
An exercise in formalisation (and what that gets
you): blockchain transactions

Work started at Data61, ATP, Sydney in September 2018 and

continued at INESC TEC/HASlab, Minho, Braga in

October/November 2018

Steve Reeves

Department of Computer Science
University of Waikato

Hamilton
New Zealand

Introduction

I Three aims:

I using Z and PVS to formalise, in very abstract terms, different
accounting systems (classical, UTXO...)

I using PVS to reproduce work on formalising an abstraction of
Ethereum transactions

I looking at the connection (if any) between refinement (in
general) and theory interpretations (in PVS)

I NOTE: we are ignoring the questions of security and how
consensus is reached...it turns out that even if all that is
perfect, there are currently problems

Introduction

I Three aims:

I using Z and PVS to formalise, in very abstract terms, different
accounting systems (classical, UTXO...)

I using PVS to reproduce work on formalising an abstraction of
Ethereum transactions

I looking at the connection (if any) between refinement (in
general) and theory interpretations (in PVS)

I NOTE: we are ignoring the questions of security and how
consensus is reached...it turns out that even if all that is
perfect, there are currently problems

Introduction

I Three aims:

I using Z and PVS to formalise, in very abstract terms, different
accounting systems (classical, UTXO...)

I using PVS to reproduce work on formalising an abstraction of
Ethereum transactions

I looking at the connection (if any) between refinement (in
general) and theory interpretations (in PVS)

I NOTE: we are ignoring the questions of security and how
consensus is reached...it turns out that even if all that is
perfect, there are currently problems

Introduction

I Three aims:

I using Z and PVS to formalise, in very abstract terms, different
accounting systems (classical, UTXO...)

I using PVS to reproduce work on formalising an abstraction of
Ethereum transactions

I looking at the connection (if any) between refinement (in
general) and theory interpretations (in PVS)

I NOTE: we are ignoring the questions of security and how
consensus is reached...it turns out that even if all that is
perfect, there are currently problems

Introduction

I Three aims:

I using Z and PVS to formalise, in very abstract terms, different
accounting systems (classical, UTXO...)

I using PVS to reproduce work on formalising an abstraction of
Ethereum transactions

I looking at the connection (if any) between refinement (in
general) and theory interpretations (in PVS)

I NOTE: we are ignoring the questions of security and how
consensus is reached...it turns out that even if all that is
perfect, there are currently problems

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Aim One—Formalisation

I What general properties should blockchains have? Especially
relative to existing accounting systems....

I Initially independent from any particular “version”

I Help manage complexity and provide a coherent view

I Express properties of BC

I Then build models that have those properties

I Then, for any particular system, try to show that it is a
refinement of the abstract system with known properties

I Property-driven development

Refinement

I Express a model abstractly, then move towards a more
concrete version (and ultimately a program) in steps which
provably preserve correctness relative to the abstract model

I Principle of Substitutivity

I Forward simulation rules in Z, for example

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R ′

∀CState; AState • R ∧ pre AOp ⇒ pre COp

∀AState; CState; CState ′ • R ∧ pre AOp ∧ COp ⇒
∃AState ′ • AOp ∧ R ′

Refinement

I Express a model abstractly, then move towards a more
concrete version (and ultimately a program) in steps which
provably preserve correctness relative to the abstract model

I Principle of Substitutivity

I Forward simulation rules in Z, for example

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R ′

∀CState; AState • R ∧ pre AOp ⇒ pre COp

∀AState; CState; CState ′ • R ∧ pre AOp ∧ COp ⇒
∃AState ′ • AOp ∧ R ′

Refinement

I Express a model abstractly, then move towards a more
concrete version (and ultimately a program) in steps which
provably preserve correctness relative to the abstract model

I Principle of Substitutivity

I Forward simulation rules in Z, for example

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R ′

∀CState; AState • R ∧ pre AOp ⇒ pre COp

∀AState; CState; CState ′ • R ∧ pre AOp ∧ COp ⇒
∃AState ′ • AOp ∧ R ′

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Second Aim—Exploring current BC/DLT systems, with an
eye on the future

I Past work has been looking at existing contracts or the EVM

I Aim to (1) reproduce that and (2) expand it to the whole of
EtherLite

I A model of a trivial blockchain in PVS

I Some proofs of simple properties—which guide the model in a
modelling/validation cycle

I The simplified Etherlite in PVS (Nikolić et al.)

I Full Etherlite in PVS (Luu et al.)

I Denotational rather than the operational semantics of
EtherLite

I Try to formulate general properties of BCs from all this
experimentation and reproduction

Aim Three—Refinement/Theory Interpretations

Is the connection stated by the PVS guys useful and interesting for
me?

Using PVS

I Long pedigree

I Functional programming with dependent types, and therefore
a proof theory—and therefore all the support that goes with
those

I It means there is a theorem-prover sitting there...which is
useful

I Some PVS....

Using PVS

I Long pedigree

I Functional programming with dependent types, and therefore
a proof theory—and therefore all the support that goes with
those

I It means there is a theorem-prover sitting there...which is
useful

I Some PVS....

Using PVS

I Long pedigree

I Functional programming with dependent types, and therefore
a proof theory—and therefore all the support that goes with
those

I It means there is a theorem-prover sitting there...which is
useful

I Some PVS....

Using PVS

I Long pedigree

I Functional programming with dependent types, and therefore
a proof theory—and therefore all the support that goes with
those

I It means there is a theorem-prover sitting there...which is
useful

I Some PVS....

Example of what formalisation gives—EtherLite

I Greedy, Prodigal and Suicidal Contracts (Nikolić et al.,
Singapore, UK) using MAIAN

the contract concretely and validate the result for true
positives; this step is implemented by our concrete val-
idation component. The concrete validation component
takes the inputs generated by symbolic analysis compo-
nent and checks the exploit of the contract on a private
fork of Ethereum blockchain. Essentially, it is a testbed
environment used to confirm the correctness of the bugs.
As a result, at the end of validation the candidate contract
is determined as true or false positive, but the contract
state on main blockchain is not affected since no changes
are committed to the official Ethereum blockchain.

