
K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 1–20, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Objects and Arrows of Computational Design

Don Batory1, Maider Azanza2, and João Saraiva3

1 University of Texas at Austin, Austin, Texas, USA
batory@cs.utexas.edu

2 University of the Basque Country, San Sebastian, Spain
maider.azanza@ehu.es

3 Universidade do Minho, Campus de Gualtar, Braga, Portugal
jas@di.uminho.pt

Abstract. Computational Design (CD) is a paradigm where both program de-
sign and program synthesis are computations. CD merges Model Driven Engi-
neering (MDE) which synthesizes programs by transforming models, with
Software Product Lines (SPL) where programs are synthesized by composing
transformations called features. In this paper, basic relationships between MDE
and SPL are explored using the language of modern mathematics.

Note: Although jointly authored, this paper is written as presented by Batory in
his MODELS 2008 keynote.

Keywords: Software product lines, model driven engineering, categories.

1 Introduction

The future of program design and development lies in automation — the mechaniza-
tion of repetitive tasks to free programmers from mundane activities so that they can
tackle more creative problems. We are entering the age of Computational Design
(CD), where both program design and program synthesis are computations [39]. By
design, I mean “what are the steps to create a program that meets a specification” (i.e.,
do this, then this, etc.). Such a script is called a metaprogram. By synthesis, I mean
“execute these steps to produce the program”. This is metaprogram execution.

At the forefront of Computational Design are two complementary but different
technologies: Model Driven Engineering (MDE) and Software Product Lines (SPL).
These technologies have much in common and may soon be hard to distinguish. But
abstractly for this paper, I will refer to “pure” MDE as defining high-level models of
an application, and transforming these models into low-level artifacts, such as execu-
tables. “Pure” MDE is a general paradigm for program synthesis. In contrast, I will
refer to “pure” SPL as a domain-specific paradigm for program synthesis. It exploits
the knowledge of problems in a particular domain, tried-and-tested solutions to these
problems, and the desire to automate the construction of such programs given this
knowledge. Both “pure” MDE and “pure” SPL are synergistic: the strengths of one
are the weaknesses of the other. MDE and SPL are clearly not mutually-disjoint tech-
nologies, but I will present their strengths as such here.

2 D. Batory, M. Azanza, and J. Saraiva

In a prior lifetime, I was a database researcher. My introduction to program synthe-
sis was relational query optimization (RQO) [32]. The design of a query evaluation
program was defined by a composition of relational algebra operations, a.k.a. a rela-
tional algebra expression. Expressions were optimized by applying algebraic identi-
ties called rewrite rules. Applying rules was the task of a query optimizer. It took me
years to appreciate the significance and generality of RQO: it is a compositional para-
digm for program synthesis and is a classic example of Computational Design. RQO
fundamentally shaped my view of automated software development more than any
software engineering course (in the 1980s and maybe even now) could have.

My research focusses on SPLs, where the goal is to design and synthesize any
member of a family of related programs automatically from declarative specifications.
The thrust of my early work was on language and tool support for SPLs. More re-
cently, my interest shifted to elucidate the foundational concepts of SPL and MDE.
Early on, I needed a simple modeling language to express program design and synthe-
sis as a computation. I discovered that modern mathematics fit the bill.

Here’s the reason: software engineers define structures called programs and use
tools to transform, manipulate, and analyze them. Object orientation uses methods,
classes, and packages to structure programs. Compilers transform source structures
into bytecode structures. Refactoring tools transform source structures into other
source structures, and metamodels of MDE define the allowable structures of model
instances: transformations map metamodel instances to instances of other metamodels
for purposes of analysis and synthesis. Software engineering is replete with such ex-
amples.

Mathematics is the science of structures and their relationships. I use mathematics
as an informal modeling language (not as a formal model) to explain Computational
Design. Certainly I claim no contributions to mathematics, but I do lay claim to ex-
posing its relevance in informal modeling in SPLs. The foundation of my work rests
on ancient ideas: that programs are data or values, transformations map programs to
programs, and operators map transformations to transformations [11]. This orientation
naturally lead me to MDE, with its emphasis on transformations.

Table 1. MDE, SPL, and Category Theory Terminology

Paradigm Object Point Arrow

MDE metamodel model transformation

SPL program feature

The goal of this paper is to expose a set of concepts on which MDE, SPL, and
Computation Design are founded. Although the concepts come from category theory
[25][30], a general theory of mathematical structures and their relationships, this pa-
per is aimed at practitioners who do not have a mathematical background. I show how
MDE and SPL ideas map to categorical concepts, and throughout this paper, I explain
the benefits in making a connection. Table 1 summarizes the terminological corre-
spondence. Basic concepts of category theory are in use today, but I suspect members
of the SPL and MDE communities may not appreciate them. Also, as this conference
is about modeling, it is worth noting that mathematicians can be superb modelers, and

 The Objects and Arrows of Computational Design 3

leveraging their ideas is largely what this paper is about. I begin by explaining a sim-
ple relationship between MDE and categories.

2 MDE and Categories

In category theory, an ob-
ject is a domain of points
(there does not seem to be a
standard name for object
instances — I follow Law-
vere’s text and use ‘points’
[25]).1 In Figure 1a, an
object is depicted with its
domain of points, shown as
a cone of instances. This
diagram is familiar to the
MDE community as a metamodel and its model instances (Fig.1b). “Pure” MDE fo-
cuses on a particular technology implementation (e.g., MOF, Ecore) of metamodels
and their instances. However, the ideas of objects and instances are more general.
This observation has been noted by others, e.g., Bézivin’s technical spaces [24] and
GROVE [34]. So one can think of a Java “object” whose instances are Java programs,
a bytecode “object” whose instances are Java bytecode files, an XML “object” (XML
schemata) whose instances are XML files, and so on.

