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Abstract. Computational Design (CD) is a paradigm where both program de-
sign and program synthesis are computations. CD merges Model Driven Engi-
neering (MDE) which synthesizes programs by transforming models, with 
Software Product Lines (SPL) where programs are synthesized by composing 
transformations called features. In this paper, basic relationships between MDE 
and SPL are explored using the language of modern mathematics. 
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1   Introduction 

The future of program design and development lies in automation — the mechaniza-
tion of repetitive tasks to free programmers from mundane activities so that they can 
tackle more creative problems. We are entering the age of Computational Design 
(CD), where both program design and program synthesis are computations [39]. By 
design, I mean “what are the steps to create a program that meets a specification” (i.e., 
do this, then this, etc.). Such a script is called a metaprogram. By synthesis, I mean 
“execute these steps to produce the program”. This is metaprogram execution. 

At the forefront of Computational Design are two complementary but different 
technologies: Model Driven Engineering (MDE) and Software Product Lines (SPL). 
These technologies have much in common and may soon be hard to distinguish. But 
abstractly for this paper, I will refer to “pure” MDE as defining high-level models of 
an application, and transforming these models into low-level artifacts, such as execu-
tables. “Pure” MDE is a general paradigm for program synthesis. In contrast, I will 
refer to “pure” SPL as a domain-specific paradigm for program synthesis. It exploits 
the knowledge of problems in a particular domain, tried-and-tested solutions to these 
problems, and the desire to automate the construction of such programs given this 
knowledge. Both “pure” MDE and “pure” SPL are synergistic: the strengths of one 
are the weaknesses of the other. MDE and SPL are clearly not mutually-disjoint tech-
nologies, but I will present their strengths as such here. 
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In a prior lifetime, I was a database researcher. My introduction to program synthe-
sis was relational query optimization (RQO) [32]. The design of a query evaluation 
program was defined by a composition of relational algebra operations, a.k.a. a rela-
tional algebra expression. Expressions were optimized by applying algebraic identi-
ties called rewrite rules. Applying rules was the task of a query optimizer. It took me 
years to appreciate the significance and generality of RQO: it is a compositional para-
digm for program synthesis and is a classic example of Computational Design. RQO 
fundamentally shaped my view of automated software development more than any 
software engineering course (in the 1980s and maybe even now) could have. 

My research focusses on SPLs, where the goal is to design and synthesize any 
member of a family of related programs automatically from declarative specifications. 
The thrust of my early work was on language and tool support for SPLs. More re-
cently, my interest shifted to elucidate the foundational concepts of SPL and MDE. 
Early on, I needed a simple modeling language to express program design and synthe-
sis as a computation. I discovered that modern mathematics fit the bill.  

Here’s the reason: software engineers define structures called programs and use 
tools to transform, manipulate, and analyze them. Object orientation uses methods, 
classes, and packages to structure programs. Compilers transform source structures 
into bytecode structures. Refactoring tools transform source structures into other 
source structures, and metamodels of MDE define the allowable structures of model 
instances: transformations map metamodel instances to instances of other metamodels 
for purposes of analysis and synthesis. Software engineering is replete with such ex-
amples. 

Mathematics is the science of structures and their relationships. I use mathematics 
as an informal modeling language (not as a formal model) to explain Computational 
Design. Certainly I claim no contributions to mathematics, but I do lay claim to ex-
posing its relevance in informal modeling in SPLs. The foundation of my work rests 
on ancient ideas: that programs are data or values, transformations map programs to 
programs, and operators map transformations to transformations [11]. This orientation 
naturally lead me to MDE, with its emphasis on transformations. 

Table 1. MDE, SPL, and Category Theory Terminology 

Paradigm Object Point Arrow

MDE metamodel model transformation

SPL program feature
 

The goal of this paper is to expose a set of concepts on which MDE, SPL, and 
Computation Design are founded. Although the concepts come from category theory 
[25][30], a general theory of mathematical structures and their relationships, this pa-
per is aimed at practitioners who do not have a mathematical background. I show how 
MDE and SPL ideas map to categorical concepts, and throughout this paper, I explain 
the benefits in making a connection. Table 1 summarizes the terminological corre-
spondence. Basic concepts of category theory are in use today, but I suspect members 
of the SPL and MDE communities may not appreciate them. Also, as this conference 
is about modeling, it is worth noting that mathematicians can be superb modelers, and 
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leveraging their ideas is largely what this paper is about. I begin by explaining a sim-
ple relationship between MDE and categories. 

