian product (A×B), sum (A + B) and
exponential (AB), to express aggregation, choice and functional dependence,
respectively.

Product

The cartesian product of X and Y is the set X×Y = {(x, y)| x ∈ X ∧y ∈ Y }
together with the projection morphisms π1 : X×Y −→ X and π2 : X×Y −→
Y defined by π1(x, y) = x and π2(x, y) = y. The product type in Camila is
declared as X * Y, with p1, p2, ..., as projections. Being a functor, it may
also be applied to functions f : X −→ X1 and g : Y −→ Y 1, yielding
f × g : X×Y −→ X1×Y 1 such that f × g = λ (x, y) . (f x, g y). In Camila
this is written as prod(f,g) or (f _x_ g) 2 .

The universal arrow associated to products is splitting. Given f : W −→
X and g : W −→ Y the split of f and g is the function 〈f, g〉 : W −→
X × Y defined as 〈f, g〉 = λ w . (f w, g w). The concrete Camila syntax is
split(f,g).

The language also provides a record type, isomorphic to an n-ary product,
but with projections identified by user-defined labels. The concrete syntax
is L1:X L2:Y, where L1 and L2 are (optional) labels. When processing type
declarations, Camila generates automatically not only such selectors, but
also a constructor with the name of the type, as well as bridging functions to
witness the isomorphism between a record type and the corresponding simple
product, e.g.

T = L1:X L2:Y
out-T //

X * Y
in-T

oo

In practice such functions are quite useful as they allow to take a record type
value, convert it to a simple tuple, apply standard functions (such as prod or
split) and build again the result as a record.

1 A suitable candidate is Cpo, the category of pointed complete partial orders, imposing
a definedness order on each type. This is the default universe for functional languages
semantics (see e.g. [4]), although, as a category, it lacks some structure. For example sums
fail to be coproducts and moreover the corresponding universal property holds only for
strict functions. In the sequel, however, we will not bother excessively about such semantic
considerations.
2 Its generalization to n-ary products is sprod(l), l being a sequence of functions. Such
generalizations are valid for all constructors to be introduced in the sequel. The rule is to
append the prefix s to the operator name and supply the argument as a sequence of suitably
typed functions. So one ends up with an ssum, an ssplit, an seither, and so on.

Sum
Dualising the product construction one gets the sum (or disjoint union) of two
types. This is defined, in Set, as X +Y = ({1}×X)∪({2}×Y), together with
the embedding morphisms i1 : X −→ X + Y and i2 : Y −→ X + Y verifying
i1(x) = (1, x) and i2(y) = (2, y). The corresponding Camila syntax is X +
Y, with the embeddings i1 and i2 written as i1 and i2, respectively. Camila
also provides origin-identifier predicates is1 and is2, widely used e.g. in the
Vdm metalanguage [11]. As a (bi-)functor its action on functions is given by
f + g : X + Y −→ X1 + Y1 such that

f + g = λ t .

{
i1(f x) if t = (1, x)
i2(g x) if t = (2, x)

In Camila this construction is written as sum(f,g) or (f _+_ g). The
universal associated to a sum 3 is the either construction: given f : X −→ W
and g : Y −→ W , [f, g] : X + Y −→ W is defined as

[f, g] = λ t .

{
f x if t = (1, x)
g x if t = (2, x)

and written in Camila as either(f,g).

To achieve compatibility with other formal methods notations, Camila
also offers a more verbose version of sums in which the embeddings are expli-
citly labelled by the component types, instead of being so positionally. The
resulting type is called an alternative and is written as T = X | Y . The
origin-identifier predicates is-X and is-Y are automatically generated from
the type declaration 4 . So are the bridging functions (out-T and in-T) to
convert to and from simple sums. The notation [X] is used for the case X +1,
where 1 stands for the singleton set (represented in Camila by ONE, whose
canonical inhabitant is the constant NIL), due to its heavy use in modeling
exception situations and design partiality.