3 Execution Model and Trace Properties

A life cycle of a smart contract can be represented by a
sequence of the contract’s states, which describe the val-
ues of the contract’s fields, as well as its balance, inter-
leaved with instructions and irreversible actions it per-
forms modifying the global context of the blockchain,
such transferring Ether or committing suicide. One can
consider a contract to be buggy with respect to a certain
class of unwelcome high-level scenarios (e.g., “leaking”
funds) if some of its finite execution traces fail to sat-
isfy a certain condition. Trace properties characterised
this way are traditionally qualified as trace-safety ones,
meaning that “during a final execution nothing bad hap-
pens”. Proving the absence of some other high-level bugs
will, however, require establishing a statement of a dif-
ferent kind, namely, “something good must eventually
happen”. Such properties are known as liveness ones
and require reasoning about progress in executions. An
example of such property would be an assertion that a
contract can always execute a finite number of steps in
order to perform an action of interest, such as tranferring
money, in order to be considered non-greedy.

In this section, we formally define the execution model
of Ethereum smart contracts, allowing one to pinpoint
the vulnerabilities characterised in Section 2.2. The key
idea of our bug-catching approach is to formulate the
erroneous behaviours as predicates of observed contract
traces, rather than individual configurations and instruc-
tion invocations, occurring in the process of an execu-
tion. By doing so, we are able to (a) capture the prodi-
gal/suicidal contracts via conditions that relate the un-
welcome agents gaining, at some point, access to a con-
tract’s funds or suicide functionality by finding a way
around a planned semantics, and (b) respond about re-
peating behavioural patterns in the contract life cycles,
allowing us to detect greedy contracts.

3.1 EVM Semantics and Execution Traces
We begin with defining cotnract execution traces by
adopting a low-level execution semantics of an EVM-

like language in the form of ETHERLITE-like calcu-
lus [2]. ETHERLITE implements a small-step stack ma-
chine, operating on top of a global configuration of the
blockchain, which used to retrieve contract codes and
ascribe Ether balance to accounts, as well as manipula-
tions with the local contract configuration. As custom-
ary in Ethereum, such agent is represented by its address
id, and might be a contract itself. For the purpose of
this work, we simplify the semantics of ETHERLITE by
eliding the executions resulting in exceptions, as reason-
ing about such is orthogonal to the properties of interest.
Therefore, the configurations d of the ETHERLITE ab-
stract machine are defined as follows:

Configuration d , hA,si
Execution stack A , hM, id,pc,s,mi ·A | e
Message m , {sender 7! id; value : N; data 7! . . .}
Blockchain state s , id 7!

�
bal : N; code? 7! M; f ? 7! v

That is, a contract execution configuration consists
of an activation record stack A and a blockchain con-
text s . An activation record stack A is a list of tuples
hM, id,pc,s,mi, where id and M are the address and the
code of the contract currently being executed, pc is a pro-
gram counter pointing to the next instruction to be exe-
cuted, s is a local operand stack, and m is the last mes-
sage used to invoke the contract execution. Among other
fields, m stores the identity of the sender, the amount
value of the ether being transferred (represented as a nat-
ural number), as well as auxiliary fields (data) used to
provide additional arguments for a contract call, which
we will be omitting for the sake of brevity. Finally, a
simplified context s of a blockchain is encoded as a fi-
nite partial mapping from an account id to its balance
and contract code M and its mutable state, mapping the
field names f to the corresponding values,4 which both
are optional (hence, marked with ?) and are only present
for contract-storing blockchain records. We will further
refer to the union of a contract’s fields entries f 7! v and
its balance entry bal 7! z as a contract state r .

Figure 5 presents selected rules for a smart contract
execution in ETHERLITE.5 The rules for storing and
loading values to/from a contract’s field f are standard.
Upon calling another account, a rule CALL is executed,
which required the amount of Ether z to be transferred
to be not larger than the contract id’s current balance,
and changes the activation record stack and the global
blockchain context accordingly. Finally, the rule SUI-
CIDENONEMPTYSTACK provides the semantics for the
SUICIDE instruction (for the case of a non-empty activa-

4For simplicity of presentation, we treat all contract state as persis-
tent, eliding operations with auxiliary memory, such as MLOAD/MSTORE.

5The remaining rules can be found in the work by Luu et al. [2].

5

SSTORE
M[pc] = SSTORE s 0 = s [id][f 7! v]

hhM, id,pc, f · v · s,mi ·A,si sstore(f , v)�������! hhM, id,pc+1,s,mi ·A,s 0i

SLOAD
M[pc] = SLOAD v = s [id][f]

hhM, id,pc, f · s,mi ·A,si sload(f , v)�������! hhM, id,pc+1,v · s,mi ·A,si

CALL
M[pc] = CALL s [id][bal] � z

s = id0 · z ·args · s0 a = hM, id,pc+1,s0,mi
m0 = {sender 7! id;value 7! z;data 7! args} M0 = s [id0][code]

s 0 = s [id][bal 7! s [id][bal]� z] s 00 = s 0[id0][bal 7! s 0[id0][bal]+ z]

hhM, id,pc,s,mi ·A,si call(id0 , m0)�������! hhM0, id0,0,e,m0i ·a ·A,s 00i

SUICIDENONEMPTYSTACK
M[pc] = SUICIDE s = id0 · s0 a = hM0,pc0,s00,m0i

s 0 = s [id0][bal 7! (s [id0][bal]+s [id][bal])] s 00 = s 0[id][bal 7! 0]

hhM, id,pc,s,mi ·a ·A,si suicide(id0)�������! hhM0, id0,pc0,1 · s00,m0i ·A,s 00i

Figure 5: Selected execution rules of ETHERLITE.

tion record stack), in which case all funds of the termi-
nated contract id are transferred to the caller’s id0.

An important addition we made to the semantics of
ETHERLITE are execution labels, which allow to distin-
guish between specific transitions being taken, as well as
their parameters, and are defined as follows:

` , sstore(f , v) | sload(f , v) | call(id, m) | suicide(id) | . . .

For instance, a transition label of the form call(id, m)
captures the fact that a currently running contract has
transferred control to another contract id, by sending it
a message m, while the label suicide(id) would mean a
suicide of the current contract, with transfer of all of its
funds to the account (a contract’s or not) id.