Recursion is fundamental to category theory: a point can be an object. Fig. 2a depicts
such a situation, which readers will recognize as isomorphic to the standard multi-
level MOF architecture of Fig.2b:

models

m 1 m 3
m 2 m 4 m 6

m 5

m m 1 m m 3
m m 4

m m 2

m eta-m etam odel

m eta
m odels

o1 o3
o4

o2

object

poin ts

p1 p3
p2 p4 p6

p5

(a) (b)

Fig. 2. Three-Level MOF Architecture

The MOF architecture is not interesting in category theory without arrows. An ar-
row is a map or function or morphism between objects, and whose implementation is
unspecified.2 Figure 3a shows an external diagram [25] that displays two objects, S

1 I recommend Pierce’s text on category theory [30] with concrete examples in [12] as illustra-

tions; Lawvere’s text is also quite accessible [25].
2 A morphism is not necessarily a function; it can express a relationship, e.g., ≥ .

m etam odel

m 1
m 3

m 4

m 2

models

object

p1
p3

p4

p2

po in ts

cone of
ob ject

ins tances

cone of
m etam odel
ins tances

(a) (b)

Fig. 1. Objects as Domains of points

4 D. Batory, M. Azanza, and J. Saraiva

and J, and an arrow A that maps each point of S to a point in J. (Arrows are always
total, not partial, maps [30]). Figure 3b shows a corresponding internal diagram that
exposes the points of every object of an external diagram and the mapping relation-
ships among points. In general, there can be any number of arrows that connect ob-
jects; Figure 3c shows an arrow B that is different from A.

In this paper, I use the following terminology: an arrow is a mapping relationship,
a transformation is an implementation of an arrow as expressed by an MDE transfor-
mation language (e.g., QVT [29], ATL [21], RubyTL [16], GReAT [1]), and a tool is
any other (e.g., Java, Python) implementation of an arrow.

Now consider the following example: the external diagram of Fig. 4 shows that a
message sequence chart (MSC) can be mapped to a state chart (SC) via a model-to-
model transformation (M2MX). A state chart can be mapped to a Java program by a
model-to-text transformation (M2TX). And a Java program is mapped to bytecode by
the javac tool. Each arrow is realized by a distinct technology. In addition to these
arrows, there are also identity arrows for each object.

There does not seem to be a standard name for such diagrams in MDE. Common
names are tool chain diagrams [29] and megamodels [14] (both of which have slightly
different graphical notations). Fig. 4 is also isomorphic to a UML class diagram,
where metamodels are classes, transformations are methods, and fields of classes are
private or hidden [10][34]. External diagrams are also standard depictions of catego-
ries. A category is a collection of objects and arrows, where each object has an iden-
tity arrow (i.e., identity transformation). Fig. 4 is an external diagram of a category of
four objects and three non-identity arrows.

Besides objects and arrows, categories have the following properties [25][30]:

• Arrows are composable: given arrows f:A→B and g:B→C, there is a composite
arrow g•f:A→C.

S J

s1
s3

s2 j1
j3

j4
j2

B

A
S J

A
S J

s1
s3

s2 j1
j3

j4
j2

(a)

(b) (c)

Fig. 3. External and Internal Diagrams

MSC SCM2MX JavaM2TX ByteCodejavac

Fig. 4. Another External Diagram

 The Objects and Arrows of Computational Design 5

• Composition is associative: given arrows f:A→B, g:B→C, and h:C→D (with A, B,
C, and D not necessarily distinct), h•(g•f) = (h•g)•f.

• For each object A, there is an identity arrow idA:A→A such that for any arrow
f:A→B, idB•f = f and f•idA=f.

Identity and composed arrows are often omitted from external diagrams.
The above properties allow us to infer that there is an arrow T:MSC→ByteCode that

maps message sequence charts to Java bytecodes, where T=javac•MT2X•M2MX (T is not
displayed in Fig. 4). In general, there needs to be tool support for these abstractions,
so that all arrows, regardless on how they are implemented, can be treated uniformly.
GROVE [34] and UniTI [37] are steps in the right direction.

Category theory defines arrows that map
one input object to one output object. But in
MDE, it is common in model weaving to map
multiple models as input and produce multi-
ple models as output [15]. Category theory
has an elegant way to express this. The idea is
to define a tuple of objects (called a product
of objects [25][30]), and this tuple is itself an
object. Projection arrows are defined so that
each component of a tuple can be extracted. Fig. 5 depicts an arrow F:[O1,O2,O3]→
[O4,O5] which maps a 3-tuple of objects to a pair of objects, along with projection ar-
rows.

Now, let’s look at Fig. 6, which depicts an internal diagram of Fig. 4. Although
only one point is shown for each object, the relationships between these points
(m1,s1,j1,b1) is also a category, sometimes called a trivial category, i.e., a category
where each object represents a domain with a single point.

m 1 s1 j1 b1

MSC SC
M2MX

Java
M2TX

ByteCode
javac

Fig. 6. An Internal Diagram of Fig. 4

In general, categories lie at the heart of MDE and can be found at all levels in a
MDE architecture. Category theory provides an elegant set of ideas to express
transformation relationships among objects that arise in MDE. The ideas are straight-
forward, if not familiar and have an elementary benefit: they may provide a clean
foundation for MDE (e.g., such as a language and terminology to express MDE Com-
putational Designs). A nice example of a formal use of categories in MDE is [19].