2   MDE and Categories 

In category theory, an ob-
ject is a domain of points 
(there does not seem to be a 
standard name for object 
instances — I follow Law-
vere’s text and use ‘points’ 
[25]).1 In Figure 1a, an 
object is depicted with its 
domain of points, shown as 
a cone of instances. This 
diagram is familiar to the 
MDE community as a metamodel and its model instances (Fig.1b). “Pure” MDE fo-
cuses on a particular technology implementation (e.g., MOF, Ecore) of metamodels 
and their instances. However, the ideas of objects and instances are more general. 
This observation has been noted by others, e.g., Bézivin’s technical spaces [24] and 
GROVE [34]. So one can think of a Java “object” whose instances are Java programs, 
a bytecode “object” whose instances are Java bytecode files, an XML “object” (XML 
schemata) whose instances are XML files, and so on. 

Recursion is fundamental to category theory: a point can be an object. Fig. 2a depicts 
such a situation, which readers will recognize as isomorphic to the standard multi-
level MOF architecture of Fig.2b: 

models

m 1 m 3
m 2 m 4 m 6

m 5

m m 1 m m 3
m m 4

m m 2

m eta-m etam odel

m eta
m odels

o1 o3
o4

o2

object

poin ts

p1 p3
p2 p4 p6

p5

(a) (b)

 

Fig. 2. Three-Level MOF Architecture 

The MOF architecture is not interesting in category theory without arrows. An ar-
row is a map or function or morphism between objects, and whose implementation is 
unspecified.2 Figure 3a shows an external diagram [25] that displays two objects, S 

                                                           
1 I recommend Pierce’s text on category theory [30] with concrete examples in [12] as illustra-

tions; Lawvere’s text is also quite accessible [25]. 
2 A morphism is not necessarily a function; it can express a relationship, e.g., ≥ . 
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Fig. 1. Objects as Domains of points 
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and J, and an arrow A that maps each point of S to a point in J. (Arrows are always 
total, not partial, maps [30]). Figure 3b shows a corresponding internal diagram that 
exposes the points of every object of an external diagram and the mapping relation-
ships among points. In general, there can be any number of arrows that connect ob-
jects; Figure 3c shows an arrow B that is different from A. 

In this paper, I use the following terminology: an arrow is a mapping relationship, 
a transformation is an implementation of an arrow as expressed by an MDE transfor-
mation language (e.g., QVT [29], ATL [21], RubyTL [16], GReAT [1]), and a tool is 
any other (e.g., Java, Python) implementation of an arrow.  

Now consider the following example: the external diagram of Fig. 4 shows that a 
message sequence chart (MSC) can be mapped to a state chart (SC) via a model-to-
model transformation (M2MX). A state chart can be mapped to a Java program by a 
model-to-text transformation (M2TX). And a Java program is mapped to bytecode by 
the javac tool. Each arrow is realized by a distinct technology. In addition to these 
arrows, there are also identity arrows for each object. 

There does not seem to be a standard name for such diagrams in MDE. Common 
names are tool chain diagrams [29] and megamodels [14] (both of which have slightly 
different graphical notations). Fig. 4 is also isomorphic to a UML class diagram, 
where metamodels are classes, transformations are methods, and fields of classes are 
private or hidden [10][34]. External diagrams are also standard depictions of catego-
ries. A category is a collection of objects and arrows, where each object has an iden-
tity arrow (i.e., identity transformation). Fig. 4 is an external diagram of a category of 
four objects and three non-identity arrows. 

Besides objects and arrows, categories have the following properties [25][30]: 

•  Arrows are composable: given arrows f:A→B and g:B→C, there is a composite 
arrow g•f:A→C. 

S J

s1
s3

s2 j1
j3

j4
j2

B

A
S J

A
S J

s1
s3

s2 j1
j3

j4
j2

(a)

(b) (c)

 

Fig. 3. External and Internal Diagrams 

MSC SCM2MX JavaM2TX ByteCodejavac
 

Fig. 4. Another External Diagram 
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•  Composition is associative: given arrows f:A→B, g:B→C, and h:C→D (with A, B, 
C, and D not necessarily distinct), h•(g•f) = (h•g)•f. 

•  For each object A, there is an identity arrow idA:A→A such that for any arrow 
f:A→B, idB•f = f and f•idA=f. 

Identity and composed arrows are often omitted from external diagrams. 
The above properties allow us to infer that there is an arrow T:MSC→ByteCode that 

maps message sequence charts to Java bytecodes, where T=javac•MT2X•M2MX (T is not 
displayed in Fig. 4). In general, there needs to be tool support for these abstractions, 
so that all arrows, regardless on how they are implemented, can be treated uniformly. 
GROVE [34] and UniTI [37] are steps in the right direction. 

