
Partial Derivative Automata Formalized in Coq

José Bacelar Almeida3 Nelma Moreira1

David Pereira1 Simão Melo de Sousa2

1 DCC-FC & LIACC, University of Porto
Rua do Campo Alegre 1021, 4169-007, Porto, Portugal

{nam,dpereira}@ncc.up.pt
2 LIACC & DI, University of Beira Interior

Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
desousa@di.ubi.pt

3 CCTC & DI, University of Minho,
Campus de Gualtar, 4710-057 Braga,Portugal

jba@di.uminho.pt

Abstract. In this paper we present a computer assisted proof of the
correctness of a partial derivative automata construction from a regular
expression within the Coq proof assistant. This proof is part of a for-
malization of Kleene algebra and regular languages in Coq towards their
usage in program certification.

1 Introduction

The use of proof assistants has gained increasing importance in mathematics
and computer science. Their value in the assurance of theorem and algorithm
correctness is obvious, since all the steps and intricacies involved in the proof
process are formally and mechanically checked.

The use of the Coq proof assistant [BC04] for program verification is specially
attractive because correctness proofs can be compiled as proof certificates, and
the constructive components of the specification and proof development can be
extracted into functional programs.

In this paper we describe a formalization of regular languages in Coq. Our
main result is the proof of the correctness of a partial derivative automata con-
struction from a regular expression. This result is a step towards the imple-
mentation of a proved terminating, and correct, decision procedure for regular
expression equivalence based on the notion of (partial) derivatives. From such
implementation it is possible to extract a correct-by-construction functional pro-
gram, and it is also possible to develop proof tactics that automate the construc-
tion of proofs.

Kleene algebra can be used to capture several properties of programs. In this
setting, testing Kleene algebra terms equivalence can correspond to proving par-
tial correctness of programs. Defining and proving the correctness of a decision
procedure within a proof assistant that features proof objects4 allows to obtain
certificates that facilitate the automations of formal software verification.
4 In such systems proof objects are values that can be compiled into binary code.

The paper is organised as follows. In Section 2 we review some definitions
about regular languages and finite automata. The partial derivative automaton
and Mirkin’s construction are reviewed in Section 3. Section 4 presents a small
introduction to the Coq proof assistant. In Section 5 we describe the formaliza-
tion of regular languages in Coq and present the main result. In Section 6 we
comment on related work. Finally, in Section 7 we draw some conclusions and
point some future work.

2 Regular Languages and Finite Automata

Let Σ = {a1, a2, . . . , ak} be an alphabet (set of symbols). A word w over Σ is any
finite sequence of symbols. The empty word is denoted by ε. The concatenation
of two words w1 and w2 is the word w = w1w2. Let Σ! be the set of all words
over Σ. A language over Σ is a subset of Σ!. If L1 and L2 are two languages,
then L1 · L2 = {xy | x ∈ L1 and y ∈ L2}. The operator · is often omitted. The
power of a language L is inductively defined by L0 = {ε}, Ln = LLn−1, for
n ≥ 1. The Kleene star L! of a language L is ∪n≥0L

n. Given a word w ∈ Σ!

and L ∈ Σ!, the (left -)quotient of L by w is w−1L = {v | wv ∈ L}.
A regular expression (re) α over Σ represents a regular language L(α) ⊆ Σ!

and is inductively defined by: ∅ is a re and L(∅) = ∅; ε is a re and L(ε) = {ε};
a ∈ Σ is a re and L(a) = {a}; if α1 and α2 are re, (α1 + α2), (α1α2) and (α1)!