Now let’s look at the connection between product lines and categories.

O1 O2 O3 O4 O5

O123 O45F
projection
arrows

Fig. 5. Products of Objects

6 D. Batory, M. Azanza, and J. Saraiva

3 SPL and Categories

A software product line is a set of similar programs. Programs are constructed from
features, which are increments in program functionality that customers use to distin-
guish one program from another. For example, program P is constructed from pro-
gram G by adding feature F. This is expressed by modeling F as a function: P=F(G).

The code of a product line of calculators is shown in Fig. 7. Associated with each
line of code is a tag, which indicates the feature that adds that line. This makes it easy
to build a preprocessor that receives as input the names of the desired features and
strips off the code belonging to unneeded features. As can be imagined, this approach
is brittle for problems of larger scale and complexity. Nevertheless, we use it as a ref-
erence to define what changes occur when a feature is added to a program.

The first program P1 of
the calculator SPL defines
a calculator class and its
gui class. The base calcu-
lator only allows numbers
to be added. The second
program P2=sub(P1), ex-
tends the base with a sub-
traction operation (both the
calculator and gui clas-
ses are updated). The ef-
fect of the sub feature is to
add new methods and new
fields to existing classes,
and to extend existing met-
hods with additional code.
More generally, features
can add new classes and
packages as well. The third
program P3=format(P2)
adds an output formatting
capability to a calculator,
where again new methods
and new fields are added,
and existing methods are
extended. A fourth pro-
gram, P4=format(P1), ex-
tends the base program with the format feature. One can push these ideas further, and
say the base program is itself a feature, which extends the empty program 0, i.e.,
P1=base(0). Feature base adds new classes (the base calculator class and the base
gui class) to 0.

These ideas scale: twenty years ago I built customizable databases (80K LOC
each), ten years ago I built extensible Java preprocessors (40K LOC each), and more
recently the AHEAD Tool Suite (250K LOC). All used the ideas that programs are

class calculator {
int result;
void add(int x) { result=+x; }
void sub(int x) { result=-x; }

}

class gui {
JButton add = new JButton("add");
JButton sub = new JButton("sub");
JButton form = new JButton("format");

 void initGui() {
ContentPane.add(add);
ContentPane.add(sub);
ContentPane.add(form);

}

 void initListeners() {
 add.addActionListener(...);
 sub.addActionListener(...);
 form.addActionListener(...);

}

 void formatResultString() {...}
}

base
base
base
sub
base

base
base
sub
form

base
base
sub
form
base

base
base
sub
form
base

form
base

Fig. 7. Complete Code of the calculator SPL

 The Objects and Arrows of Computational Design 7

values and transformations (features) map simple programs to more complex pro-
grams.3

Now consider the connection of SPLs to
MDE. Fig. 8 shows a metamodel MM and its cone
of instances. For typical metamodels, there is an
infinite number of instances. An SPL, in con-
trast, is always a finite family of n similar pro-
grams (where n may range from 2 to thousands
or more). So an SPL is a miniscule subset of a
metamodel’s domain. In fact, there is an infinite
number of SPLs in a domain. If MM is a meta-
model of state charts, it would not be difficult to
find SPLs for, say, an IBM disk driver domain, a
portlet flight booking domain, and many others.

As mentioned earlier, SPLs define relation-
ships between its programs. How? By arrows,
of course. Fig. 9 shows the calculator product
line with its four programs, along with the
empty program 0, which typically is not a
member of an SPL. Each arrow is a feature.
From the last section, it is not difficult to rec-
ognize that an SPL is itself a trivial category:
each point is a domain with a single program
in it, there are implied identity arrows and im-
plied composed arrows, as required.

Embodied in our description of SPLs is a fundamental approach to software design
and construction, namely incremental development. Programs are built, step-by-step,
by incrementally adding features. Not only does this control program complexity and
improve program understandability, it also allows for the reuse of features (i.e., multi-
ple programs in a product line could share the same feature). More on this shortly.

By composing arrows (features), the programs of an SPL are created. A program’s
design is an expression (i.e., a composition of arrows), and a program can have multi-
ple, equivalent designs. For example, program P3 has two equivalent designs: P3=for-

mat•sub•base(0) (which we henceforth abbreviate to P3=format•sub•base) and
P3=sub•format•base. Evaluating both expressions yields exactly the same program.
Features sub and format are said to be commutative because they modify mutually
disjoint parts of a program.

3.1 Pragmatics of Software Product Lines

If there are n optional features, there can be 2n different programs. We see a miniature
example of this in Fig. 9: there are 2 optional features (format and sub) and there are

3 Readers who are familiar with the decorator pattern will see a similarity with features: a dec-

orator wraps an object to add behaviors. Features can be dynamically composed, but in this pa-
per, they are statically composed to produce programs. Another difference is scale: decorators
wrap a single object, whereas features often modify many classes of a program simultaneously.

MM

s ize of
dom ain is

in fin ite

s ize of
S P L is
fin ite

O tis
e levator
dom ain

fligh t
book ing
portle t
dom ain

M otoro la
hand-held

radio
dom ain

IB M d isk
d river

dom ain

Fig. 8. SPLs and Metamodels

0
P1

P2

P4

P3

base

format

format sub

sub

 Fig. 9. Category of the Calculator SPL

8 D. Batory, M. Azanza, and J. Saraiva

22
=4 programs in the product line. A slightly

larger and more illustrative example is Fig.
10. We want to create an SPL of many pro-
grams; we know the arrows that allow us to
build each of these programs, and many pro-
grams use the same feature, e.g., the thick
arrows of Fig. 10 denote the application of the
green feature to 4 different programs, and the
dashed arrows denote the application of the
blue feature to 3 different programs. It is the
reuse of arrows that makes them more eco-
nomical to store than programs.