Category theory defines arrows that map 
one input object to one output object. But in 
MDE, it is common in model weaving to map 
multiple models as input and produce multi-
ple models as output [15]. Category theory 
has an elegant way to express this. The idea is 
to define a tuple of objects (called a product 
of objects [25][30]), and this tuple is itself an 
object. Projection arrows are defined so that 
each component of a tuple can be extracted. Fig. 5 depicts an arrow F:[O1,O2,O3]→ 
[O4,O5] which maps a 3-tuple of objects to a pair of objects, along with projection ar-
rows. 

Now, let’s look at Fig. 6, which depicts an internal diagram of Fig. 4. Although 
only one point is shown for each object, the relationships between these points 
(m1,s1,j1,b1) is also a category, sometimes called a trivial category, i.e., a category 
where each object represents a domain with a single point. 

m 1 s1 j1 b1

MSC SC
M2MX

Java
M2TX

ByteCode
javac

 

Fig. 6. An Internal Diagram of Fig. 4 

In general, categories lie at the heart of MDE and can be found at all levels in a 
MDE architecture. Category theory provides an elegant set of ideas to express  
transformation relationships among objects that arise in MDE. The ideas are straight-
forward, if not familiar and have an elementary benefit: they may provide a clean 
foundation for MDE (e.g., such as a language and terminology to express MDE Com-
putational Designs). A nice example of a formal use of categories in MDE is [19]. 

Now let’s look at the connection between product lines and categories. 

O1 O2 O3 O4 O5

O123 O45F
projection
arrows

 

Fig. 5. Products of Objects 
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3   SPL and Categories 

A software product line is a set of similar programs. Programs are constructed from 
features, which are increments in program functionality that customers use to distin-
guish one program from another. For example, program P is constructed from pro-
gram G by adding feature F. This is expressed by modeling F as a function: P=F(G). 

The code of a product line of calculators is shown in Fig. 7. Associated with each 
line of code is a tag, which indicates the feature that adds that line. This makes it easy 
to build a preprocessor that receives as input the names of the desired features and 
strips off the code belonging to unneeded features. As can be imagined, this approach 
is brittle for problems of larger scale and complexity. Nevertheless, we use it as a ref-
erence to define what changes occur when a feature is added to a program. 

The first program P1 of 
the calculator SPL defines 
a calculator class and its 
gui class. The base calcu-
lator only allows numbers 
to be added. The second 
program P2=sub(P1), ex-
tends the base with a sub-
traction operation (both the 
calculator and gui clas-
ses are updated). The ef-
fect of the sub feature is to 
add new methods and new 
fields to existing classes, 
and to extend existing met-
hods with additional code. 
More generally, features 
can add new classes and 
packages as well. The third 
program P3=format(P2) 
adds an output formatting 
capability to a calculator, 
where again new methods 
and new fields are added, 
and existing methods are 
extended. A fourth pro-
gram, P4=format(P1), ex-
tends the base program with the format feature. One can push these ideas further, and 
say the base program is itself a feature, which extends the empty program 0, i.e., 
P1=base(0). Feature base adds new classes (the base calculator class and the base 
gui class) to 0. 

These ideas scale: twenty years ago I built customizable databases (80K LOC 
each), ten years ago I built extensible Java preprocessors (40K LOC each), and more 
recently the AHEAD Tool Suite (250K LOC). All used the ideas that programs are 

class calculator {
int result;
void add( int x ) { result=+x; }
void sub( int x ) { result=-x; }

}

class gui {
JButton add = new JButton("add");
JButton sub = new JButton("sub");
JButton form = new JButton("format");

  void initGui() {
ContentPane.add( add );
ContentPane.add( sub );
ContentPane.add( form );

}

  void initListeners() {
 add.addActionListener(...);
 sub.addActionListener(...);
 form.addActionListener(...);

}

  void formatResultString() {...}
}

base
base
base
sub
base

base
base
sub
form

base
base
sub
form
base

base
base
sub
form
base

form
base

 

Fig. 7. Complete Code of the calculator SPL 
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values and transformations (features) map simple programs to more complex pro-
grams.3 

Now consider the connection of SPLs to 
MDE. Fig. 8 shows a metamodel MM and its cone 
of instances. For typical metamodels, there is an 
infinite number of instances. An SPL, in con-
trast, is always a finite family of n similar pro-
grams (where n may range from 2 to thousands 
or more). So an SPL is a miniscule subset of a 
metamodel’s domain. In fact, there is an infinite 
number of SPLs in a domain. If MM is a meta-
model of state charts, it would not be difficult to 
find SPLs for, say, an IBM disk driver domain, a 
portlet flight booking domain, and many others. 

As mentioned earlier, SPLs define relation-
ships between its programs. How? By arrows, 
of course. Fig. 9 shows the calculator product 
line with its four programs, along with the 
empty program 0, which typically is not a 
member of an SPL. Each arrow is a feature. 
From the last section, it is not difficult to rec-
ognize that an SPL is itself a trivial category: 
each point is a domain with a single program 
in it, there are implied identity arrows and im-
plied composed arrows, as required. 