are re, respectively with L((α1 +α2)) = L(α1)∪L(α2), L((α1α2)) = L(α1)L(α2)
and L((α1)!) = L(α1)!. The alphabetic size of an re α is the number of symbols
of α and it is denoted by |α|Σ . The constant part of an re is denoted by ε(α) and
defined by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. The same function can
be applied to languages. Let RE be the set of regular expressions over Σ. If two
re’s α and β are syntactically identical, we write α ≡ β. Two re’s are equivalent
if they represent the same regular language, that is, if L(α) = L(β), and we
write α = β. The equational properties of regular expressions are axiomatically
captured by a Kleene algebra (KA), normally called the algebra of regular events,
after the seminal work of S. C. Kleene [Kle56]. A KA is an algebraic structure
(K, 0, 1, +, ·,!) such that (K, 0, 1, +, ·) is an idempotent semiring and where the
operator ! (Kleene’s star) is characterized by a set of axioms. The algebra of
regular events is given by (RE, ∅, ε, +, ·,!). There are several ways of axiomatizing
a KA but we considered the one presented by D. Kozen in [Koz94].

A non-deterministic finite automaton (NFA) A is a quintuple (Q, Σ, δ, q0, F)
where Q is a finite set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the
transition relation, q0 the initial state and F ⊆ Q is the set of final states. For
q ∈ Q and a ∈ Σ, we denote the set {p | (q, a, p) ∈ δ} by δ(q, a), and we can
extend this notation to w ∈ Σ!, and to R ⊆ Q. An NFA is deterministic (DFA)
if for each pair (q, a) ∈ Q × Σ, |δ(q, a)| ≤ 1. The language recognized by A is
L(A) = {w ∈ Σ! | δ(q0, w) ∩ F *= ∅}. The set of languages recognized by NFA’
s coincides with the set of languages represented by regular expressions, i.e the
set of regular languages.

Regular languages can be associated to sets of languages equations. Given an
automaton A = (Q, Σ, δ, q0, F) with |Q| = n + 1 we can consider Q = [0, n] and
q0 = 0. Let Li be the language recognized by the automaton ([0, n], Σ, δ, i, F), for
i ∈ [0, n] and L(A) = L0. Then, the following language equations are satisfied:

Li =
(

⋃k
j=1 {aj}Lij

)

∪ ε(Li), ∀i ∈ [0, n],

Lij =
⋃

m∈Iij
Lm, Iij = δ(i, aj) ⊆ [0, n]

(1)

Conversely any set of languages {L0, . . . , Ln} that satisfies the set of equations
(1) defines an NFA with initial state L0. In particular if Li are represented by
regular expressions α ≡ α0, . . . , αn the following set of equations holds:

α ≡ α0

αi = a1αi1 + . . . + akαik + ε(αi), for i ∈ [0, n]
αij =

∑

m∈Iij
αm, Iij ⊆ [0, n]

(2)

Given α ∈ RE, to find a set of re’s that satisfies (2) is tantamount to find an
NFA equivalent to α.

3 Partial Derivative Automata

There are several constructions to obtain NFA from re’s. Based on the notion
of derivative, Brzozowski [Brz64] established a construction of a DFA from a re.
The partial derivative automaton (Apd), introduced by V. Antimirov [Ant96], is
a non-deterministic version of the Brzozowski automaton.

For a re α ∈ RE and a symbol a ∈ Σ, the set ∂a(α) of partial derivatives of
α w.r.t. a is defined inductively as follows:

∂a(∅) = ∂a(ε) = ∅

∂a(b) =

{

{ε} if b ≡ a
∅ otherwise

∂a(α!) = ∂a(α) , α!

∂a(α + β) = ∂a(α) ∪ ∂a(β)

∂a(αβ) =

{

∂a(α) , β ∪ ∂a(β) if ε(α) = ε
∂a(α) , β otherwise,

where the operator , is defined as follows. Let S ⊆ RE and β ∈ RE. Then
S,β = {αβ |α ∈ S} if β *= ∅, and S,∅ = ∅ otherwise. Analogously, one defines
β , S. Moreover if S = {α1, . . . , αn}, let

∑

S denote the re α1 + · · · + αn.

Lemma 1 (Antimirov). For any a ∈ Σ and α ∈ RE, L(
∑

∂a(α)) = a−1L(α).