As an aside, features are like database transactions:
they make changes to a program that are not necessarily
localized: changes can appear anywhere in a program.
But the key is that either all changes are made, or none
are. Further, features can produce non-conforming pro-
grams (non-conforming models). Fig. 11 depicts an
arrow F that relates programs P3 and P6, both of which
conform to metamodel MM. But by arrow composibility,
we see that F=F3•F2•F1. Applying F1 to P3 yields pro-
gram P4, and applying F2 to P4 yields program P5, and
P6=F3(P5). Note that programs P4 and P5 do not conform
to MM. It is common for existing features to be decom-
posed into compositions of smaller features, the indi-
vidual application of which does not preserve confor-
mance properties of the resulting program or model.4 The reason why these smaller ar-
rows arise is that features often have a lot of code in common. Commonalities can be
factored into small features (small arrows) that are shared in implementations of larger
arrows. We will see examples of small arrows in the next section.

3.2 Arrow Implementations

There are two ways in which arrows are implemented. First is to implement arrows in
the ATL, GReAT, etc. languages. The second and standard way for SPLs is that ar-
rows are program or model deltas — a set of changes — that are superimposed on
existing models (e.g., AHEAD [9], Scala [28], Aspectual Feature Modules [5], and
AspectJ [22]). In effect, deltas can be viewed as a specific example of model weaving
[15]. Which approach — writing modules that are to be superimposed or writing
transformations— is “better”? This is not clear; I am unaware of any study to com-
pare their trade-offs. In this paper, I focus solely on the use of deltas, so that core con-
cepts in SPLs can be given their most direct MDE interpretation.

Here is an example. Fig. 12a shows the AHEAD representation of the sub feature
of our calculator SPL. It states that the calculator class is extended with a “void
sub(int x)” method, and the gui class is extended with a new field (JButton sub),

4 Conformance for a program could be whether it type checks or not.

0

Fig. 10. Reuse of Arrows in SPLs

P3 P6
F

MM

P4

F1

P5
F2

F3

Fig. 11. F=F3•F2•F1

 The Objects and Arrows of Computational Design 9

and its existing methods (initGui() and initListeners()) are wrapped (effectively
adding more lines of code to these methods). We mentioned in the last section about
decomposing a feature (arrow) into smaller features (arrows). Fig. 12b defines the
AHEAD arrow (subcl) that changes only the calculator class, Fig. 12c defines the
AHEAD arrow (subgui) that changes only the gui class. Composing subcl and subgui
in either order produces sub (Fig. 12d). The subgui arrow could be decomposed even
further, as a composition of arrows that introduce fields and wrap individual methods.

The same ideas hold for MDE models. In two different product lines, fire support
simulators [7] and web portlets [35], customized state machines were created by hav-
ing features encapsulate fragments of state machines. By composing fragments, com-
plete state machines were synthesized.

To me, the essential entities that programmers create in “pure” MDE are complete
models (points); in “pure” SPLs they are features (arrows representing model deltas).
Hence, there is discernible distinction between these paradigms, and exposing this
distinction reveals an interesting perspective. Fig. 13a shows the metamodel MM, its
cone of instances, and a particular product line PL whose members are m1, m4, and m5.
The domain of a more general metamodel, called an arrow metamodel MM, is a super-
set of MM. Fig. 13b exposes the arrows that relate models in the PL product line, show-
ing how models and features can be placed in the same cone of instances. Each model
m is represented by an arrow 0→m. Fig. 13c erases MM and its cone to reveal that the
instances of MM are arrows. The subset of arrows that define PL is indicated in
Fig. 13c, and so too are other sets of arrows (not necessarily disjoint) that are used to
create other product lines. By combining a set of arrows with a feature model (i.e., a

refines class calculator {
void sub(float x) { result=-x; }

}

refines class gui {
JButton sub = new JButton("sub");

void initGui() {
SUPER.initGui();
ContentPane.add(sub);

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}
}

refines class calculator {
void sub(float x) { result=-x; }

}

refines class gui {
JButton sub = new JButton("sub");

void initGui() {
SUPER.initGui();
ContentPane.add(sub);

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}
}

(a) sub=subcl subgui=subgui subcl

(b) subcl

(c) subgui

(d)
sub

subgui

subgui subcl

subcl

Fig. 12. AHEAD Arrow Implementations

10 D. Batory, M. Azanza, and J. Saraiva

specification that defines what composition of arrows are legal), the original product
line PL within MM’s cone of instances can be generated (Fig. 13d).5

From a modeling perspective, the SPL approach to program construction recog-
nizes a basic fact: all program artifacts — MDE models, Java programs, etc. — are
not created spontaneously. They are created by extending simpler artifacts, and these
artifacts come from simpler artifacts, recursively, until 0 is reached. The connection
between successive artifacts is an arrow (from the simpler to the more complex arti-
fact). By following arrows forward in time starting from 0, an artifact (program,
model, etc.) is synthesized. In effect, SPLs add a dimension of time to program or
model designs. Proceeding forward in time explains how a program was developed in
logical steps. Or stated differently, program synthesis is an integration of a series of
well-understood changes.