Embodied in our description of SPLs is a fundamental approach to software design 
and construction, namely incremental development. Programs are built, step-by-step, 
by incrementally adding features. Not only does this control program complexity and 
improve program understandability, it also allows for the reuse of features (i.e., multi-
ple programs in a product line could share the same feature). More on this shortly. 

By composing arrows (features), the programs of an SPL are created. A program’s 
design is an expression (i.e., a composition of arrows), and a program can have multi-
ple, equivalent designs. For example, program P3 has two equivalent designs: P3=for-

mat•sub•base(0) (which we henceforth abbreviate to P3=format•sub•base) and 
P3=sub•format•base. Evaluating both expressions yields exactly the same program. 
Features sub and format are said to be commutative because they modify mutually 
disjoint parts of a program. 

3.1   Pragmatics of Software Product Lines 

If there are n optional features, there can be 2n different programs. We see a miniature 
example of this in Fig. 9: there are 2 optional features (format and sub) and there are 

                                                           
3 Readers who are familiar with the decorator pattern will see a similarity with features: a dec-

orator wraps an object to add behaviors. Features can be dynamically composed, but in this pa-
per, they are statically composed to produce programs. Another difference is scale: decorators 
wrap a single object, whereas features often modify many classes of a program simultaneously. 

MM

s ize  of 
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S P L is
fin ite

O tis
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dom ain

fligh t 
book ing 
portle t 
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hand-held
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IB M  d isk  
d river 

dom ain
 

Fig. 8. SPLs and Metamodels 
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   Fig. 9. Category of the Calculator SPL 
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22
=4 programs in the product line. A slightly 

larger and more illustrative example is Fig. 
10. We want to create an SPL of many pro-
grams; we know the arrows that allow us to 
build each of these programs, and many pro-
grams use the same feature, e.g., the thick 
arrows of Fig. 10 denote the application of the 
green feature to 4 different programs, and the 
dashed arrows denote the application of the 
blue feature to 3 different programs. It is the 
reuse of arrows that makes them more eco-
nomical to store than programs. 

As an aside, features are like database transactions: 
they make changes to a program that are not necessarily 
localized: changes can appear anywhere in a program. 
But the key is that either all changes are made, or none 
are. Further, features can produce non-conforming pro-
grams (non-conforming models). Fig. 11 depicts an 
arrow F that relates programs P3 and P6, both of which 
conform to metamodel MM. But by arrow composibility, 
we see that F=F3•F2•F1. Applying F1 to P3 yields pro-
gram P4, and applying F2 to P4 yields program P5, and 
P6=F3(P5). Note that programs P4 and P5 do not conform 
to MM. It is common for existing features to be decom-
posed into compositions of smaller features, the indi-
vidual application of which does not preserve confor-
mance properties of the resulting program or model.4 The reason why these smaller ar-
rows arise is that features often have a lot of code in common. Commonalities can be 
factored into small features (small arrows) that are shared in implementations of larger 
arrows. We will see examples of small arrows in the next section. 

3.2   Arrow Implementations 

There are two ways in which arrows are implemented. First is to implement arrows in 
the ATL, GReAT, etc. languages. The second and standard way for SPLs is that ar-
rows are program or model deltas — a set of changes — that are superimposed on 
existing models (e.g., AHEAD [9], Scala [28], Aspectual Feature Modules [5], and 
AspectJ [22]). In effect, deltas can be viewed as a specific example of model weaving 
[15]. Which approach — writing modules that are to be superimposed or writing 
transformations— is “better”? This is not clear; I am unaware of any study to com-
pare their trade-offs. In this paper, I focus solely on the use of deltas, so that core con-
cepts in SPLs can be given their most direct MDE interpretation. 

Here is an example. Fig. 12a shows the AHEAD representation of the sub feature 
of our calculator SPL. It states that the calculator class is extended with a “void 
sub(int x)” method, and the gui class is extended with a new field (JButton sub), 

                                                           
4 Conformance for a program could be whether it type checks or not. 

0

 

Fig. 10. Reuse of Arrows in SPLs 
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Fig. 11. F=F3•F2•F1 



 The Objects and Arrows of Computational Design 9 

and its existing methods (initGui() and initListeners()) are wrapped (effectively 
adding more lines of code to these methods). We mentioned in the last section about 
decomposing a feature (arrow) into smaller features (arrows). Fig. 12b defines the 
AHEAD arrow (subcl) that changes only the calculator class, Fig. 12c defines the 
AHEAD arrow (subgui) that changes only the gui class. Composing subcl and subgui 
in either order produces sub (Fig. 12d). The subgui arrow could be decomposed even 
further, as a composition of arrows that introduce fields and wrap individual methods. 
 