With the labelled operational semantics at hand, we
can now provide a definition of partial contract execution
traces as sequences of interleaved contract states ri and
transition labels ` j as follows:

Definition 3.1 (Projected contract trace). A partial pro-
jected trace t = btid(s ,m) of a contract id in an initial
blockchain state s and an incoming message m is defined
as a sequence [hr0,`0i, . . . ,hrn,`ni], such that for every
i 2 {0 . . .n}, ri = si[id]|bal, f , where si is the blockchain
state at the ith occurrence of a configuration of the form,
hh•, id,•,•,•i,sii in an execution sequence starting from
the configuration hhs [id][code], id,0,e,mi · e,si, and `i
is a label of an immediate next transition.

In other words, btid(s ,m) captures the states of a con-
tract id, interleaved with the transitions taken “on its be-
half” and represented by the corresponding labels, start-
ing from the initial blockchain s and triggered by the

message m. The notation s [id]|bal, f stands for a projec-
tion to the corresponding components of the contract en-
try in s . States and transitions of contracts other than id
and involved into the same execution are, thus, ignored.

Given a (partial) projected trace btid(s ,m), we say that
it is complete, if it corresponds to an execution, whose
last configuration is he,s 0i for some s 0. The following
definition captures the behaviors of multiple subsequent
transactions with respect to a contract of interest.

Definition 3.2 (Multi-transactional contract trace). A
contract trace t = tid(s ,mi), for a sequence of messages
mi = m0, . . . ,mn, is a concatenation of single-transaction
traces btid(si,mi), where s0 = s , si+1 is a blockchain
state at the end of an execution starting from a con-
figuration hhs [id][code], id,0,e,mii · e,sii, and all traces
btid(si,mi) are complete for i 2 {0, . . . ,n�1}.

As stated, the definition does not require a trace to end
with a complete execution at the last transaction. For
convenience, we will refer to the last element of a trace t
by last(t) and to its length as length(t).

3.2 Characterising Safety Violations

The notion of contract traces allows us to formally cap-
ture the definitions of buggy behaviors, described previ-
ously in Section 2.2. First, we turn our attention to the
prodigal/suicidal contracts, which can be uniformly cap-
tured by the following higher-order trace predicate.

Definition 3.3 (Leaky contracts). A contract with an ad-
dress id is considered to be leaky with respect to pred-
icates P, R and Q, and a blockchain state s (denoted
leakyP,R,Q(id,s)) iff there exists a sequence of messages
mi, such that for a trace t = tid(s ,mi):
1. the precondition P(s [id][code], t0,m0) holds,
2. the side condition R(ti,m0) holds for all i < length(t),
3. the postcondition Q(tn,m0) holds for tn = last(t).

Definition 3.3 of leaky contracts is relative with re-
spect to a current state of a blockchain: a contract that is
currently leaky may stop being such in the future. Also,
notice that the “triggering” initial message m0 serves as
an argument for all three parameter predicates. We will
now show how two behaviors observed earlier can be en-
coded via specific choices of P, R, and Q.6

Prodigal contracts. A contract is considered prodigal if
it sends Ether, immediately or after a series of transitions
(possibly spanning multiple transactions), to an arbitrary
sender. This intuition can be encoded via the following
choice of P, R, and Q for Definition 3.3:

6In most of the cases, it is sufficient to take R , True, but in Sec-
tion 6 we hint certain properties that require a non-trivial side condition.

6

Example of what formalisation gives—EtherLite

I Greedy, Prodigal and Suicidal Contracts (Nikolić et al.,
Singapore, UK) using MAIAN

the contract concretely and validate the result for true
positives; this step is implemented by our concrete val-
idation component. The concrete validation component
takes the inputs generated by symbolic analysis compo-
nent and checks the exploit of the contract on a private
fork of Ethereum blockchain. Essentially, it is a testbed
environment used to confirm the correctness of the bugs.
As a result, at the end of validation the candidate contract
is determined as true or false positive, but the contract
state on main blockchain is not affected since no changes
are committed to the official Ethereum blockchain.

3 Execution Model and Trace Properties

A life cycle of a smart contract can be represented by a
sequence of the contract’s states, which describe the val-
ues of the contract’s fields, as well as its balance, inter-
leaved with instructions and irreversible actions it per-
forms modifying the global context of the blockchain,
such transferring Ether or committing suicide. One can
consider a contract to be buggy with respect to a certain
class of unwelcome high-level scenarios (e.g., “leaking”
funds) if some of its finite execution traces fail to sat-
isfy a certain condition. Trace properties characterised
this way are traditionally qualified as trace-safety ones,
meaning that “during a final execution nothing bad hap-
pens”. Proving the absence of some other high-level bugs
will, however, require establishing a statement of a dif-
ferent kind, namely, “something good must eventually
happen”. Such properties are known as liveness ones
and require reasoning about progress in executions. An
example of such property would be an assertion that a
contract can always execute a finite number of steps in
order to perform an action of interest, such as tranferring
money, in order to be considered non-greedy.

In this section, we formally define the execution model
of Ethereum smart contracts, allowing one to pinpoint
the vulnerabilities characterised in Section 2.2. The key
idea of our bug-catching approach is to formulate the
erroneous behaviours as predicates of observed contract
traces, rather than individual configurations and instruc-
tion invocations, occurring in the process of an execu-
tion. By doing so, we are able to (a) capture the prodi-
gal/suicidal contracts via conditions that relate the un-
welcome agents gaining, at some point, access to a con-
tract’s funds or suicide functionality by finding a way
around a planned semantics, and (b) respond about re-
peating behavioural patterns in the contract life cycles,
allowing us to detect greedy contracts.

3.1 EVM Semantics and Execution Traces
We begin with defining cotnract execution traces by
adopting a low-level execution semantics of an EVM-

like language in the form of ETHERLITE-like calcu-
lus [2]. ETHERLITE implements a small-step stack ma-
chine, operating on top of a global configuration of the
blockchain, which used to retrieve contract codes and
ascribe Ether balance to accounts, as well as manipula-
tions with the local contract configuration. As custom-
ary in Ethereum, such agent is represented by its address
id, and might be a contract itself. For the purpose of
this work, we simplify the semantics of ETHERLITE by
eliding the executions resulting in exceptions, as reason-
ing about such is orthogonal to the properties of interest.
Therefore, the configurations d of the ETHERLITE ab-
stract machine are defined as follows:

Configuration d , hA,si
Execution stack A , hM, id,pc,s,mi ·A | e
Message m , {sender 7! id; value : N; data 7! . . .}
Blockchain state s , id 7!