The definition of partial derivative can be extended to sets of regular expres-
sions, words, and languages. Given α ∈ RE and a ∈ Σ, ∂a(S) = ∪α∈S∂a(α) for
S ⊆ RE, ∂ε(α) = {α}, ∂wa(α) = ∂a(∂w(α)) for w ∈ Σ!, and ∂L(α) = ∪w∈L∂w(α)
for L ⊆ Σ!. Lemma 1 can be extended to words w ∈ Σ!. The set of par-
tial derivatives of α is defined by PD(α) = ∂Σ!α. An important fact is that
|PD(α)| ≤ |α|Σ +1. Given a regular expression α, the partial derivative automa-
ton Apd(α) is thus defined as

Apd(α) = (PD(α), Σ, δpd, α, {q ∈ PD(α) | ε(q) = ε}),

where δpd(q, a) = ∂a(q), for all q ∈ PD(α) and a ∈ Σ.

Proposition 1 (Antimirov). L(Apd(α)) = L(α).

Champarnaud and Ziadi [CZ01] proved that partial derivatives and Mirkin’s
prebases [Mir66] lead to identical constructions of non-deterministic automata.
We now review Mirkin’s construction. Given α ≡ α0 ∈ RE, the set π(α) =
{α1, . . . , αn}, where α1, . . . , αn are non-empty re’s, is called a support of α if
it satisfies the set of equations (2), where αij , for i ∈ [0, n] and j ∈ [1, k], is a
summation of elements of π(α). If π(α) is a support of α, then the set π(α)∪{α}
is called a prebase of α. B. Mirkin provided an algorithm for the computation of
a support of a re for which Champarnaud and Ziadi gave an elegant inductive
definition5.

Proposition 2 (Mirkin/Champarnaud&Ziadi). Let α ∈ RE. Then, the set
π(α), inductively defined by

π(∅) = ∅
π(ε) = ∅
π(a) = {ε}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α) , β ∪ π(β)
π(α!) = π(α) , α!,

is a support of α.

In his original paper Mirkin showed that |π(α)| ≤ |α|Σ . Furthermore, Champar-
naud and Ziadi established that PD(α) = π(α) ∪ {α}. This fact can be proved
noticing that Apd(α) verifies equations (1) which lead exactly to a language
based version of equalities (2) when considering αij =

∑

∂aj
αi, for i ∈ [0, n] and

j ∈ [1, k]. To prove Proposition 1 is then equivalent to prove Proposition 2. The
main result presented in this paper is the formalization of Proposition 2 in Coq.

4 The Coq Proof Assistant

The Coq proof assistant is an implementation of the Calculus of Inductive Con-
structions (CIC) [PM93], a typed λ-calculus that features polymorphism, depen-
dent types and very expressive (co-)inductive types. Coq provides users with the
means to define data-structures and functions, as in standard functional lan-
guages, and also allows to define specifications and to build proofs in the same
language, if we consider the underlying λ-calculus as an higher-order logic under
the Curry-Horward isomorphism programs-as-proofs principle (CHi) [SU98,How80].

In CHi, any typing relation t : A can either be seen as a value t of type A,
or as t being a proof of the proposition A. Any type in Coq is in the set of
sorts S = {Prop}∪{Type(i) | i ∈ N}. The Type(0) sort represents computational
types, while the Prop type represents logical propositions.

An inductive type is introduced by a collection of constructors, each with its
own arity. A value of an inductive type is a composition of such constructors.
As an example, natural numbers are encoded as follows:

I n d u c t i v e N : Type :=
| 0 : N | S : N → N .

5 That definition was corrected by Broda et al. [BMMR].

Coq automatically generates induction and recursion principles for each new in-
ductive type. More complex type families can be defined by combining inductive
constructions and dependent types in Coq. We now introduce the subset types
since they are used further ahead in this paper.