The same ideas hold for MDE models. In two different product lines, fire support 
simulators [7] and web portlets [35], customized state machines were created by hav-
ing features encapsulate fragments of state machines. By composing fragments, com-
plete state machines were synthesized. 

To me, the essential entities that programmers create in “pure” MDE are complete 
models (points); in “pure” SPLs they are features (arrows representing model deltas). 
Hence, there is discernible distinction between these paradigms, and exposing this 
distinction reveals an interesting perspective. Fig. 13a shows the metamodel MM, its 
cone of instances, and a particular product line PL whose members are m1, m4, and m5. 
The domain of a more general metamodel, called an arrow metamodel MM, is a super-
set of MM. Fig. 13b exposes the arrows that relate models in the PL product line, show-
ing how models and features can be placed in the same cone of instances. Each model 
m is represented by an arrow 0→m. Fig. 13c erases MM and its cone to reveal that the 
instances of MM are arrows. The subset of arrows that define PL is indicated in  
Fig. 13c, and so too are other sets of arrows (not necessarily disjoint) that are used to 
create other product lines. By combining a set of arrows with a feature model (i.e., a  
 

refines class calculator {
void sub( float x ) { result=-x; } 

}

refines class gui {
JButton sub = new JButton("sub");

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}
}

refines class calculator {
void sub( float x ) { result=-x; } 

}

refines class gui {
JButton sub = new JButton("sub");

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}
}

(a) sub=subcl subgui=subgui subcl

(b) subcl

(c) subgui

(d)
sub

subgui

subgui subcl

subcl  

Fig. 12. AHEAD Arrow Implementations 
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specification that defines what composition of arrows are legal), the original product 
line PL within MM’s cone of instances can be generated (Fig. 13d).5  

From a modeling perspective, the SPL approach to program construction recog-
nizes a basic fact: all program artifacts — MDE models, Java programs, etc. — are 
not created spontaneously. They are created by extending simpler artifacts, and these 
artifacts come from simpler artifacts, recursively, until 0 is reached. The connection 
between successive artifacts is an arrow (from the simpler to the more complex arti-
fact). By following arrows forward in time starting from 0, an artifact (program, 
model, etc.) is synthesized. In effect, SPLs add a dimension of time to program or 
model designs. Proceeding forward in time explains how a program was developed in 
logical steps. Or stated differently, program synthesis is an integration of a series of 
well-understood changes. 

3.3   Recursion 

Product lines of models will be common, but product lines of metamodels, a form of 
product lines of product lines [8], will also be common. Fig. 14 depicts the MDE ar-
chitecture. A product line of four metamodels is shown, along with the arrows that  

                                                           
5

 Support for deltas in conventional programming languages is largely absent. One can only 
define programs, not changes one wants to make to an existing program and encapsulate and 
compose such changes. It is as if one-half of a fundamental picture is absent. 

(d) relationship

(a) metamodels (b) metamodels and arrows

(c) arrow metamodels

1 5
1

MM

m1
m5

m41 4

2 3
3 4

MM

0

m2 m3

1 2

1 5
1

1 4

2 5
3 4

MM

1 2

arrows of
other SPLs

feature
model

MM

m1
m5

m4

MM

0

m2 m3

MM models that do 
not conform to MM

arrow
metamodel

metamodel

 

Fig. 13. Metamodels and Arrow MetaModels 



 The Objects and Arrows of Computational Design 11 

connect them. Such arrows could be 
metamodel deltas (as we have de-
scribed previously), or they could be 
refactorings [33][38]. Normally, when 
a metamodel is changed, one would 
like to automatically update all of its 
instances. The model-to-model trans-
formation that is derived from a 
metamodel-to-metamodel transforma-
tion is called a co-transformation 
[33][38]. Co-transformations map pro-
duct lines of one metamodel to prod-
uct lines of other metamodels. 

3.4   Recap 

Categories lie at the heart of SPLs, and again the ideas are straightforward. Well-stud-
ied ideas in mathematics offers a clean language and terminology to express SPL 
Computational Designs. See [12] for an example. Now, let’s see what happens when 
MDE and SPLs are combined into model-driven software product lines (MDSPL). 

4   MDSPL and Categories 

A fundamental concept in category theory is the commuting diagram, whose key 
property is that all paths from one object to another yield equivalent results. The dia-
gram of Fig. 15a is said to commute if f2•d1=d2•f1. Commuting diagrams are the theo-
rems of category theory. 