Exponential

The exponential type Y X , declared as X --> Y, corresponds to the space of
operations (total functions in Set, continuous functions in Cpo) from X to
Y . Therefore, functions are first class citizens in Camila. In particular,
they can be given as arguments or returned as a result to other functions.
Moreover they may appear in the definition of other types, for example to
model a record type in which some components are themselves operations.
Standard constructions on a function space include: composition (f _o_ g),
identity (id, defined as λ x . x), curry (curry, the well-known isomorphism
CA×B −→ CBA

) and constants (_c v, denoting v , λ x . v, for a value v).

3 but be aware of the restriction mentioned in footnote 1.
4 The summands may carry an optional label, as in T = L:X | K:Y , generating is-L
and is-K.

Derived Constructors

The kernel language also includes the following derived constructors, for finite
A and B: PA (finite subsets), A⇀C (finite mappings), defined as

∑
K⊆A CK ,

and A∗ (finite sequences), defined as
∑

n⊆N An, i.e., the initial solution of the
polynomial functor FX = 1 + A×X.

By functoriality, all those constructs act upon functions (either primitive
or user-defined) lifting its effect to the generated structure. For example, the
expressions (f-set)-seq and (f-seq)-set correspond, respectively, to the
action upon the function f : A −→ B of the functors P ∗ and P ∗.

3 Generic Recursive Functionals

Functors and Algebras

Under the slogan type constructors are functors, let us consider now the defin-
ition of recursive types in Camila. A sequence, for example, is either empty
or consists of a distinguished element (the head) and another sequence (the
tail). A binary tree may also be empty or aggregate information into the root
node and two subtrees. A useful variant stores effective information only on
the leaves. And so on. Notice that all those examples can be modeled by a
polynomial functor, which is basically a n-ary sum (of alternatives) of m-ary
products (of information associated to each alternative). In particular

FNat X = 1 + X natural numbers

FSeq X = 1 + A×X sequences

FBin X = 1 + A×X ×X binary trees

FLef X = A + X ×X leaf trees

Natural numbers and sequences are primitively defined in Camila, but the
other cases have to be declared together with explicitly named constructors.
As it will become clear below, those are necessary to allow for the automatic
generation of the recursion functionals. For example, the datatype of leaf
trees, corresponding to FLef and polymorphic on A, is declared as

Ltree = lLtree | nLtree;
lLtree = leaf: ANY;
nLtree = left: Ltree right: Ltree;

From such a declaration Camila generates, as explained above, the con-
structors lLtree and nLtree, and the projections leaf, left and right.
Moreover it also generates the functorial extension of Ltree, named map-Ltree 5 .

The inductive type T arises, in each case, as the solution to the equation
X ∼= F X. This isomorphism is witnessed by a bijection whose components
are inF : F T −→ T and outF : T −→ F T . The former specifies how values of

5 The functorial extension of a type F is always denoted by map-F.

T are built from a set of constructors. For example inFSeq
is the either of the

sequence constructs nil : 1 −→ T and cons : A×X −→ T , written in Camila
as either(_c <>, cons). Dually, the latter describes how values of T can be
observed. Again, for the FSeq example, this is written in Camila as

out-Seq <- (_c <> _+_ split(hd,tl)) _o_ grd(eqk(<>));

where eqk(<>) is the predicate lambda(l). l == <> and grd transforms
a predicate p on a set A into a guard p? : A −→ A + A, separating the values
of A for which p holds from the others it does not. In the general case, for
an arbitrary datatype F, the system generates both the functionals in-F and
out-F. For example, for FLef we get

in-Ltree <- either(lLtree, nLtree);
out-Ltree <- (leaf _+_ split(left, right)) _o_ grd(is-lLtree);

or, in a more verbose, pointwise notation,

out-Ltree <- lambda(t). if (is-lLtree(t) -> i1(leaf(t)),
is-nLtree(t) -> i2(<left(t), right(t)>));

Catamorphisms

The values of T are terms and, in fact, the pair 〈T, inFSeq
〉 is the term-algebra

for the FSeq functor. Again the designation is borrowed from category theory,
where the algebra for a functor is simply an arrow from F X to an object X,
called the carrier. This simple notion is extremely expressive. In particular,
there is a one to one correspondence between algebras for certain Set-functors
and the usual notion of an algebra in Universal Algebra. The term-algebra
corresponds exactly to the one which is initial among all such arrows. Being
initial means that there is exactly a unique arrow from its carrier to any other
algebra, i.e. the function h represented by a dotted arrow in the following
diagram. For this example T is well known to be isomorphic to A∗.