�
bal : N; code? 7! M; f ? 7! v

That is, a contract execution configuration consists
of an activation record stack A and a blockchain con-
text s . An activation record stack A is a list of tuples
hM, id,pc,s,mi, where id and M are the address and the
code of the contract currently being executed, pc is a pro-
gram counter pointing to the next instruction to be exe-
cuted, s is a local operand stack, and m is the last mes-
sage used to invoke the contract execution. Among other
fields, m stores the identity of the sender, the amount
value of the ether being transferred (represented as a nat-
ural number), as well as auxiliary fields (data) used to
provide additional arguments for a contract call, which
we will be omitting for the sake of brevity. Finally, a
simplified context s of a blockchain is encoded as a fi-
nite partial mapping from an account id to its balance
and contract code M and its mutable state, mapping the
field names f to the corresponding values,4 which both
are optional (hence, marked with ?) and are only present
for contract-storing blockchain records. We will further
refer to the union of a contract’s fields entries f 7! v and
its balance entry bal 7! z as a contract state r .

Figure 5 presents selected rules for a smart contract
execution in ETHERLITE.5 The rules for storing and
loading values to/from a contract’s field f are standard.
Upon calling another account, a rule CALL is executed,
which required the amount of Ether z to be transferred
to be not larger than the contract id’s current balance,
and changes the activation record stack and the global
blockchain context accordingly. Finally, the rule SUI-
CIDENONEMPTYSTACK provides the semantics for the
SUICIDE instruction (for the case of a non-empty activa-

4For simplicity of presentation, we treat all contract state as persis-
tent, eliding operations with auxiliary memory, such as MLOAD/MSTORE.

5The remaining rules can be found in the work by Luu et al. [2].

5

SSTORE
M[pc] = SSTORE s 0 = s [id][f 7! v]

hhM, id,pc, f · v · s,mi ·A,si sstore(f , v)�������! hhM, id,pc+1,s,mi ·A,s 0i

SLOAD
M[pc] = SLOAD v = s [id][f]

hhM, id,pc, f · s,mi ·A,si sload(f , v)�������! hhM, id,pc+1,v · s,mi ·A,si

CALL
M[pc] = CALL s [id][bal] � z

s = id0 · z ·args · s0 a = hM, id,pc+1,s0,mi
m0 = {sender 7! id;value 7! z;data 7! args} M0 = s [id0][code]

s 0 = s [id][bal 7! s [id][bal]� z] s 00 = s 0[id0][bal 7! s 0[id0][bal]+ z]

hhM, id,pc,s,mi ·A,si call(id0 , m0)�������! hhM0, id0,0,e,m0i ·a ·A,s 00i

SUICIDENONEMPTYSTACK
M[pc] = SUICIDE s = id0 · s0 a = hM0,pc0,s00,m0i

s 0 = s [id0][bal 7! (s [id0][bal]+s [id][bal])] s 00 = s 0[id][bal 7! 0]

hhM, id,pc,s,mi ·a ·A,si suicide(id0)�������! hhM0, id0,pc0,1 · s00,m0i ·A,s 00i

Figure 5: Selected execution rules of ETHERLITE.

tion record stack), in which case all funds of the termi-
nated contract id are transferred to the caller’s id0.

An important addition we made to the semantics of
ETHERLITE are execution labels, which allow to distin-
guish between specific transitions being taken, as well as
their parameters, and are defined as follows:

` , sstore(f , v) | sload(f , v) | call(id, m) | suicide(id) | . . .

For instance, a transition label of the form call(id, m)
captures the fact that a currently running contract has
transferred control to another contract id, by sending it
a message m, while the label suicide(id) would mean a
suicide of the current contract, with transfer of all of its
funds to the account (a contract’s or not) id.

With the labelled operational semantics at hand, we
can now provide a definition of partial contract execution
traces as sequences of interleaved contract states ri and
transition labels ` j as follows:

Definition 3.1 (Projected contract trace). A partial pro-
jected trace t = btid(s ,m) of a contract id in an initial
blockchain state s and an incoming message m is defined
as a sequence [hr0,`0i, . . . ,hrn,`ni], such that for every
i 2 {0 . . .n}, ri = si[id]|bal, f , where si is the blockchain
state at the ith occurrence of a configuration of the form,
hh•, id,•,•,•i,sii in an execution sequence starting from
the configuration hhs [id][code], id,0,e,mi · e,si, and `i
is a label of an immediate next transition.

In other words, btid(s ,m) captures the states of a con-
tract id, interleaved with the transitions taken “on its be-
half” and represented by the corresponding labels, start-
ing from the initial blockchain s and triggered by the

message m. The notation s [id]|bal, f stands for a projec-
tion to the corresponding components of the contract en-
try in s . States and transitions of contracts other than id
and involved into the same execution are, thus, ignored.

Given a (partial) projected trace btid(s ,m), we say that
it is complete, if it corresponds to an execution, whose
last configuration is he,s 0i for some s 0. The following
definition captures the behaviors of multiple subsequent
transactions with respect to a contract of interest.

Definition 3.2 (Multi-transactional contract trace). A
contract trace t = tid(s ,mi), for a sequence of messages
mi = m0, . . . ,mn, is a concatenation of single-transaction
traces btid(si,mi), where s0 = s , si+1 is a blockchain
state at the end of an execution starting from a con-
figuration hhs [id][code], id,0,e,mii · e,sii, and all traces
btid(si,mi) are complete for i 2 {0, . . . ,n�1}.

As stated, the definition does not require a trace to end
with a complete execution at the last transaction. For
convenience, we will refer to the last element of a trace t
by last(t) and to its length as length(t).

3.2 Characterising Safety Violations

The notion of contract traces allows us to formally cap-
ture the definitions of buggy behaviors, described previ-
ously in Section 2.2. First, we turn our attention to the
prodigal/suicidal contracts, which can be uniformly cap-
tured by the following higher-order trace predicate.