Commuting diagrams arise in MDSPL in the following way. Consider Fig. 15b, 
which shows arrow A that maps object S to object B. A small product line of S  

 
d1

d2

f1 f2

A

A

fS fJ
A

(a)

(c)

 

A
S B

s2

s1

b2

b1
fS fB

(b)

 

 
 

Fig. 15. Commuting Diagrams 

•1 •3

•4• 2

meta-metamodel

metamodel 
transformation

model 
co-transformation

 

Fig. 14. Co-transformations 
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instances is depicted, and these points are mapped by A to a corresponding set of 
points in B. In general, horizontal arrows are MDE transformations and vertical ar-
rows are SPL features. Note that feature fS that relates s1 to s2 is mapped to a corre-
sponding feature fB that relates b1 to b2. Mapping a feature (arrow) to another feature 
(arrow) is an operator or update translation [4]. Operator A relates features fS and fB 
in Fig. 15c by fB=A(fS). 

From our limited experience, operators can sometimes be easy to write; generally 
they pose a significant engineering challenge. As a challenge example, let S be the 
domain of Java source and B be domain of Java bytecodes. Suppose feature fS is a 
delta in source code that maps the source s1 of program P1 to the source s2 of program 
P2. fB is the delta that is applied to the binary of s1 to yield the binary of s2 (i.e., 
b2=fB(b1)). Implementing operator A requires separate class compilation, a sophisti-
cated technology that can compile Java files individually and delay complete type 
checking and constant folding optimizations until composition time [2]. In the next 
sections, we present examples of operators we have implemented.6 

Note: The generalization of metamodel S to the arrow metamodel S as ex-
plained in Section 3.2 also applies to the generalization of arrows. That is, 
the external diagram consisting of objects S and B and arrow A:S→B can be 
generalized to the external diagram with objects S and B and arrow A:S→B. 
This is the A operator discussed above. 

Note: A is a homomorphism: it is a mapping of S expressions (compositions 
of one or more S arrows) to a corresponding B expression (compositions of 
one or more B arrows). Let x and y be arrows of S. The commuting relation-
ship of a homomorphism is: 

   A(x•y) = A(x) A(•) A(y) 

where A(•) typically maps to function composition (•). We talk about the 
practical benefits of such relationships next. 

5   Benefits of Mapping Arrows 

In the last two years, we discovered several uses for mapping arrows in MDE product 
lines: simplifying implementations [17], improving test generation [36], understanding 
feature interactions [23], explaining AHEAD [12], and improving the performance of 
program synthesis [35]. In the following sections, I briefly review two recent results. 

5.1   Lifting 

MapStats is an MDSPL where applications are written in SVG and JavaScript. Map-
Stats applications display an SVG map of the U.S. where the map can be customized 
by adding or removing charts, statistics, and controls (Fig. 16). 
                                                           
6 Gray has noticed that the kind of commuting diagrams shown here often require transforma-

tions that involve different technical spaces (using Bezivin's terminology). These are often 
hard to compose in practice, yet seem easy in these diagrams [18]. As mentioned earlier, there 
is a strong need for relating these tool chains [34][37].  
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Fig. 16. A MapStats Application 

The SPL design was a collection of MapStats features (arrows) and its feature 
model, which defined the legal combination of MapStats features. All MapStats fea-
tures were implemented as XML documents or XML document deltas. By composing 
arrows using XAK, a general language and tool for refining XML documents [3], 
customized MapStats applications were synthesized. Early on, we discovered that a 
particular subset of arrows, namely those that implemented charts, were tedious to write. 
We used a basic concept of MDE to create a domain-specific language (DSL) to define 
charts and chart features. Each Chart feature was mapped to its corresponding and low-

level MapStats feature by an operator (τ:Chart→MapStats). In effect, we “lifted” chart 
arrows from their MapStats implementation, to arrows in a Charts DSL (Fig. 17). By 
doing so, we simplified the writing of Charts arrows using the Charts DSL, and we 
automated the tedious implementations of their corresponding MapStats arrows.  

fe a tu re  
m o de l

S P L

re d  a rrow s
lif ted  to  

g ree n  a rrow s

M ap S ta ts a rro w s

C h a rt a rro w s

 

Fig. 17. Lifting Arrows 
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As an example, Fig. 18a shows a simple DSL spec S of a pie-chart that displays 
age population for the ranges 30-39 and 22-29. Fig. 18b shows a specification of a 
chart arrow R that adds the range 18-21 to a Chart spec. The underlined code defines a 
pointcut that identifies nodes in an XML document, and the advice is to append the 
18-21 range item to selected nodes. Applying R to S (evaluating expression R(S)) 

yields the Chart spec of Fig. 18c. The τ operator maps a Chart arrow to a MapStats 

arrow. The result of τ(R) is the MapStats arrow of Fig. 18d. Note that τ maps the 
 

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“green” name= ...
<item attr=“AGE_22_29” color=“cyan” name=...