3.3 Recursion

Product lines of models will be common, but product lines of metamodels, a form of
product lines of product lines [8], will also be common. Fig. 14 depicts the MDE ar-
chitecture. A product line of four metamodels is shown, along with the arrows that

5

 Support for deltas in conventional programming languages is largely absent. One can only
define programs, not changes one wants to make to an existing program and encapsulate and
compose such changes. It is as if one-half of a fundamental picture is absent.

(d) relationship

(a) metamodels (b) metamodels and arrows

(c) arrow metamodels

1 5
1

MM

m1
m5

m41 4

2 3
3 4

MM

0

m2 m3

1 2

1 5
1

1 4

2 5
3 4

MM

1 2

arrows of
other SPLs

feature
model

MM

m1
m5

m4

MM

0

m2 m3

MM models that do
not conform to MM

arrow
metamodel

metamodel

Fig. 13. Metamodels and Arrow MetaModels

 The Objects and Arrows of Computational Design 11

connect them. Such arrows could be
metamodel deltas (as we have de-
scribed previously), or they could be
refactorings [33][38]. Normally, when
a metamodel is changed, one would
like to automatically update all of its
instances. The model-to-model trans-
formation that is derived from a
metamodel-to-metamodel transforma-
tion is called a co-transformation
[33][38]. Co-transformations map pro-
duct lines of one metamodel to prod-
uct lines of other metamodels.

3.4 Recap

Categories lie at the heart of SPLs, and again the ideas are straightforward. Well-stud-
ied ideas in mathematics offers a clean language and terminology to express SPL
Computational Designs. See [12] for an example. Now, let’s see what happens when
MDE and SPLs are combined into model-driven software product lines (MDSPL).

4 MDSPL and Categories

A fundamental concept in category theory is the commuting diagram, whose key
property is that all paths from one object to another yield equivalent results. The dia-
gram of Fig. 15a is said to commute if f2•d1=d2•f1. Commuting diagrams are the theo-
rems of category theory.

Commuting diagrams arise in MDSPL in the following way. Consider Fig. 15b,
which shows arrow A that maps object S to object B. A small product line of S

d1

d2

f1 f2

A

A

fS fJ
A

(a)

(c)

A
S B

s2

s1

b2

b1
fS fB

(b)

Fig. 15. Commuting Diagrams

•1 •3

•4• 2

meta-metamodel

metamodel
transformation

model
co-transformation

Fig. 14. Co-transformations

12 D. Batory, M. Azanza, and J. Saraiva

instances is depicted, and these points are mapped by A to a corresponding set of
points in B. In general, horizontal arrows are MDE transformations and vertical ar-
rows are SPL features. Note that feature fS that relates s1 to s2 is mapped to a corre-
sponding feature fB that relates b1 to b2. Mapping a feature (arrow) to another feature
(arrow) is an operator or update translation [4]. Operator A relates features fS and fB
in Fig. 15c by fB=A(fS).

From our limited experience, operators can sometimes be easy to write; generally
they pose a significant engineering challenge. As a challenge example, let S be the
domain of Java source and B be domain of Java bytecodes. Suppose feature fS is a
delta in source code that maps the source s1 of program P1 to the source s2 of program
P2. fB is the delta that is applied to the binary of s1 to yield the binary of s2 (i.e.,
b2=fB(b1)). Implementing operator A requires separate class compilation, a sophisti-
cated technology that can compile Java files individually and delay complete type
checking and constant folding optimizations until composition time [2]. In the next
sections, we present examples of operators we have implemented.6

Note: The generalization of metamodel S to the arrow metamodel S as ex-
plained in Section 3.2 also applies to the generalization of arrows. That is,
the external diagram consisting of objects S and B and arrow A:S→B can be
generalized to the external diagram with objects S and B and arrow A:S→B.
This is the A operator discussed above.

Note: A is a homomorphism: it is a mapping of S expressions (compositions
of one or more S arrows) to a corresponding B expression (compositions of
one or more B arrows). Let x and y be arrows of S. The commuting relation-
ship of a homomorphism is:

 A(x•y) = A(x) A(•) A(y)

where A(•) typically maps to function composition (•). We talk about the
practical benefits of such relationships next.

5 Benefits of Mapping Arrows

In the last two years, we discovered several uses for mapping arrows in MDE product
lines: simplifying implementations [17], improving test generation [36], understanding
feature interactions [23], explaining AHEAD [12], and improving the performance of
program synthesis [35]. In the following sections, I briefly review two recent results.

5.1 Lifting

MapStats is an MDSPL where applications are written in SVG and JavaScript. Map-
Stats applications display an SVG map of the U.S. where the map can be customized
by adding or removing charts, statistics, and controls (Fig. 16).

6 Gray has noticed that the kind of commuting diagrams shown here often require transforma-

tions that involve different technical spaces (using Bezivin's terminology). These are often
hard to compose in practice, yet seem easy in these diagrams [18]. As mentioned earlier, there
is a strong need for relating these tool chains [34][37].