Definition 3.3 (Leaky contracts). A contract with an ad-
dress id is considered to be leaky with respect to pred-
icates P, R and Q, and a blockchain state s (denoted
leakyP,R,Q(id,s)) iff there exists a sequence of messages
mi, such that for a trace t = tid(s ,mi):
1. the precondition P(s [id][code], t0,m0) holds,
2. the side condition R(ti,m0) holds for all i < length(t),
3. the postcondition Q(tn,m0) holds for tn = last(t).

Definition 3.3 of leaky contracts is relative with re-
spect to a current state of a blockchain: a contract that is
currently leaky may stop being such in the future. Also,
notice that the “triggering” initial message m0 serves as
an argument for all three parameter predicates. We will
now show how two behaviors observed earlier can be en-
coded via specific choices of P, R, and Q.6

Prodigal contracts. A contract is considered prodigal if
it sends Ether, immediately or after a series of transitions
(possibly spanning multiple transactions), to an arbitrary
sender. This intuition can be encoded via the following
choice of P, R, and Q for Definition 3.3:

6In most of the cases, it is sufficient to take R , True, but in Sec-
tion 6 we hint certain properties that require a non-trivial side condition.

6

Example of what formalisation gives—EtherLite

I Greedy, Prodigal and Suicidal Contracts (Nikolić et al.,
Singapore, UK) using MAIAN

the contract concretely and validate the result for true
positives; this step is implemented by our concrete val-
idation component. The concrete validation component
takes the inputs generated by symbolic analysis compo-
nent and checks the exploit of the contract on a private
fork of Ethereum blockchain. Essentially, it is a testbed
environment used to confirm the correctness of the bugs.
As a result, at the end of validation the candidate contract
is determined as true or false positive, but the contract
state on main blockchain is not affected since no changes
are committed to the official Ethereum blockchain.

3 Execution Model and Trace Properties

A life cycle of a smart contract can be represented by a
sequence of the contract’s states, which describe the val-
ues of the contract’s fields, as well as its balance, inter-
leaved with instructions and irreversible actions it per-
forms modifying the global context of the blockchain,
such transferring Ether or committing suicide. One can
consider a contract to be buggy with respect to a certain
class of unwelcome high-level scenarios (e.g., “leaking”
funds) if some of its finite execution traces fail to sat-
isfy a certain condition. Trace properties characterised
this way are traditionally qualified as trace-safety ones,
meaning that “during a final execution nothing bad hap-
pens”. Proving the absence of some other high-level bugs
will, however, require establishing a statement of a dif-
ferent kind, namely, “something good must eventually
happen”. Such properties are known as liveness ones
and require reasoning about progress in executions. An
example of such property would be an assertion that a
contract can always execute a finite number of steps in
order to perform an action of interest, such as tranferring
money, in order to be considered non-greedy.

In this section, we formally define the execution model
of Ethereum smart contracts, allowing one to pinpoint
the vulnerabilities characterised in Section 2.2. The key
idea of our bug-catching approach is to formulate the
erroneous behaviours as predicates of observed contract
traces, rather than individual configurations and instruc-
tion invocations, occurring in the process of an execu-
tion. By doing so, we are able to (a) capture the prodi-
gal/suicidal contracts via conditions that relate the un-
welcome agents gaining, at some point, access to a con-
tract’s funds or suicide functionality by finding a way
around a planned semantics, and (b) respond about re-
peating behavioural patterns in the contract life cycles,
allowing us to detect greedy contracts.

3.1 EVM Semantics and Execution Traces
We begin with defining cotnract execution traces by
adopting a low-level execution semantics of an EVM-

like language in the form of ETHERLITE-like calcu-
lus [2]. ETHERLITE implements a small-step stack ma-
chine, operating on top of a global configuration of the
blockchain, which used to retrieve contract codes and
ascribe Ether balance to accounts, as well as manipula-
tions with the local contract configuration. As custom-
ary in Ethereum, such agent is represented by its address
id, and might be a contract itself. For the purpose of
this work, we simplify the semantics of ETHERLITE by
eliding the executions resulting in exceptions, as reason-
ing about such is orthogonal to the properties of interest.
Therefore, the configurations d of the ETHERLITE ab-
stract machine are defined as follows:

Configuration d , hA,si
Execution stack A , hM, id,pc,s,mi ·A | e
Message m , {sender 7! id; value : N; data 7! . . .}
Blockchain state s , id 7!

�
bal : N; code? 7! M; f ? 7! v

That is, a contract execution configuration consists
of an activation record stack A and a blockchain con-
text s . An activation record stack A is a list of tuples
hM, id,pc,s,mi, where id and M are the address and the
code of the contract currently being executed, pc is a pro-
gram counter pointing to the next instruction to be exe-
cuted, s is a local operand stack, and m is the last mes-
sage used to invoke the contract execution. Among other
fields, m stores the identity of the sender, the amount
value of the ether being transferred (represented as a nat-
ural number), as well as auxiliary fields (data) used to
provide additional arguments for a contract call, which
we will be omitting for the sake of brevity. Finally, a
simplified context s of a blockchain is encoded as a fi-
nite partial mapping from an account id to its balance
and contract code M and its mutable state, mapping the
field names f to the corresponding values,4 which both
are optional (hence, marked with ?) and are only present
for contract-storing blockchain records. We will further
refer to the union of a contract’s fields entries f 7! v and
its balance entry bal 7! z as a contract state r .

Figure 5 presents selected rules for a smart contract
execution in ETHERLITE.5 The rules for storing and
loading values to/from a contract’s field f are standard.
Upon calling another account, a rule CALL is executed,
which required the amount of Ether z to be transferred
to be not larger than the contract id’s current balance,
and changes the activation record stack and the global
blockchain context accordingly. Finally, the rule SUI-
CIDENONEMPTYSTACK provides the semantics for the
SUICIDE instruction (for the case of a non-empty activa-

4For simplicity of presentation, we treat all contract state as persis-
tent, eliding operations with auxiliary memory, such as MLOAD/MSTORE.

5The remaining rules can be found in the work by Luu et al. [2].