</chart>
(a) chart specification

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...

<xr:append>
<item attr="AGE_18_21" color="blue" ...

</xr:append>
</xr:at>

</xr:refine>
(b) a Chart arrow

<xr:refine ... >
<xr:at select="//function[@data-type='age-population'] 

[@parentId='ChartArea2'][@name='buildData']"...>
<xr:append>

<statement>
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("blue");

</statement>
</xr:append>

</xr:at>
</xr:refine>

(d) corresponding MapStats arrow

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“green” name= ...
<item attr=“AGE_22_29” color=“cyan” name=...
<item attr=“AGE_18_21” color=“blue” name=...

</chart>
(c) a refined chart specification

 

Fig. 18. MapStats and Chart Arrows 
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Chart pointcut to the corresponding MapStats pointcut, and maps the Chart advice to 

the corresponding MapStats advice written in JavaScript. τ was written in XSLT. 
A homomorphism relates Chart arrows (Sk) to MapStats arrows (Ck): 

τ(Si•Sj) = τ(Si)•τ(Sj) = Ci•Cj                                                        (1) 

We used (1) in two ways. First, when a particular MapStats application was speci-
fied as a composition of MapStats arrows, we used (1) to generate MapStats chart 
arrows. For example, let Mi denote non-chart arrows of MapStats. A MapStats applica-
tion P is a composition of M arrows followed by C arrows. We translated P into equiva-
lent expressions using (1) and evaluated either of these new expressions to synthesize 
P: 

P  = C2•C1•C0•M1•M0  // given 

  = τ(S2•S1•S0)•M1•M0  // by (1)  

   = τ(S2)•τ(S1)•τ(S0)•M1•M0 // by (1) 
 

The second use of (1) was for verification: it defined a set of constraints that hold 
between pairs of Charts and MapStats features and their compositions. Here, as in 
previous experiences [35], our tools did not satisfy these constraints (meaning the 
equalities of (1) did not hold). This exposed bugs in our tools which we had to fix.7 
Now we have greater confidence in our tools as they implement explicit relationships 
in our MDSPL models. This is a win from an engineering perspective: we have in-
sights into domains that we did not have before, and we have a better understanding, 
better models, and better tools as a result. 

Lifting is a general technique that can be applied to many product lines. For more 
details, see [17]. 

5.2   Test Generation 

Testing members of SPLs is a fundamental problem. We can synthesize different pro-
grams, but how do we know these programs are correct? In such cases, specification-
based testing can be effective. Starting with a specification (or model) of a program, 
we want to derive its tests automatically. Alloy is an example of this approach [20]. 

Alloy works by translating an Alloy specification S into a propositional formula. A 
SAT solver finds the bindings that satisfy the formula, called a solution. Let I denote 
the set of all solutions for S. A test program is generated for each solution using the 
TestEra tool [26]. The set of all tests, T, is the output.  

Alloy specifications can be developed incrementally by conjunction. That is, if 
program P0 has specification S0 and feature F has specification SF, then the spec of 
F(P) is S0∧SF. The conventional way to synthesize tests for a program is to compose 
the specifications of all of its features, and then use Alloy and TestEra to produce its 
tests. We know there is a commuting diagram behind this design, which Fig. 19 ex-
poses. The left column of objects are Alloy specifications, the middle column are spec 
solutions, and the right column are tests. Horizontal arrows are the tools alloy:S→I 
and TestEra:I→T. Features are vertical arrows. The right-most column of vertical 

                                                           
7 Although we could not prove the equivalence of (1), we could demonstrate equivalence by 

testing, as is done in conventional software development. 
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arrows are spec refinements. The middle 
column are solution refinements, and the 
right column are test refinements. 

Only the conventional path, and no 
other, has ever been taken. The challenge is 
to determine how to implement an operator 

τ:S→I to map spec arrows to solution ar-

rows and maybe another operator σ:I→T 
to map solution arrows to test arrows. Uzun 
caova et al. discovered an elegant way to 

realize τ (for details, see [36]). This dis-
covery exposed an alternative path, called 
the incremental path, that first derives the 
solutions for the base specification, and extends each solution to zero or more solu-
tions of an incrementally more complicated specification. Once solutions to the target 
specification are found, the TestEra tool is used to produce the corresponding set of 
tests.  

Initial experiments revealed that in a majority of cases, the incremental path syn-
thesizes test programs faster than the conventional path, and for some cases, the 

speedup was 30-50× faster. Not surprisingly, other paths were found to be even more 
efficient (i.e., extend a specification multiple times, then derive its solutions, then 
extend these solutions). Of course, we know that there are test arrows that relate tests 
for different programs, but here is a case where it is unlikely that creating an operator 

σ to map solution arrows to test arrows would be useful — all the work in extending 
tests seems to be in extending solutions.  