C 1 + A× C
foo

T

h

OO

1 + A× T

id+id×h

OO

inFSeq

oo

It is the existence and uniqueness of such an arrow h that makes possible
definition and proof by induction, respectively. That is actually the reason
why such datatypes are classified as inductive. Observe now that h corresponds
to what has been known in functional programming as a fold operator: the
algebra f specifies an algorithmic step, while F h takes care of recurring and
seeking termination. To see this instantiate the parameter A with the natural
numbers and define f as [0, +]. The diagram expresses the equation

h · [nil, cons] = [0,+] · (id + id× h)

or, going pointwise,

h nil = 0
h cons(x, l) = x + h l

In general, by choosing a different monoid for f , one gets the corresponding
monoidal reduction. Notice that h is totally determined by the datatype
shape, F, and the one step function f . Following [14], h is written as ([f])F

and called the F-catamorphism on f . The diagram for the general case is

C F C
foo

T

([f])F

OO

F T

F ([f])F

OO

inF

oo

whose commutativity expresses the following universal property:

h = ([f])F ⇐⇒ h · inF = f · F h

The construction ([]) is a polytypic functional, as it is parametric on the type
constructor F. Moreover it codifies a structural recursion pattern entirely
determined by the underlying data structure. This functional is generated in
Camila as cata-F.

Paramorphisms

In several cases the result of a recursive function may depend not only on
computations in substructures of its argument, but also on the substructures
themselves. When applied to the particular case of the inductive definition of
the natural numbers (cf., FNat), such a pattern is known as primitive recursion.
In the general case, this can be captured by considering the application of F
to the product of the result with the inductive type as the source of f . This
smooth generalization of the cata recursion pattern is due to [13] and known
as a paramorphism. It is defined in the following diagram

C F (C × T)
foo

T

parF f

OO

F T

F 〈parF f,id〉
OO

inF

oo

which entails the following universal property

h = parF f ⇐⇒ h · inF = f · F 〈h, id〉

The usual factorial function arises by suitable instantiation of the diagram:

N 1 + (N× N)
foo

N

parFNat
f

OO

1 + N

id+〈parFNat
f,id〉

OO

inFNat

oo

This is specified in Camila as

fac <- para-Nat(facstep);
facstep <- either(_c 1, (mul _o_ (id _x_ succ)));

Anamorphisms

A new recursion functional is obtained by reversing the arrows in the cata-
morphism diagram. Technically this means we turned attention to coalgebras
for F, i.e., arrows from T to F T . As our working category is order-enriched,
type equations have unique fix points and this makes T also the carrier of
the final coalgebra. And, again, this entails a universal property: there is
a unique arrow from any other coalgebra to 〈T, outF〉 respecting the functor
structure, i.e., making the following diagram commute. Such unique arrow is
called an F-anamorphism and written, for a given f , as [(f)]F , or, in Camila,
ana-F(f),

T
outF // F T

C f
//

[(f)]F

OO

F C

F [(f)]F

OO

entailing

h = [(f)]F ⇐⇒ outF · h = F h · f

As an example take again FSeq and choose as a target coalgebra the function
apstep : A∗ × A∗ −→ 1 + A× (A∗ × A∗) defined in Camila as

apstep(k,l) = if ((k == <> /\ l == <>) -> i1(NIL),
(k == <> /\ l != <>) -> i2(<hd(l), <k, tl(l)>>),
(k != <>) -> i2(<hd(k), <tl(k), l>>));

This function specifies an iteration step. Its anamorphism [(apstep)]F —
written in Camila as ana-Seq(apstep) — computes the concatenation of a
pair of lists, polymorphic on A. The recursion pattern in order is now unfold-
ing : the result is generated from new seed values progressively produced in
each iteration. The function [(apstep)]F is often said to be defined coinduct-
ively 6 .