 The Objects and Arrows of Computational Design 13

Fig. 16. A MapStats Application

The SPL design was a collection of MapStats features (arrows) and its feature
model, which defined the legal combination of MapStats features. All MapStats fea-
tures were implemented as XML documents or XML document deltas. By composing
arrows using XAK, a general language and tool for refining XML documents [3],
customized MapStats applications were synthesized. Early on, we discovered that a
particular subset of arrows, namely those that implemented charts, were tedious to write.
We used a basic concept of MDE to create a domain-specific language (DSL) to define
charts and chart features. Each Chart feature was mapped to its corresponding and low-

level MapStats feature by an operator (τ:Chart→MapStats). In effect, we “lifted” chart
arrows from their MapStats implementation, to arrows in a Charts DSL (Fig. 17). By
doing so, we simplified the writing of Charts arrows using the Charts DSL, and we
automated the tedious implementations of their corresponding MapStats arrows.

fe a tu re
m o de l

S P L

re d a rrow s
lif ted to

g ree n a rrow s

M ap S ta ts a rro w s

C h a rt a rro w s

Fig. 17. Lifting Arrows

14 D. Batory, M. Azanza, and J. Saraiva

As an example, Fig. 18a shows a simple DSL spec S of a pie-chart that displays
age population for the ranges 30-39 and 22-29. Fig. 18b shows a specification of a
chart arrow R that adds the range 18-21 to a Chart spec. The underlined code defines a
pointcut that identifies nodes in an XML document, and the advice is to append the
18-21 range item to selected nodes. Applying R to S (evaluating expression R(S))

yields the Chart spec of Fig. 18c. The τ operator maps a Chart arrow to a MapStats

arrow. The result of τ(R) is the MapStats arrow of Fig. 18d. Note that τ maps the

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“green” name= ...
<item attr=“AGE_22_29” color=“cyan” name=...

</chart>
(a) chart specification

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...

<xr:append>
<item attr="AGE_18_21" color="blue" ...

</xr:append>
</xr:at>

</xr:refine>
(b) a Chart arrow

<xr:refine ... >
<xr:at select="//function[@data-type='age-population']

[@parentId='ChartArea2'][@name='buildData']"...>
<xr:append>

<statement>
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("blue");

</statement>
</xr:append>

</xr:at>
</xr:refine>

(d) corresponding MapStats arrow

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“green” name= ...
<item attr=“AGE_22_29” color=“cyan” name=...
<item attr=“AGE_18_21” color=“blue” name=...

</chart>
(c) a refined chart specification

Fig. 18. MapStats and Chart Arrows

 The Objects and Arrows of Computational Design 15

Chart pointcut to the corresponding MapStats pointcut, and maps the Chart advice to

the corresponding MapStats advice written in JavaScript. τ was written in XSLT.
A homomorphism relates Chart arrows (Sk) to MapStats arrows (Ck):

τ(Si•Sj) = τ(Si)•τ(Sj) = Ci•Cj (1)

We used (1) in two ways. First, when a particular MapStats application was speci-
fied as a composition of MapStats arrows, we used (1) to generate MapStats chart
arrows. For example, let Mi denote non-chart arrows of MapStats. A MapStats applica-
tion P is a composition of M arrows followed by C arrows. We translated P into equiva-
lent expressions using (1) and evaluated either of these new expressions to synthesize
P:

P = C2•C1•C0•M1•M0 // given

 = τ(S2•S1•S0)•M1•M0 // by (1)

 = τ(S2)•τ(S1)•τ(S0)•M1•M0 // by (1)

The second use of (1) was for verification: it defined a set of constraints that hold
between pairs of Charts and MapStats features and their compositions. Here, as in
previous experiences [35], our tools did not satisfy these constraints (meaning the
equalities of (1) did not hold). This exposed bugs in our tools which we had to fix.7
Now we have greater confidence in our tools as they implement explicit relationships
in our MDSPL models. This is a win from an engineering perspective: we have in-
sights into domains that we did not have before, and we have a better understanding,
better models, and better tools as a result.

Lifting is a general technique that can be applied to many product lines. For more
details, see [17].

5.2 Test Generation

Testing members of SPLs is a fundamental problem. We can synthesize different pro-
grams, but how do we know these programs are correct? In such cases, specification-
based testing can be effective. Starting with a specification (or model) of a program,
we want to derive its tests automatically. Alloy is an example of this approach [20].

Alloy works by translating an Alloy specification S into a propositional formula. A
SAT solver finds the bindings that satisfy the formula, called a solution. Let I denote
the set of all solutions for S. A test program is generated for each solution using the
TestEra tool [26]. The set of all tests, T, is the output.

Alloy specifications can be developed incrementally by conjunction. That is, if
program P0 has specification S0 and feature F has specification SF, then the spec of
F(P) is S0∧SF. The conventional way to synthesize tests for a program is to compose
the specifications of all of its features, and then use Alloy and TestEra to produce its
tests. We know there is a commuting diagram behind this design, which Fig. 19 ex-
poses. The left column of objects are Alloy specifications, the middle column are spec
solutions, and the right column are tests. Horizontal arrows are the tools alloy:S→I
and TestEra:I→T. Features are vertical arrows. The right-most column of vertical

7 Although we could not prove the equivalence of (1), we could demonstrate equivalence by

testing, as is done in conventional software development.

16 D. Batory, M. Azanza, and J. Saraiva

arrows are spec refinements. The middle
column are solution refinements, and the
right column are test refinements.

Only the conventional path, and no
other, has ever been taken. The challenge is
to determine how to implement an operator

τ:S→I to map spec arrows to solution ar-

rows and maybe another operator σ:I→T
to map solution arrows to test arrows. Uzun
caova et al. discovered an elegant way to

realize τ (for details, see [36]). This dis-
covery exposed an alternative path, called
the incremental path, that first derives the
solutions for the base specification, and extends each solution to zero or more solu-
tions of an incrementally more complicated specification. Once solutions to the target
specification are found, the TestEra tool is used to produce the corresponding set of
tests.

