
Some basics Software guard extensions A cryptographic treatment

A Cryptographic Treatment of Software Guard
Extensions

M. Barbosa B. Portela G. Scerri B. Warinschi

InfoBlender – 1st of July 2015



Some basics Software guard extensions A cryptographic treatment

Overview

Some basics

Software guard extensions

A cryptographic treatment



Some basics Software guard extensions A cryptographic treatment

Message Authentication Codes
The Message Authentication Code (MAC) is a cryptographic primitive that
handles message integrity in a symmetric setting:

• Auth generates a MAC code given a symmetric key and some data.
• Ver takes a MAC and the same key, and verifies the integrity of the

received content.



Some basics Software guard extensions A cryptographic treatment

Digital Signatures
The Digital Signature is a cryptographic primitive that handles message
integrity in an asymmetric setting:

• Sign generates a signature given a private key and some data.
• Vrfy takes a signature and the associated public key, and verifies the

contents of the signature.



Some basics Software guard extensions A cryptographic treatment

Intel’s SGX

Ideas
• Enables applications to run with confidentiality

and integrity in the native OS environment.
• Reduces amount of trust application developers

have to place on client platforms.

Mechanisms
• Allows the creation of isolated containers for code

execution (enclaves).
• Contents cannot change after initialization.
• Achieved through hardware-specific instructions.
• Messages produced within an enclave are

authenticated and bound to its contents.

SGX operation Purpose
ECREATE Initialize

EADD Initialize
EXTEND Initialize

EINIT Initialize
EENTER Execute

ERESUME Execute
EEXIT Execute

EGETKEY Crypto
EREPORT Crypto
EBLOCK Management

EREMOVE Management
ETRACK Management

ELDB Management
ELDU Management
EPA Management
EWB Management



Some basics Software guard extensions A cryptographic treatment

Intel’s SGX

Ideas
• Enables applications to run with confidentiality

and integrity in the native OS environment.
• Reduces amount of trust application developers

have to place on client platforms.

Mechanisms
• Allows the creation of isolated containers for code

execution (enclaves).
• Contents cannot change after initialization.
• Achieved through hardware-specific instructions.
• Messages produced within an enclave are

authenticated and bound to its contents.

SGX operation Purpose
ECREATE Initialize

EADD Initialize
EXTEND Initialize

EINIT Initialize
EENTER Execute

ERESUME Execute
EEXIT Execute

EGETKEY Crypto
EREPORT Crypto
EBLOCK Management

EREMOVE Management
ETRACK Management

ELDB Management
ELDU Management
EPA Management
EWB Management



Some basics Software guard extensions A cryptographic treatment

SGX - Security

Authentication mechanism
• SGX provides code inside enclave with authenticity “proofs”.

• Micro-processor maintains one cryptographic key for each enclave.

• Requests for authentication “proofs” are performed using hardware
specific instructions.

• Only a legitimate enclave can request a message authenticated with
the key of another legitimate enclave.

• Authentication is performed using a cryptographic MAC, and can be
used for intra-platform authentication.



Some basics Software guard extensions A cryptographic treatment

SGX - From local to remote

A bit tricky
1. The enclave generates a cryptographic MAC.
2. Then sends its information with the MAC to a special enclave, to verify and

produce a quote.
3. This quote contains a digital signature produced by a key only accessible via the

special enclave. It can now be used for inter-platform authentication.



Some basics Software guard extensions A cryptographic treatment

SGX - Applications

• White paper proposing solutions for one-time passwords,
rights management and secure video conferencing [HLP+13].

• A distributed framework for map-reduce [SCF+14].
• The whole OS as an enclave [BPH14].



Some basics Software guard extensions A cryptographic treatment

Motivation

Context
• Promising results arise from using SGX in practical
applications.

• However, security implications are either unclear, or very
specific to the different proposals.

• Isolated execution environments (IEE) are1 not yet formalized
from a cryptographic perspective.