6 The expressive power of anamorphisms can only be clearly appreciated in categories,
such as Set, in which type equations do have different fix points. In that case the least fix
point corresponds to the inductive type whereas the greatest one becomes the carrier of the

Apomorphisms

The concatenation algorithm above does not look particularly efficient as both
arguments are copied to the resulting sequence. A better solution is provided
by immediately returning the second argument as soon as the first list gets
exhausted. This is expressed by a slightly more general functional, which
is the formal dual to the paramorphism pattern discussed above. The new
functional is called an apomorphism (first introduced in [16]) and allows for
the final result to be either generated in successive steps or “all at once”
without recursion. Therefore, the codomain of f becomes C + T , instead of
simply C. The diagram is

T
outF // F T

C f
//

apoF f

OO

F (C + T)

F [apoF f,id]

OO

which entails the following universal property

h = apoF f ⇐⇒ outF · h = F [h, id] · f

The usual algorithm for list concatenation arises then as apoFSeq
apstep1 in

A∗
outFSeq // 1 + A× A∗

A∗ × A∗
f

//

apoFSeq
apstep1

OO

1 + A× (A∗ × A∗ + A∗)

id+id×[apoFSeq
apstep1,id]

OO

In Camila one writes

apseq1 <- apo-Seq(apstep1);
apstep1(k,l) = if ((k == <> /\ l == <>) -> i1(NIL),

(k == <> /\ l != <>) -> i2(<hd(l), i2(tl(l))>),
(k != <>) -> i2(<hd(k), i1(<tl(k), l>)>));

Hylomorphism

The last recursion pattern, implemented as a functional in Camila has a
surprisingly wide application in practice. In fact, it abstracts the common
algorithmic principle “unfold and then fold”, i.e., unfold the argument to
populate an intermediate data structure and, then, fold over such structure
to build the intended result. This functional, known as a hylomorphism [14],

coinductive type, usually expressing non finite constructions. For example the coinductive
type associated to FSeq is the set of finite and infinite sequences, a structure closer to the
representation of a behavior than of a proper data structure.

is depicted in the following diagram and corresponds to the composition of a
cata with an anamorphism,

B F B
foo

T

([f])F

OO

outF //
F T

F ([f])F

OO

inF

oo

A g
//

[(g)]F

OO[[f,g]]F

FF

F A

F [(g)]F

OO

which entails the following universal property

h = [[f, g]]F ⇐⇒ f · F h · g = h

However the sequencing of an unfold and fold phases is replaced by a single
monolithic recursion which does not explicitly construct the intermediate data
structure. Also notice that the correctness of the definition depends crucially
on the uniqueness of fix points for the type equations. This has been the main
point in favor of moving from Set to an order enriched setting as a semantic
universe for functional languages.

The kernel of algorithms following this recursion pattern do lie on the
intermediate — actually virtual! — structure. Let us illustrate this point with
two more algorithms to compute the factorial function written in Camila.
Both of them begin by unfolding its argument n into an auxiliary structure
populated with its n predecessors. Then such collection is reduced to the
result value. The algorithms differ exactly on the intermediate structure: a
sequence in the first case, a leaf tree in the second. We end up with a single
or a double recursive algorithm, reflecting this crucial choice.

To give an hylomorphism in Camila amounts to specify the source coal-
gebra and the target algebra, respectively fa and fc, and dfa and dfc, in
the examples below. Then those functions are supplied to the hylo functional
corresponding to the functor characterizing the intermediate data structure.
Following are the codifications of the two versions of the factorial function.
The reader is invited to draw the corresponding diagrams.

fa <- either(_c 1, mul);
fc <- (_c nil _+_ split(id, pred)) _o_ grd(eqk(0));

fac1 <- hylo-Seq(fa,fc);

and

dfa <- either(id, mul);
dfc(p) =

let (n = p1(p), m = p2(p)) in
if ((n == m) -> i1(n),

(n != m) -> let (t = div(m .+ n, 2))
in i2(<<n,t>, <succ(t), m>>)

);

In this last case the hylomorphism is defined for n > 0 and the terminal
case supplied separately, i.e.,

fac2 <- lambda(n). if (n==0 -> 1, else -> hylo-Ltree(dfa,dfc)(<1,n>));

It is surprising the number of problems that can be modeled by hylo-
morphisms 7 . Moreover, from a specification point of view, the interest of
hylomorphisms lies in their potential to classify algorithms apparently unre-
lated. For example it becomes not only instructive, but also useful, from a
software engineering point of view, to find out that, e.g., the Fibonacci func-
tion and the double factorial or, on the other hand, quicksort and towers of
hanoi, do belong to the same families. The first two are FLef-hylomorphisms,
the other two hylos for FBin.