In general, commuting diagrams reveal new ways to solve problems, and in some 
cases, these new solutions are better than existing solutions. 

5.3   Recap of Benefits 

Exposing commuting relationships in program synthesis, as illustrated in the previous 
sections, has revealed a set of interesting problems and novel perspectives that have 
lead to useful results. I expect many more applications of commuting diagrams in the 
future. An even more interesting, longer-term, and open question is whether mathe-
maticians can leverage this connection of MDE and SPLs to provide deeper results. 

6   Design Optimization 

Design optimization is the most exotic part of Computational Design. If a program’s 
design is an expression, then the expression can be optimized to produce an equiva-
lent and improved design. In the last section, we saw commuting diagrams offered 
different paths to produce equivalent results. In the case of test generation, finding the 
right path could shorten generation time substantially. There is a counterpart in SPLs 
which originates from relational query optimization, that I now briefly describe. 

S1

S2

S3

0

I1

I2

I3

0

T1

T2

T3

0alloy

alloy

alloy

alloy

TestEra

TestEra

TestEra

TestEra

conventional path

incremental path

 

Fig. 19. Paths for Test Generation 
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Relational query optimization makes a clean distinction between functional re-
quirements and non-functional requirements. A functional requirement is an arrow 
(e.g., relational operation); a non-functional requirement is a computable, estimatable, 
or measurable property of a composition of arrows (e.g., performance) [32].  

Fig. 20 depicts an SPL of multiple programs, all of which are derivable from 0. A 
subset of these programs satisfy the functional requirements of a program spec. (This 
is the inner set of programs in Fig. 20). Designers want a program of this inner set that 
also satisfies non-functional requirements and/or optimizes some quality metrics (e.g., 
performance). In principle, by enumerating this inner set, evaluating each point on its 
quality behavior, and selecting the 
point that exhibits the “best” quality 
(e.g., most efficient program w.r.t. 
some criteria), that is the program to 
build. Of course, how one enumerates 
or searches the inner set, how one 
evaluates or ranks points on the basis 
of quality metrics, and to do so effi-
ciently, is often a challenging engi-
neering problem. But this is the RQO 
paradigm: each relational algebra op-
eration is an arrow, relational algebra 
expressions are arrow compositions, and relational query optimization is expression 
optimization with respect to performance. 

At present, I am aware of only a few examples of design optimization, among them 
are RQO [32], data structures [6], adaptive computing [27], middleware [40], and 
library synthesis [31]. A general technology for optimization may be constraint satis-
faction [13]. The main challenge is finding domains where there are different ways of 
implementing the same functionality. Usually, most SPLs have only one implementa-
tion of a feature, and without multiple implementations, there may not be many op-
portunities for optimization a la RQO. 

The key lesson is this: if you have a good conceptual framework, you will be able 
to recognize more easily the relationship among different and disparate areas of re-
search. Much of what we do today as designers and implementors is to define and 
transform structures. By making these abstractions and distinctions clear(er), we will 
be that much closer to understanding the essence of MDE, SPLs, and Computational 
Design. 

7   Conclusions 

One of the key advances that brought database systems out of the stone age is rela-
tional query optimization. The relational model and the optimization of queries was 
rooted firmly in set theory, using elementary operations on sets (select, project, join, 
union). From a mathematical perspective, virtually nothing of set theory was used 
except for the first few pages in a set theory text. It was these simple ideas from set 
theory, not its deeper results, that made a lasting impact on databases. 

The same may hold for category theory: its elementary ideas may find their way 
into the practice of MDE and SPL program design and synthesis. There is preliminary 

0

programs 
that satisfy
functional

requirements

most 
efficient
program

product 
line

 

    Fig. 20. Optimizing Program Designs 
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evidence that these ideas bring both pragmatic and pedagogical benefits. From an 
informal modeling viewpoint, the ideas I presented here are usable by engineers. 
Deeper results may be forthcoming. 

How often will commuting diagrams arise in MDSPLs? This is not yet clear. One 
thing is clear: if you look, you will eventually find them. And if you don’t look, you 
won’t find them! Their utility will be decided on a per domain basis. 

As mentioned in the Introduction, the future of software design and synthesis is in 
automation. Understanding fundamentals of Computational Design will tell us how to 
think about program design and synthesis in a structured and principled manner. It is 
clear that many ideas are being reinvented in different contexts. This is not accidental: 
it is evidence that we are working toward a general paradigm that we are only now 
beginning to recognize. Modern mathematics provides a simple language and con-
cepts to express Computational Design and exposes previously unnoticed relation-
ships that can be exploited for pragmatic benefit. This is a step in the right direction. 
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