A subset type (or Σ-type) is a dependent type that combines datatypes with
predicates over these types, thus determining a subset of the original datatype.
In Coq, a subset type is defined as

I n d u c t i v e s i g (A : Type) (P :A → Prop) : Type :=
| e x i s t : ∀ x :A , P x → s i g P .

and has the special notation {x:A | P}. The constructor exist takes two argu-
ments: a value x of type A and a term of type P(x) which is a proof that x
verifies the logical properties of P. This last argument is usually called a certifi-
cate. Coq also provides nested subset types through the type

I n d u c t i v e s i gS (A : Type) (P :A → Type) : Type :=
| e x i s t S : ∀ x :A, P x → s i gS A P .

which can be denoted {x:A & P}, with P being either a sig or a sigS type. This
type permits one to consider the value of x from which we build values y such
that Q(x,y) holds, for a given predicate Q, thus resulting in certified pairs/tuples
of values.

In Coq, functions must be provably terminating. Termination is ensured by a
guard predicate that checks that recursive calls are always performed on struc-
turally smaller arguments. As an example, consider the function plus that adds
two natural numbers.

F i x p o i n t p l u s (n m: N) { s t r u c t n} : N :=
match n with
| 0 ⇒ m | S p ⇒ S (p l u s p m)
end .

The basic way of the Coq proof construction process is to explicitly build
CIC terms. However, proofs can be built more conveniently and interactively in
a backward fashion. This step by step process is done by the use of proof tactics.

Another appealing feature of Coq is the possibility to extract the construc-
tive parts of proof development into correct by construction functional programs.
Since the underlying logic of Coq is constructive, any value, proof included, can
be seen as a (functional) program. The extraction mechanism keeps the compu-
tational counterparts and translate them into standard funcional programs. On
the other hand, purely logical subterms are discarded since they are computa-
tionally non-informative.

Our formalization uses Coq module system, which allows to define both mod-
ule types, and the usual notion of modules. A module type is a signature of a
theory, that specifies its parameters and axioms. In an implementation of a mod-
ule type, computational interpretations must be provided for parameters, and
proofs must be given that assert the validity of the specified axioms. Modules
are collections of components that form an implementation of a theory.

In this paper we use the Coq libraries Ensembles and FSets that formalize
sets. The Ensembles library formalizes the notion of set as a characteristic pred-

icate. The base type is Ensemble (X:Type) := X → Prop. Set operations are also
provided. As an example, consider the singleton and the union:

De f i n i t i o n I n (U : Type) (P : Ensemble U) (x :U) := P x .

I n d u c t i v e S i n g l e t o n (U: Type) (x :U) : Ensemble U :=
| I n_ s i n g l e t o n : I n U (S i n g l e t o n x) x .

I n d u c t i v e Union (U: Type) (B C : Ensemble U) : Ensemble U :=
| Un i on_ in t r o l : ∀ x :U, I n U B x → I n U (Union B C) x
| Un ion_int ro r : ∀ x :U, I n U C x → I n U (Union B C) x .

The FSets library provides a rich implementation of finite sets over decidable
and/or ordered types.

5 Formalization in Coq

This section describes the main parts of our formalization in Coq. First we
present the formalization of regular languages and re’s.

5.1 Formal Languages and Regular Expressions

An alphabet sigma (Σ) can be specified as a non-empty list of symbols of a
type A. We also require that the type A is ordered, using the type Compare for
defining the axiom compare_sy, that ensures that any two elements of type A
can be compared.

I n d u c t i v e Compare (A : Type) (l t eq : A → A → Prop) (x y : A) : Type :=
| LT : l t x y → Compare l t eq x y
| EQ : eq x y → Compare l t eq x y
| GT : l t y x → Compare l t eq x y .

Module Type Alphabe t .
Parameter A : Set .
De f i n i t i o n A_eq := (eq A) .
Parameter A_lt : A → A → Prop .
Parameter s igma : l i s t A .
Axiom sigma_nempty : s igma '= n i l .
Axiom compare_sy : ∀ x y :A, Compare s y l t s y eq x y .

End Alphabe t .

Words are lists whose elements have type A, and that belong to sigma. A
word w is a valid word if w ∈ Σ! which correspond to the IsWord predicate.