4 A Case Study

This section shows how a non trivial algorithm for testing the validity of
propositional formulae may be described in a very concise way as an hylo-
morphism, directly implemented in Camila. Some variants are considered
afterwards.

The Davis-Putman Procedure is a classical algorithm to test propositional
validity. The following short description is based on [6]. Let Φ be a proposi-
tion. Then,

(i) Test whether Φ belongs to a class of particularly simple propositions,
whose validity test can be performed in some trivial way; in this case
the procedure stops, yielding the value of this simple test.

(ii) Choose a propositional symbol p (from Φ) and compute
(a) Φ+ – a proposition equivalent to Φ assuming that p holds;
(b) Φ− – a proposition equivalent to Φ assuming that ¬p holds.

(iii) Apply the same process to both Φ+ and Φ−. The value to be returned
is the conjunction of these two partial results.

A Camila Implementation
We begin with the declaration of the datatype Prop of propositional formulae,
which is hopefully self-explanatory.

Prop = T: ONE | F: ONE | Not: Prop | And: Prop * Prop | Or: Prop * Prop;

7 See, for example, [2] for a systematic presentation of sorting algorithms as hylos on
different inductive types.

We may now try to capture the algorithm description directly by the fol-
lowing function in Camila.

davisPutman(phi) =
if (simple(phi) -> simpleT(phi),

else -> let (p = propSy(phi),
<phiplus, phiminus> = divide(p,phi))

in davisPutman(phiplus) /\ davisPutman(phiminus));

However, this definition can be both explained by, and rewritten as, a
hylomorphism over tree-like structure LB, a leaf tree with boolean leaves:

LB = LBleaf | LBnode;
LBleaf = lb: Bool;
LBnode = sy: ANY nl: LBtree rl: LBtree;

The hylomorphism is depicted in the following diagram

Bool Bool + Bool x Bool
foo

LB

([f])

OO

out-LB //
Bool + BT x BT

id+([f])×([f])

OO

in-LB
oo

Prop g
//

[(g)]

OO[[f,g]]

FF

Bool + Prop x Prop

id+[(g)]×[(g)]

OO

its genes, f and g, being defined as

f <- either(id, and);
g <- lambda(phi) . if (simple(phi) -> i1(simpleT(phi)),

else -> i2(divide(propSy(phi),phi)));

Therefore, the davisPutman function is rewritten as

davisPutman <- hylo-LB(f,g);

Let us take a look at the intermediate structure generated for a simple
case 8 . Let Φ be the proposition

(r ∨ ¬q) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ r) ∧ (q ∨ s ∨ ¬p) (1)

Let r be the propositional symbol used to split Φ; the propositions Φ+ and
Φ− are, respectively, (q ∨ s ∨ ¬p), and ¬q ∧ (p ∨ q) ∧ (¬p) ∧ (q ∨ s ∨ ¬p)

• Let p be the propositional symbol used to split Φ+; the propositions Φ++

and Φ+− are respectively, True, and (q ∨ s).
· The first of these (Φ++) falls under that class of simple cases; it will

therefore give rise to a leaf of the tree.

8 Conjunctive/disjunctive normal forms are particularly well-suited to perform the compu-
tation of Φ+ and φ−.

•

•

True

• True

True

•

False

•

• False

False

• False

False

r

p

True

q True

True

q

False

s

p False

False

p False

False

(a) (b)

Fig. 1. Davis Putman Procedure

· Let q be the propositional symbol used to split Φ+−; the propositions
Φ+−+ and Φ+−− are both True, thus giving rise to two leaves of the tree.