Initial experiments revealed that in a majority of cases, the incremental path syn-
thesizes test programs faster than the conventional path, and for some cases, the

speedup was 30-50× faster. Not surprisingly, other paths were found to be even more
efficient (i.e., extend a specification multiple times, then derive its solutions, then
extend these solutions). Of course, we know that there are test arrows that relate tests
for different programs, but here is a case where it is unlikely that creating an operator

σ to map solution arrows to test arrows would be useful — all the work in extending
tests seems to be in extending solutions.

In general, commuting diagrams reveal new ways to solve problems, and in some
cases, these new solutions are better than existing solutions.

5.3 Recap of Benefits

Exposing commuting relationships in program synthesis, as illustrated in the previous
sections, has revealed a set of interesting problems and novel perspectives that have
lead to useful results. I expect many more applications of commuting diagrams in the
future. An even more interesting, longer-term, and open question is whether mathe-
maticians can leverage this connection of MDE and SPLs to provide deeper results.

6 Design Optimization

Design optimization is the most exotic part of Computational Design. If a program’s
design is an expression, then the expression can be optimized to produce an equiva-
lent and improved design. In the last section, we saw commuting diagrams offered
different paths to produce equivalent results. In the case of test generation, finding the
right path could shorten generation time substantially. There is a counterpart in SPLs
which originates from relational query optimization, that I now briefly describe.

S1

S2

S3

0

I1

I2

I3

0

T1

T2

T3

0alloy

alloy

alloy

alloy

TestEra

TestEra

TestEra

TestEra

conventional path

incremental path

Fig. 19. Paths for Test Generation

 The Objects and Arrows of Computational Design 17

Relational query optimization makes a clean distinction between functional re-
quirements and non-functional requirements. A functional requirement is an arrow
(e.g., relational operation); a non-functional requirement is a computable, estimatable,
or measurable property of a composition of arrows (e.g., performance) [32].

Fig. 20 depicts an SPL of multiple programs, all of which are derivable from 0. A
subset of these programs satisfy the functional requirements of a program spec. (This
is the inner set of programs in Fig. 20). Designers want a program of this inner set that
also satisfies non-functional requirements and/or optimizes some quality metrics (e.g.,
performance). In principle, by enumerating this inner set, evaluating each point on its
quality behavior, and selecting the
point that exhibits the “best” quality
(e.g., most efficient program w.r.t.
some criteria), that is the program to
build. Of course, how one enumerates
or searches the inner set, how one
evaluates or ranks points on the basis
of quality metrics, and to do so effi-
ciently, is often a challenging engi-
neering problem. But this is the RQO
paradigm: each relational algebra op-
eration is an arrow, relational algebra
expressions are arrow compositions, and relational query optimization is expression
optimization with respect to performance.

At present, I am aware of only a few examples of design optimization, among them
are RQO [32], data structures [6], adaptive computing [27], middleware [40], and
library synthesis [31]. A general technology for optimization may be constraint satis-
faction [13]. The main challenge is finding domains where there are different ways of
implementing the same functionality. Usually, most SPLs have only one implementa-
tion of a feature, and without multiple implementations, there may not be many op-
portunities for optimization a la RQO.

The key lesson is this: if you have a good conceptual framework, you will be able
to recognize more easily the relationship among different and disparate areas of re-
search. Much of what we do today as designers and implementors is to define and
transform structures. By making these abstractions and distinctions clear(er), we will
be that much closer to understanding the essence of MDE, SPLs, and Computational
Design.

7 Conclusions

One of the key advances that brought database systems out of the stone age is rela-
tional query optimization. The relational model and the optimization of queries was
rooted firmly in set theory, using elementary operations on sets (select, project, join,
union). From a mathematical perspective, virtually nothing of set theory was used
except for the first few pages in a set theory text. It was these simple ideas from set
theory, not its deeper results, that made a lasting impact on databases.

The same may hold for category theory: its elementary ideas may find their way
into the practice of MDE and SPL program design and synthesis. There is preliminary

0

programs
that satisfy
functional

requirements

most
efficient
program

product
line

 Fig. 20. Optimizing Program Designs

18 D. Batory, M. Azanza, and J. Saraiva

evidence that these ideas bring both pragmatic and pedagogical benefits. From an
informal modeling viewpoint, the ideas I presented here are usable by engineers.
Deeper results may be forthcoming.

How often will commuting diagrams arise in MDSPLs? This is not yet clear. One
thing is clear: if you look, you will eventually find them. And if you don’t look, you
won’t find them! Their utility will be decided on a per domain basis.

As mentioned in the Introduction, the future of software design and synthesis is in
automation. Understanding fundamentals of Computational Design will tell us how to
think about program design and synthesis in a structured and principled manner. It is
clear that many ideas are being reinvented in different contexts. This is not accidental:
it is evidence that we are working toward a general paradigm that we are only now
beginning to recognize. Modern mathematics provides a simple language and con-
cepts to express Computational Design and exposes previously unnoticed relation-
ships that can be exploited for pragmatic benefit. This is a step in the right direction.

Acknowledgements. We gratefully acknowledge the helpful comments of K. Czar-
necki, P. Kim, Z. Diskin, S. Apel, J. Gray, O. Diaz, and S. Trujillo on earlier drafts of
this paper. This work was supported by NSF’s Science of Design Project #CCF-
0438786 and #CCF-0724979, the Portuguese Science Foundation (FCT) under grant
SFRH/BSAB/782/2008, and the Basque Government under the Researchers Training
Program.