De f i n i t i o n I s S y (a :A) := a ∈ s igma .
De f i n i t i o n word := l i s t A .

I n d u c t i v e IsWord : word → Prop :=
| n i l_IsWord : IsWord ε
| cons_IsWord : ∀ a :A , I s S y a → ∀ u : word , IsWord u → IsWord (a : : u) .

Languages are sets of words, that is, terms of type Ensemble word. The lan-
guages ∅, {ε}, {a} for a ∈ Σ, and language union are defined using the corre-
sponding Ensembles definitions. Concatenation and Kleene’s star are formalized
as the predicates · and ! as presented below. Equivalence of languages is denoted
by =L which is the standard set equivalence, and is represented by the predicate
Same_set.

De f i n i t i o n l anguage := Ensemble word .

De f i n i t i o n ∅ := (Empty word) .
De f i n i t i o n ε := (S i n g l e t o n word n i l) .
De f i n i t i o n ([S] x) := (S i n g l e t o n word (x : : n i l)) .
De f i n i t i o n (x ∪ y) := Union word x y .

I n d u c t i v e (L1 · L2 : language) : l anguage :=
| ConcL_app : ∀ w1 w2 : word , w1 ∈ L1 → w2 ∈ L2 → (w1 ++ w2) ∈ (L1 · L2) .

F i x p o i n t lpow (L : language) (n : N) : l anguage :=
match n with
| 0 => ε | (S m) => (L · (lpow L m))
end .

I n d u c t i v e (L : l anguage)! : l anguage :=
| starL_n : ∀ n : N w, w ∈ (lpow L n) → w ∈(L!) .

De f i n i t i o n (L1 =L L2 : language) := (Same_set L1 L2) .

Several properties of regular languages were proved, and, in particular, that
regular languages are a model for KA. This was accomplished considering the
KA implementation in Coq described in [PM08]. An extended description of that
proof is presented in [MPdS09].

Regular expressions are encoded by the inductive type re. The language of
any re α is obtained by applying the function re2rel to α. This function was
proved correct w.r.t. to RL, the predicate that defines regular languages over the
alphabet sigma (Theorem re2rel_is_RL).

I n d u c t i v e r e : Set :=
| r e0 : r e | r e1 : r e | re_sy : ∀ a :A , I s S y a → r e
| re_union : r e → r e → r e | re_conc : r e → r e → r e
| r e_s t a r : r e → r e .

F i x p o i n t r e 2 r e l (α : r e) : l anguage :=
match x with
| r e0 ⇒ ∅ | r e1 ⇒ ε | re_sy a H ⇒ ([S] a)
| re_union α1 α2 ⇒ (r e 2 r e l α1) ∪ (r e 2 r e l α2)
| re_conc α1 α2 ⇒ (r e 2 r e l α1) · (r e 2 r e l α2)
| r e_s t a r α1 ⇒ (r e 2 r e l α1) [∗]
end .

Coerc ion r e 2 r e l : r e ! l anguage .

I n d u c t i v e RL : language → Prop :=
| RL0 : RL ∅ | RL1 : RL ε | RLs : ∀ a , RL ([S] a)
| RLp : ∀ l 1 l2 , RL l 1 → RL l 2 → RL (l 1 ∪ l 2)
| RLc : ∀ l 1 l2 , RL l 1 → RL l 2 → RL (l 1 · l 2)
| RLst : ∀ l , RL l → RL (l !) .

Theorem r e2 re l_ i s_RL : ∀ α : re , RL α .

In the code above, re2rel was declared as a coercion which allows one to refer
to a given re α where its language is required, i.e., without explicitly referring
to re2rel(α). For instance, in the case of the concatenation of the languages
corresponding to the re’s α1 and α2, we write α1 ·α2 instead of (re2rel(α1))·(re2rel
(α2)).

5.2 Correctness of Mirkin’s Construction

We now present the formalization of our main result, i.e., given a re α, the
function π(α) computes a support for α.