• Let q be the propositional symbol used to split Φ−; the propositions Φ−+

and Φ−− are, respectively, False, and p ∧ (¬p) ∧ (s ∨ ¬p)
· The first of these will result in a leaf of the tree
· Let s be the propositional symbol used to split Φ−−; the propositions

Φ−−+ and Φ−−− are, respectively, p ∧ ¬p, and p ∧ ¬p ∧ ¬p
Let p be the propositional symbol used to split Φ−−+; the propositions
Φ−−++ and Φ−−+− are both False.
Let p be the propositional symbol used to split Φ−−−; the propositions
Φ−−−+ and Φ−−−− are both False.

The tree generated by this execution is (as shown by the indentation above)
dipicted in Figure 1 (a).

Variants

Note that the intermediate nodes of the tree produced by the Davis-Putman
procedure do not carry any kind of real information. Suppose that, instead
of generating this tree, we decide to fill in the intermediate nodes with the
propositional symbols used to make the various branches. The tree would
then look like a binary decision tree to test for the validity of a proposition
(see Figure 1 (b)).

In order to produce this tree, a similar generation algorithm is used, but
determined by a slightly different data structure, as may be seen from the

following diagram

BT1
out-BT1 // Bool + Symb× BT1× BT1

Prop
g′

//

[(g′)]

OO

Bool + Symb× Prop× Prop

id+id×[(g′)]×[(g′)]

OO

Quite immediately one gets

formtree <- ana-BT1(g’);

The interesting point is that the gene of this anamorphism over BT1 is very
similar to the previous one. In fact,

g’ <- lambda(phi) . if (simple(phi) -> i1(simpleT(phi)),
else -> let (p = propSy(phi))

in i2(<p,divide(p,phi)>));

Not surprisingly, from this decision tree one can recover a proposition
which is equivalent to the original one. All we have to do is to write a suitable
catamorphism filling the diagram

Prop Bool + Symb× Prop× Prop
f ′

oo

BT1

([f ′])

OO

Bool + Symb× BT1× BT1
in-BT1

oo

id+id×([f ′])×([f ′])

OO

i.e.,

recover <- cata-LB1(f’);

with

f’ <- either(rAtom, rForm);

rAtom <- lambda(b). if (b -> T, else -> F);
rForm <- lambda(t). let (p = p1(t), t1 = p1(p2(t)), t2 = p2(p2(t)))

in And(Or(rAtom(p),t1), Or(Not(rAtom(p)),t2));

Pasting this diagram on top of the previous one, we get the composite

formtree _o_ recover

which corresponds to the hylomorphism

simplify <- hylo-LB1(f’,g’);

which can be used as a simplification procedure for propositional formulae.
Notice, however, that the structure of f’ is rather poor and, consequently,
the simplification achieved is minimal. By defining more sophisticated ways of
performing the catamorphism part, one may get a more effective simplification
procedure. A possible candidate is

f’’ <- either(rAtom, rForm’);

rForm’ <- lambda(t).
let (p = p1(t), t1 = p1(p2(t)), t2 = p2(p2(t)))
in if (is-T(t1)

-> if (is-T(t2) -> t1,
is-F(t2) -> rAtom(p),
else -> Or(rAtom(p),t2)),

is-F(t1)
-> if (is-T(t2) -> Not(rAtom(p)),

is-F(t2) -> t1,
else -> And(Not(rAtom(p)),t2)),

else
-> if (is-T(t2) -> Or(Not(rAtom(p)),t1),

is-F(t2) -> Or(rAtom(p),t1),
else -> And(Or(rAtom(p),t1), Or(Not(rAtom(p)),t2)))

);

yielding

simplify-indeed <- hylo-LB1(f’’,g’);

which, for example, simplifies proposition (1) to r ∧ q ∧ s ∧ ¬p.

5 Conclusions and Further Work

In summary, from an (inductive) type declaration, the Camila interpreter
generates a kit of functionals which act as the building blocks for user-defined
operations. It does so by instantiating polytypic versions of such functionals.
The kit includes the functorial action (map-F), initial algebra (in-F) and its
inverse (out-F), as well as the recursion functionals just described (cata-F,
para-F, ana-F, apo-F and hylo-F). Work in progress includes

• the design of a library of polytypic functions for Camila, in the spirit of
[9], but completely based in the recursion patterns described here, and their
classification by the datatypes involved.