5

SSTORE
M[pc] = SSTORE s 0 = s [id][f 7! v]

hhM, id,pc, f · v · s,mi ·A,si sstore(f , v)�������! hhM, id,pc+1,s,mi ·A,s 0i

SLOAD
M[pc] = SLOAD v = s [id][f]

hhM, id,pc, f · s,mi ·A,si sload(f , v)�������! hhM, id,pc+1,v · s,mi ·A,si

CALL
M[pc] = CALL s [id][bal] � z

s = id0 · z ·args · s0 a = hM, id,pc+1,s0,mi
m0 = {sender 7! id;value 7! z;data 7! args} M0 = s [id0][code]

s 0 = s [id][bal 7! s [id][bal]� z] s 00 = s 0[id0][bal 7! s 0[id0][bal]+ z]

hhM, id,pc,s,mi ·A,si call(id0 , m0)�������! hhM0, id0,0,e,m0i ·a ·A,s 00i

SUICIDENONEMPTYSTACK
M[pc] = SUICIDE s = id0 · s0 a = hM0,pc0,s00,m0i

s 0 = s [id0][bal 7! (s [id0][bal]+s [id][bal])] s 00 = s 0[id][bal 7! 0]

hhM, id,pc,s,mi ·a ·A,si suicide(id0)�������! hhM0, id0,pc0,1 · s00,m0i ·A,s 00i

Figure 5: Selected execution rules of ETHERLITE.

tion record stack), in which case all funds of the termi-
nated contract id are transferred to the caller’s id0.

An important addition we made to the semantics of
ETHERLITE are execution labels, which allow to distin-
guish between specific transitions being taken, as well as
their parameters, and are defined as follows:

` , sstore(f , v) | sload(f , v) | call(id, m) | suicide(id) | . . .

For instance, a transition label of the form call(id, m)
captures the fact that a currently running contract has
transferred control to another contract id, by sending it
a message m, while the label suicide(id) would mean a
suicide of the current contract, with transfer of all of its
funds to the account (a contract’s or not) id.

With the labelled operational semantics at hand, we
can now provide a definition of partial contract execution
traces as sequences of interleaved contract states ri and
transition labels ` j as follows:

Definition 3.1 (Projected contract trace). A partial pro-
jected trace t = btid(s ,m) of a contract id in an initial
blockchain state s and an incoming message m is defined
as a sequence [hr0,`0i, . . . ,hrn,`ni], such that for every
i 2 {0 . . .n}, ri = si[id]|bal, f , where si is the blockchain
state at the ith occurrence of a configuration of the form,
hh•, id,•,•,•i,sii in an execution sequence starting from
the configuration hhs [id][code], id,0,e,mi · e,si, and `i
is a label of an immediate next transition.

In other words, btid(s ,m) captures the states of a con-
tract id, interleaved with the transitions taken “on its be-
half” and represented by the corresponding labels, start-
ing from the initial blockchain s and triggered by the

message m. The notation s [id]|bal, f stands for a projec-
tion to the corresponding components of the contract en-
try in s . States and transitions of contracts other than id
and involved into the same execution are, thus, ignored.

Given a (partial) projected trace btid(s ,m), we say that
it is complete, if it corresponds to an execution, whose
last configuration is he,s 0i for some s 0. The following
definition captures the behaviors of multiple subsequent
transactions with respect to a contract of interest.

Definition 3.2 (Multi-transactional contract trace). A
contract trace t = tid(s ,mi), for a sequence of messages
mi = m0, . . . ,mn, is a concatenation of single-transaction
traces btid(si,mi), where s0 = s , si+1 is a blockchain
state at the end of an execution starting from a con-
figuration hhs [id][code], id,0,e,mii · e,sii, and all traces
btid(si,mi) are complete for i 2 {0, . . . ,n�1}.

As stated, the definition does not require a trace to end
with a complete execution at the last transaction. For
convenience, we will refer to the last element of a trace t
by last(t) and to its length as length(t).

3.2 Characterising Safety Violations

The notion of contract traces allows us to formally cap-
ture the definitions of buggy behaviors, described previ-
ously in Section 2.2. First, we turn our attention to the
prodigal/suicidal contracts, which can be uniformly cap-
tured by the following higher-order trace predicate.

Definition 3.3 (Leaky contracts). A contract with an ad-
dress id is considered to be leaky with respect to pred-
icates P, R and Q, and a blockchain state s (denoted
leakyP,R,Q(id,s)) iff there exists a sequence of messages
mi, such that for a trace t = tid(s ,mi):
1. the precondition P(s [id][code], t0,m0) holds,
2. the side condition R(ti,m0) holds for all i < length(t),
3. the postcondition Q(tn,m0) holds for tn = last(t).

Definition 3.3 of leaky contracts is relative with re-
spect to a current state of a blockchain: a contract that is
currently leaky may stop being such in the future. Also,
notice that the “triggering” initial message m0 serves as
an argument for all three parameter predicates. We will
now show how two behaviors observed earlier can be en-
coded via specific choices of P, R, and Q.6

Prodigal contracts. A contract is considered prodigal if
it sends Ether, immediately or after a series of transitions
(possibly spanning multiple transactions), to an arbitrary
sender. This intuition can be encoded via the following
choice of P, R, and Q for Definition 3.3:

6In most of the cases, it is sufficient to take R , True, but in Sec-
tion 6 we hint certain properties that require a non-trivial side condition.

6

Example of what formalisation gives—EtherLite

I A contract is prodigal if it can engage in a sequence of
messages which drives the configuration through a trace that
sends Ether to an arbitrary sender

I pre-condition P true of initial configuration, side-condition R
true of each configuration, post-condition Q is true of final
configuration

P(M,hr,`i,m) , m[sender] /2 im(r)^m[value] = 0

R(hr,`i,m) , True

Q(hr,`i,m) , ` = call(m[sender],m0)^m0[value] > 0
_ ` = delegatecall(m[sender])
_ ` = suicide(m[sender])