The support π is formalized in Coq as a structural recursive function, and
thus its termination is ensured. The function _,_ is defined using the auxiliary
function fold_conc, which concatenates a re to the right of each element of a set
of re’s. A set of re’s is represented by the type re_set).

De f i n i t i o n fo ld_conc (s : r e_se t) (r : r e) :=
f o l d (fun x ⇒ add (re_conc x r)) s empty .

De f i n i t i o n + (s : r e_se t) (r : r e) : t :=
match r with
| r e0 ⇒ empty | _ ⇒ fo ld_conc s r
end .

F i x p o i n t π (r : r e) : r e_se t :=
match r with
| r e0 ⇒ ∅ | r e1 ⇒ ∅ | re_sy _ _ ⇒ {re1}
| re_union x y ⇒ (π x) ∪ (π y)
| re_conc x y ⇒ ((π x)+ y) ∪ (π y)
| r e_s t a r x ⇒ + (π x) (r e_s t a r x)

end .

The proof that π(α) ≤ |α|Σ is provided by Theorem PI_upper_bound, where
the function |_|Σ is defined by structural induction.

F i x p o i n t |α : r e | Σ : N :=
match r with
| r e0 ⇒ 0 | r e1 ⇒ 0 | re_sy s _ ⇒ 1
| re_union x y ⇒ (|x|Σ) + (|y|Σ)
| re_conc x y ⇒ (|x|Σ) + (|y|Σ)
| r e_s t a r x ⇒ |x|Σ
end .

Lemma PI_upper_bound : ∀ r : re , c a r d i n a l (π r) ≤ | r |Σ .

A support of a re is a set of re’s whose languages verify the right side of
equations (2). It is defined by the type MSupport which has two constructors.

I n d u c t i v e MSupport (r : r e) (s : r e_se t) : l anguage :=
| mb_empty : ∀ w: word , w ∈ ε(r) → w ∈(MSupport r s)
| mb : ∀ (w : word) (a : s y) (H: I s S y a) , ¬Empty s →

{x : r e & {s ’ : r e_se t | x ∈ s ∧ w ∈ ((re_sy a H) · x) ∧
((re_sy a H) · x) ⊆ r ∧ s ’ ⊆ s ∧ x =L LS s ’) }} →

w ∈ (MSupport r s) .

The first constructor, mb_empty, corresponds to the case where a word w
belongs to ε(r). The second constructor, mb, corresponds to the case where a
word w belongs to one of the other parcels of the summation in the right side of
equations (2). It has a Σ-type as argument which is a witness, (x, (s′, P)), that
P x s′ is a proof that for each a ∈ Σ, the parcel a · αil is such that αil is built
from an s′ ⊆ s. The argument ¬Empty s is introduced for technical reasons only
to facilitate proof construction.

The last, and main result, is the proof that π calculates the support for a
given re. This is established in the following theorem:

Theorem PI_is_MSupport : ∀ r : re , r =L MSupport r (π r) .

The proof of this theorem follows the original proof provided by Mirkin. The
proof is constructed by induction on α.

6 Related Work and Applications

Formalization of finite automata in Coq was first approached by J.-C. Filliâtre
in [Fil97]. The author’s aim was to prove the pumping lemma for regular lan-
guages and the extraction of an OCaml program. More recently, S. Briais [Bri08]
developed a new formalization of formal languages in Coq, which covers Fil-
liâtre’s work. This formalization includes Thompson construction of an automa-
ton from a re and a naïve construction of two automata equivalence based in
testing if the difference of their languages is the empty language. Braibant and
Pous [BP09] formalized KA based on Kozen’s algebraic proof of completeness
of KA, and provided reflexive tactics to automatically decide KA expression’s
equivalence. Pereira and Moreira [PM08] also presented a formalization of KA
and KAT in Coq. Kleene algebra with tests (KAT) [Koz97] extends KA with an
embedded Boolean algebra and it is particularly suited for the formal verifica-
tion of propositional programs. In particular, KAT subsumes propositional Hoare
logic (PHL) [KT00], a Hoare logic without the assignment axiom. Pereira and
Moreira provided a mechanically verified proof that the deductive rules of PHL
are theorems of KAT. However, no automation mechanisms were considered.