References

[1] Agrawal, A., Karsai, G., Ledeczi, A.: An End-to-End Domain-Driven Software Devel-
opment Framework. In: OOPSLA 2003 (2003)

[2] Ancona, D., Damiani, F., Drossopoulou, S.: Polymorphic Bytecode: Compositional
Compilation for Java-like Languages. In: POPL 2005 (2005)

[3] Anfurrutia, F.I., Diaz, O., Trujillo, S.: On the Refinement of XML. In: ICWE 2007
(2007)

[4] Antkiewicz, M., Czarnecki, K.: Design Space of Heterogeneous Synchronization. In:
Proc. Summer School on Generative and Transformational Techniques in Software Engi-
neering (GTTSE) (2007)

[5] Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE TSE (April 2008)
[6] Batory, D., Chen, G., Robertson, E., Wang, T.: Design Wizards and Visual Programming

Environments for GenVoca Generators. IEEE TSE (May 2000)
[7] Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving Extensibility

Through Product-Lines and Domain-Specific Languages: A Case Study. ACM TOSEM
11(2) (April 2002)

[8] Batory, D., Liu, J., Sarvela, J.N.: Refinements and Multi-Dimensional Separation of Con-
cerns. In: ACM SIGSOFT 2003 (2003)

[9] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE
(June 2004)

[10] Batory, D.: Multi-Level Models in Model Driven Development, Product-Lines, and
Metaprogramming. IBM Systems Journal 45(3) (2006)

 The Objects and Arrows of Computational Design 19

[11] Batory, D.: Program Refactorings, Program Synthesis, and Model-Driven Design. In:
ETAPS 2007, keynote (2007)

[12] Batory, D.: Using Modern Mathematics as an FOSD Modeling Language. In: GPCE 2008
(2008)

[13] Benavides, D., Trinidad, P., Ruiz-Cortes, A.: Automated Reasoning on Feature Models.
In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

[14] Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Best Practices for
Model-Driven-Software Development (2004)

[15] Bézivin, J., Bouzitouna, S., Del Fabro, M., Gervais, M.-P., Jouault, F., Kolovos, D., Kur-
tev, I., Paige, R.: A Canonical Scheme for Model Composition. In: ECMDA-FA 2006
(2006)

[16] Cuadrado, J.S., Molina, J.G., Tortosa, M.: RubyTL: A Practical, Extensible Transforma-
tion Language. In: ECMDA-FA 2006 (2006)

[17] Freeman, G., Batory, D., Lavender, G.: Lifting Transformational Models of Product
Lines: A Case Study. In: ICMT 2008 (2008)

[18] Gray, J.: Private correspondence (July 2008)
[19] Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidi-

rectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

[20] Jackson, D.: Alloy: A Lightweight Object Modeling Notation. In: ACM TOSEM (April
2002)

[21] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Model Transformations in
Practice Workshop at MODELS 2005 (2005)

[22] Kiczales, G., et al.: An Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001.
LNCS, vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

[23] Kim, C.H.P., Kaestner, C., Batory, D.: On the Modularity of Feature Interactions. In:
GPCE 2008 (2008)

[24] Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-Based DSL Frameworks. In:
OOPSLA 2006 (2006)

[25] Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics: A First Introduction To Cate-
gories. Cambridge University Press, Cambridge (1997)

[26] Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of Java
programs. In: ASE 2001 (2001)

[27] Neema, S.K.: System-Level Synthesis of Adaptive Computing Systems. Ph.D. Vanderbilt
University (2001)

[28] Odersky, M., et al.: An Overview of the Scala Programming Language (September 2004),
http://scala.epfl.ch

[29] Oldevik, J.: UMT: UML Model Transformation Tool Overview and User Guide Docu-
mentation (2004), http://umt-qvt.sourceforge.net/docs/

[30] Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge (1991)
[31] Püschel, M., et al.: SPIRAL: Code Generation for DSP Transforms. Proc. IEEE 93#2

(2005); Special Issue on Program Generation, Optimization, and Adaptation
[32] Selinger, P., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access Path

Selection in a Relational Database System. In: ACM SIGMOD 1979 (1979)
[33] Sprinkle, J., Karsai, G.: A Domain-Specific Visual Language for Domain Model Evolu-

tion. J. Vis. Lang. Comput. 15(3-4) (2004)
[34] Trujillo, S., Azanza, M., Diaz, O.: Generative Metaprogramming. In: GPCE 2007 (2007)

20 D. Batory, M. Azanza, and J. Saraiva

[35] Trujillo, S., Batory, D., Diaz, O.: Feature Oriented Model Driven Development: A Case
Study for Portlets. In: ICSE 2007 (2007)

[36] Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: Testing Software Product Lines Us-
ing Incremental Test Generation. In: ISSRE 2008 (2008)

[37] Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A Unified
Transformation Infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

[38] Wachsmuth, G.: Metamodel Adaptation and Model Co-Adaptation. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

[39] Wing, J.: Computational Thinking. In: CACM 2006 (March 2006)
[40] Zhang, C., Gao, G., Jacobsen, H.-A.: Towards Just-in-time Middleware Architectures. In:

AOSD 2005 (2005)

	The Objects and Arrows of Computational Design
	Introduction
	MDE and Categories
	SPL and Categories
	Pragmatics of Software Product Lines
	Arrow Implementations
	Recursion
	Recap

	MDSPL and Categories
	Benefits of Mapping Arrows
	Lifting
	Test Generation
	Recap of Benefits

	Design Optimization
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