According to the instantiation of the parameter predi-
cates above, a prodigal contract is exposed by a trace that
is triggered by a message m, whose sender does not ap-
pear in the contract’s state (m[sender] /2 im(r)), i.e., it is
not the owner, and the Ether payload of m is zero. To
expose the erroneous behavior of the contract, the post-
condition checks that the transition of a contract is such
that it transfer funds or control (i.e., corresponds to CALL,
DELEGATECALL or SUICIDE instructions [8]) with the re-
cipient being the sender of the initial message. In the case
of sending funds via CALL we also check that the amount
being transferred is non zero. In other words, the initial
caller m[sender], unknown to the contract, got himself
some funds without any monetary contribution! In prin-
ciple, we could ensure minimality of a trace, subject to
the property, by imposing a non-trivial side condition R,
although this does not affect the class of contracts ex-
posed by this definition.
Suicidal contracts. A definition of a suicidal contract
is very similar to the one of a prodigal contract. It is
delivered by the following choice of predicates:

P(M,hr,`i,m) , SUICIDE 2 M^m[sender] /2 im(r)

R(hr,`i,m) , True

Q(hr,`i,m) , ` = suicide(m[sender])

That is, a contract is suicidal if its code M contains
the SUICIDE instruction and the corresponding transition
can be triggered by a message sender, that does not ap-
pear in the contract’s state at the moment of receiving the
message, i.e., at the initial moment m[sender] /2 im(r).

3.3 Characterising Liveness Violations
A contract is considered locking at a certain blockchain
state s , if at any execution originating from s prohibits
certain transitions to be taken. Since disproving liveness
properties of this kind with a finite counterexample is
impossible in general, we formulate our definition as an
under-approximation of the property of interest, consid-
ering only final traces up to a certain length:

Definition 3.4 (Locking contracts). A contract with an
address id is considered to be locking with respect to
predicates P and R, the transaction number k, and a
blockchain state s (denoted lockingP,R,k(id,s)) iff for
all sequences of messages mi of length less or equal than
k, the corresponding trace t = tid(s ,mi) satisfies:

1. the precondition P(s [id][code], t0,m0),
2. the side condition R(ti,m0) for all i length(t).

Notice that, unlike Definition 3.3, this Definition does
not require a postcondition, as it is designed to under-
approximate potentially infinite traces, up to a certain
length k,7 so the “final state” is irrelevant.
Greedy contracts. In order to specify a property assert-
ing that in an interaction with up to k transactions, a con-
tract does not allow to release its funds, we instantiate
the predicates from Definition 3.4 as follows:

P(M,hr,`i,m) , r[bal] > 0

R(hr,`i,m) , ¬

0
B@

` = call(m[sender],m0)^m0[value] > 0
_ ` = delegatecall(m[sender])
_ ` = suicide(m[sender])

1
CA

Intuitively, the definition of a greedy contract is dual to
the notion of a prodigal one, as witnessed by the above
formulation: at any trace starting from an initial state,
where the contract holds a non-zero balance, no transi-
tion transferring the corresponding funds (i.e., matched
by the side condition R) can be taken, no matter what is
the sender’s identity. That is, this definition covers the
case of contract’s owner as well: no one can withdraw
any funds from the contract.

4 The Algorithm and the Tool

MAIAN is a symbolic analyzer for smart contract ex-
ecution traces, for the properties defined in Section 3.
It operates by taking as input a contract in its byte-
code form and a concrete starting block value from the
Ethereum blockchain as the input context, flagging con-
tracts that are outlined in Section 2.2. When reasoning
about contract traces, MAIAN follows the ETHERLITE
rules, described in Section 3.1, executing them symbol-
ically. During the execution, which starts from a con-
tract state satisfying the precondition of property of in-
terest (cf. Definitions 3.3 and 3.4), it checks if there ex-
ists an execution trace which violates the property and a
set of candidate values for input transactions that trigger
the property violation. For the sake of tractability of the
analysis, it does not keep track of the entire blockchain
context s (including the state of other contracts), treating
only the contract’s transaction inputs and certain block
parameters as symbolic. To reduce the number of false
positives and confirm concrete exploits for vulnerabili-
ties, MAIAN calls its concrete validation routine, which
we outline in Section 4.2.

7We discuss viable choices of k in Section 5.

7

I Similarly formalise suicidal and greedy contracts

I Scan the Ethereum BC, decompile EVM byte-code, find
contracts that have these properties

Example of what formalisation gives—EtherLite

I Analysed 970, 898 contracts (from whole BC up to 26th
December 2017)

I Used Etherscan to get source for 9,825

Category
#Candidates

flagged
(distinct)

Candidates
without
source

#Validated
% of
true

positives
Prodigal 1504 (438) 1487 1253 97
Suicidal 1495 (403) 1487 1423 99
Greedy 31,201 (1524) 31,045 1083 69
Total 34,200 (2,365) 34,019 3,759 89

Table 1: Final results using invocation depth 3 at block
height BH. Column 1 reports number of flagged contracts,
and the distinct among these. Column 2 shows the num-
ber of flagged which have no source code. Column 3 is
the subset we sampled for concrete validation. Column 4
reports true positive rates; the total here is the average TP
rate weighted by the number of validated contracts.

seconds to check if a contract is prodigal, 3.2 seconds for
suicidal, and 1.3 seconds for greedy.
Contract Characteristics. The number of contracts has
increased tenfold from Dec, 2016 to Dec, 2017 and 176-
fold since Dec, 2015. However, the distribution of Ether
balance across contracts follows a skewed distribution.
Less than 1% of the contracts have more than 99% of the
Ether in the ecosystem. This suggests that a vulnerabil-
ity in any one of these high-profile contracts can affect a
large fraction of the entire Ether balance. Note that con-
tracts interact with each other, therefore, a vulnerability
in one contract may affect many others holding Ether, as
demonstrated by the recent infamous Parity library which
was used by wallet contracts with $200 million US worth
of Ether [1].

5.1 Results
Table 1 summarizes the contracts flagged by MAIAN.
Given the large number of flagged contracts, we select
a random subset for concrete validation, and report on
the true positive rates obtained. We report the number of
distinct contracts, calculated by comparing the hash of
the bytecode; however, all percentages are calculated on
the original number of contracts (with duplicates).
Prodigal contracts. Our tool has flagged 1,504 candi-
dates contracts (438 distinct) which may leak Ether to an
arbitrary Ethereum address, with a true positive rate of
around 97%. At block height BH, 46 of these contracts
hold some Ether. The concrete validation described in
Section 4.2 succeeds for exploits for 37 out of 46 — these
are true positives, whereas 7 are false positives. The re-
maining 2 contracts leak Ether to an address different
from the caller’s address. Note that all of the 37 true
positive contracts are alive as of this writing. For ethical
reasons, no exploits were done on the main blockchain.