7 Concluding Remarks

In this paper we have described a formalization of regular languages in the Coq
proof assistant. Our main result is the correctness of Mirkin’s construction of
partial derivative automaton from a regular expression. The overall formalization
consists of approximately 2700 lines of specification code, and approximately
7900 lines of proof code.

The results of this paper provide the base for the correctness of a decision
procedure for re equivalence, based on the notion of derivative. This kind of
procedure was presented by several authors [Brz64,AM95,AMR09a,AMR09b].

This work is the continuation of previous work on the formalization of KA,
KAT, and PHL in Coq. Since Coq is a proof assistant that allows the compilation
of proofs into binary proof objects, we envision the representation of propo-
sitional programs and their properties in the context of Proof-Carrying-Code
[Nec97]. In this context programs are packaged together with the certificates
that assert program partial correctness.

7.1 Acknowledgments

We thank Sebastien Briais for his willingness to respond promptly to questions
concerning his implementation of formal languages in the Coq proof assistant.
This work was partially funded by Fundação para a Ciência e Tecnologia (FCT)
and Program POSI and the project RESCUE (PTDC/EIA/65862/2006). David
Pereira is funded by FCT grant SFRH/BD/33233/2007.

References

[AM95] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions.
Theor. Comput. Sci., 143(1):51–72, 1995.

[AMR09a] M. Almeida, N. Moreira, and R. Reis. Antimirov and Mosses’s rewrite sys-
tem revisited. International Journal Of Foundations Of Computer Science,
20(04):669 – 684, 2009.

[AMR09b] M. Almeida, N. Moreira, and R. Reis. Testing equivalence of regular lan-
guages. In DCFS’09, Magdeburg, Germany, 2009.

[Ant96] V. M. Antimirov. Partial derivatives of regular expressions and finite au-
tomaton constructions. Theoret. Comput. Sci., 155(2):291–319, 1996.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. Springer Verlag, 2004.

[BMMR] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. On the average number
of states of partial derivative automata. Submitted.

[BP09] T. Braibant and D. Pous. A tactic for deciding Kleene algebras. First Coq
Workshop, August 2009. (Available as a HAL report).

[Bri08] S. Briais. Finite automata theory in Coq. Website, 2008. http://www.
prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494,
October 1964.

[CZ01] J. M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s
word partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

[Fil97] J.-C. Filliâtre. Finite automata theory in Coq - a constructive proof of
Kleene’s theorem, 1997.

[How80] W. A. Howard. The formulae-as-types notion of construction, pages 479–
490. Academic Press, 1980.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press, 1956.

[Koz94] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Infor. and Comput., 110(2):366–390, May 1994.

[Koz97] D. Kozen. Kleene algebra with tests. Transactions on Programming Lan-
guages and Systems, 19(3):427–443, May 1997.

[KT00] D. Kozen and J. Tiuryn. On the completeness of propositional Hoare logic.
In RelMiCS, pages 195–202, 2000.

[Mir66] B. G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:51—57, 1966.

[MPdS09] N. Moreira, D. Pereira, and S. M. de Sousa. On the mechanization of
Kleene algebra in Coq. Technical Report DCC-2009-03, DCC-FC&LIACC,
Universidade do Porto, 2009.

[Nec97] G. C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 106–119, New York, NY, USA, 1997. ACM.

[PM93] C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and
properties. Proceedings of the International Conference on Typed Lambda
Calculi and Applications, 664:328–345, 1993.

[PM08] D. Pereira and N. Moreira. KAT and PHL in Coq. Computer Science and
Information Systems, 05(02), December 2008. ISSN: 1820-0214.

[SU98] M. Srensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism,
1998.