Objectives

• Formalize the usage of IEEs: Attested Computation (AC).
• Propose a notion of key exchange for/over AC.
• Use this to get Secure Outsourced Computation.

1To the best of our knowledge



Some basics Software guard extensions A cryptographic treatment

Motivation

Context
• Promising results arise from using SGX in practical
applications.

• However, security implications are either unclear, or very
specific to the different proposals.

• Isolated execution environments (IEE) are1 not yet formalized
from a cryptographic perspective.

Objectives

• Formalize the usage of IEEs: Attested Computation (AC).
• Propose a notion of key exchange for/over AC.
• Use this to get Secure Outsourced Computation.

1To the best of our knowledge



Some basics Software guard extensions A cryptographic treatment

Modeling IEEs

Machine
Machine

Machine

Remote Machine

IEE
IEEIEE

Outsourced 
Program

Security 
M

odule

Untrusted
Network

Trusted Local Machine

Local Attested 
Computation 

Software

Remote Attested 
Computation 

Software

Untrusted code

Operating system

Other 
Apps



Some basics Software guard extensions A cryptographic treatment

Attested Computation

CompileP P∗

Verify(i , o) (i , o∗)

Local

IEE

Attest i

Remote

Security

1. Local view of trace is a trace of P
2. There exists an IEE executing P∗ that has this trace



Some basics Software guard extensions A cryptographic treatment

Implementing AC

IEE provides: P∗ is executing in an IEE and produced output x

P∗: adds a record of the trace to outputs of P and certifies using
IEE

Verifying: check certificate and trace consistency



Some basics Software guard extensions A cryptographic treatment

Composition?

We want
KE

AC

P

Code

k

We can only do

KE

AC

P

Code

k

Solution: AC definition with built-in composition



Some basics Software guard extensions A cryptographic treatment

Composable AC

CompileP, Q P∗;Q

Verify(i , o) (i , o∗)

Local

IEE

Attest i

Remote

Properties

• Q is executed as is in IEE
• Attestation for P



Some basics Software guard extensions A cryptographic treatment

Minimal leakage

Problem
The semantics of P does not guarantee anything on the semantics
of P∗.

Goal
Ensure that internal values are not leaked; simulate execution
without accessing internal values

∃S. S[T (P)] ≈ P∗
(and trace is consistent)



Some basics Software guard extensions A cryptographic treatment

Key exchange utility

If KE is passively secure, AC secure, minimal leakage:

KE ∗

P
k ≈

KE ∗

P
k ←$ {0, 1}∗

Intuition:
• Use AC to ensure that trace is valid
• Use minimal leakage to remove compilation
• Use passive security to replace key



Some basics Software guard extensions A cryptographic treatment

Secure Outsourced Computation
CompileP P∗

BootStrap

Encodei i∗

Decodeo o∗

Local

IEE

Attest

Remote

Security

• Secrecy of I/O
• Authenticty of inputs



Some basics Software guard extensions A cryptographic treatment

Conclusion

• A reusable notion of AC security
• A simple notion of AttKE and utility
• A way to achieve SOC

Strong points: modularity, relatively simple proofs, besides AC not
tied to a particular platform
Interesting points: built-in composability, leakage

Next steps

• Put the toolbox to the test.
• Broaden the scope (multi-party computation).



A Cryptographic Treatment of Software Guard
Extensions

M. Barbosa B. Portela G. Scerri B. Warinschi

InfoBlender – 1st of July 2015



Some basics Software guard extensions A cryptographic treatment

Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with haven.
In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2014.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo.
Using innovative instructions to create trustworthy software solutions.
In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP, volume 13, 2013.

Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar Ruiz, and Mark Russinovich.
Vc 3: Trustworthy data analytics in the cloud.
In Proceedings of the 36th IEEE Symposium on Security and Privacy, SP,
volume 15, 2014.


	Some basics
	Software guard extensions
	A cryptographic treatment