Of the remaining 1,458 contracts which presently do
not have Ether on the public Ethereum blockchain, 24
have been killed and 42 have not been published (as of
block height BH). To validate the remaining alive con-

tracts (in total 1392) on a private fork, first we send them
Ether from our mining account, and find that 1,183 con-
tracts can receive Ether.10 We then concretely validate
whether these contract leak Ether to an arbitrary address.
A total of 1,156 out of 1,183 (97.72%) contracts are con-
firmed to be true positives; 27 (2.28%) are false positives.

For each of the 24 contracts killed by the block height
BH, the concrete validation proceeds as follows. We cre-
ate a private test fork of the blockchain, starting from a
snapshot at a block height where the contract is alive. We
send Ether to the contract from one of our addresses ad-
dress, and check if the contract leaks Ether to an arbitrary
address. We repeat this procedure for each contract, and
find that all 24 candidate contracts are true positives.
Suicidal contracts. MAIAN flags 1,495 contracts (403
distinct), including the ParityWalletLibrary contract,
as found susceptible to being killed by an arbitrary ad-
dress, with a nearly 99% true positive rate. Out of 1,495
contracts, 1,398 are alive at BH. Our concrete validation
engine on a private fork of Ethereum confirm that 1,385
contracts (or 99.07%) are true positives, i.e., they can be
killed by any arbitrary Ethereum account, while 13 con-
tracts (or 0.93%) are false positives. The list of true pos-
itives includes the recent ParityWalletLibrary contract
which was killed at block height 4,501,969 by an ar-
bitrary account. Of the 1,495 contracts flagged, 25 have
been killed by BH; we repeat the procedure described pre-
viously and cofirmed all of them as true positives.
Greedy contracts. Our tool flags 31,201 greedy can-
didates (1,524 distinct), which amounts to around 3.2%
of the contracts present on the blockchain. The first ob-
servation is that MAIAN deems all but these as accept-
ing Ether but having states that release them (not lock-
ing indefinitely). To validate a candidate contract as a
true positive one has to show that the contract does not
release/send Ether to any address for any valid trace.
However, concrete validation may not cover all possible
traces, and thus it cannot be used to confirm if a contract
is greedy. Therefore, we take a different strategy and di-
vide them into two categories:
(i) Contracts that accept Ether, but in their bytecode do
not have any of the instructions that release Ether (such
instructions include CALL, SUICIDE, or DELEGATECALL).
(ii) Contracts that accept Ether, and in their bytecode
have at least one of CALL, SUICIDE or DELEGATECALL.

MAIAN flagged 1,058 distinct contracts from the first
category. We validate that these contracts can receive
Ether (we send Ether to them in a transaction with input
data according to the one provided by the symbolic ex-
ecution routine). Our experiments show that 1,057 out
of 1,058 (e.g., 99.9%) can receive Ether and thus are
true positives. On the other hand, the tool flagged 466

10These are live and we could update them with funds in testing.

10

I More than 11,000 Ether trapped or perhaps lost

The general case for formalisation...

I Models that are simpler than the thing being modelled, due to
abstraction

I Impose as little rigidity as possible

I Specialise, make more concrete, less abstract, if required, via
refinement...a provable and controlled progression

The general case for formalisation...

I Models that are simpler than the thing being modelled, due to
abstraction

I Impose as little rigidity as possible

I Specialise, make more concrete, less abstract, if required, via
refinement...a provable and controlled progression

The general case for formalisation...

I Models that are simpler than the thing being modelled, due to
abstraction

I Impose as little rigidity as possible

I Specialise, make more concrete, less abstract, if required, via
refinement...a provable and controlled progression

Conclusions

I Use what gets learned in this reconstruction to express general
properties that BC and their languages should have

I The study is a template for designing or even judging future
BC implementations

I This then suggests the question: what do we do when “BC
goes wrong”?

I We will have a way of defining “wrong”

I Also.....”We”???? —

I Governance!

I This will bite: (restart) and use Aletheia for recording cultural
artefacts (tāonga like whakapapa)

Conclusions

I Use what gets learned in this reconstruction to express general
properties that BC and their languages should have

I The study is a template for designing or even judging future
BC implementations

I This then suggests the question: what do we do when “BC
goes wrong”?

I We will have a way of defining “wrong”

I Also.....”We”???? —

I Governance!

I This will bite: (restart) and use Aletheia for recording cultural
artefacts (tāonga like whakapapa)

Conclusions

I Use what gets learned in this reconstruction to express general
properties that BC and their languages should have

I The study is a template for designing or even judging future
BC implementations

I This then suggests the question: what do we do when “BC
goes wrong”?

I We will have a way of defining “wrong”

I Also.....”We”???? —

I Governance!

I This will bite: (restart) and use Aletheia for recording cultural
artefacts (tāonga like whakapapa)

Conclusions

I Use what gets learned in this reconstruction to express general
properties that BC and their languages should have

I The study is a template for designing or even judging future
BC implementations

I This then suggests the question: what do we do when “BC
goes wrong”?

I We will have a way of defining “wrong”

I Also.....”We”???? —

I Governance!

I This will bite: (restart) and use Aletheia for recording cultural
artefacts (tāonga like whakapapa)

Conclusions

I Use what gets learned in this reconstruction to express general
properties that BC and their languages should have

I The study is a template for designing or even judging future
BC implementations

I This then suggests the question: what do we do when “BC
goes wrong”?

I We will have a way of defining “wrong”

I Also.....”We”???? —

I Governance!

I This will bite: (restart) and use Aletheia for recording cultural
artefacts (tāonga like whakapapa)

Conclusions

I Use what gets learned in this reconstruction to express general
properties that BC and their languages should have

I The study is a template for designing or even judging future
BC implementations

I This then suggests the question: what do we do when “BC
goes wrong”?

I We will have a way of defining “wrong”

I Also.....”We”???? —

I Governance!

I This will bite: (restart) and use Aletheia for recording cultural
artefacts (tāonga like whakapapa)