• The articulation of these constructors with the embedding facilities of Cam-
ila to create (polytypic) hybrid, component-based, prototypes.

The interest of the recursion patterns discussed in this paper lies not only
their polytypic character, but also on the possibility they offer of writing struc-
tured definitions of recursive functions without making explicit the recursive
calls. In fact, programming exclusively in terms of generic functionals directly
derived from datatype definitions, such as catamorphisms or anamorphisms,
leads to a controlled, data driven, use of recursion. This may be as beneficial
to declarative programming as the removing of goto statements has been to
imperative languages twenty years ago.

References

[1] J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. Camila:
Prototyping and refinement of constructive specifications. In M. Johnson,
editor, 6th Int. Conf. Algebraic Methods and Software Technology (AMAST),
pages 554–559, Sydney, December 1997. Springer Lect. Notes Comp. Sci. (1349).

[2] L. Augusteijn. Sorting morphisms. In S. D. Swierstra, P. R. Henriques,
and J. N. Oliveira, editors, Third International Summer School on Advanced
Functional Programming, Braga, pages 1–27. Springer Lect. Notes Comp. Sci.
(1608), September 1998.

[3] R. Backhouse. An exploration of the Bird-Meertens formalism. CS 8810,
Groningen University, 1988.

[4] R. Bird and O. Moor. The Algebra of Programming. Series in Computer
Science. Prentice-Hall International, 1997.

[5] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra semantics
and continuous algebras. Jour. of the ACM, 24(1):68–95, January 1977.

[6] J. Goubault-Larrecq and I. Mackie. Proof Theory and Automated Deduction.
Kluwer Academic Publishers, 1997.

[7] T. Hagino. Category Theoretic Approach to Data Types. Ph.D. thesis, tech. rep.
ECS-LFCS-87-38, Laboratory for Foundations of Computer Science, University
of Edinburgh, UK, 1987.

[8] P. F. Hoogendijk. A generic theory of datatypes. Ph.D. thesis, Department of
Computing Science, Eindhoven University of Technology, 1996.

[9] P. Jansson and J. Jeuring. PolyP - a polytypic programming language
extension. In POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 470–482. ACM Press, 1997.

[10] J. Jeuring and P. Jansson. Polytypic programming. In T. Launchbury,
E. Meijer, and T. Sheard, editors, International Summer School on Advanced
Functional Programming, pages 68–114. Springer Lect. Notes Comp. Sci. (1129),
1996.

[11] Cliff B. Jones. Specification and design of (parallel) programs. In R. E.
A. Mason (IFIP), editor, Information Processing 83, pages 321–332. Elsevier
Science Publishers B. V. (North-Holland), 1983.

[12] G. R. Malcolm. Data structures and program transformation. Science of
Computer Programming, 14(2–3):255–279, 1990.

[13] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–425,
1992.

[14] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings
of the 1991 ACM Conference on Functional Programming Languages and
Computer Architecture, pages 124–144. Springer Lect. Notes Comp. Sci. (523),
1991.

[15] J. N. Oliveira. Software reification using the Sets calculus. In Proc. of the
BCS FACS 5th Refinement Workshop, Theory and Practice of Formal Software
Development, London, UK, pages 140–171. Springer-Verlag, 8–10 January 1992.
(Invited paper).

[16] V. Vene and T. Uustalu. Functional programming with apomorphisms
(corecursion). In Proc. 9th Nordic Workshop on Programming Theory, 1997.

	.1endcsname elax 0{Introduction} let eserved@d =[def def Introduction{Data Modeling in Camila}pdfoutline goto name{section.	hepart .2}count -.2endcsname elax 0{Introduction} let eserved@d =[def def Introduction{Generic Recursive Functionals}pdfoutline goto name{section.	hepart .3}count -.3endcsname elax 0{Introduction} let eserved@d =[def def Introduction{A Case Study}pdfoutline goto name{section.	hepart .4}count -.4endcsname elax 0{Introduction} let eserved@d =[def def Introduction{Conclusions and Further Work}pdfoutline goto name{section.	hepart .5}count -.5endcsname elax 0{Introduction} let eserved@d =[def def Introduction{References}pdfoutline goto name{section*.13}count -0{Introduction}

