
Refinement Algebra for an O-O Language with References 1/29

Refinement Algebra for an O-O Language
with References

Augusto Sampaio

(joint work with G. Lucero and D. Naumann)

Centro de Informática
Universidade Federal de Pernambuco

Recife, Brazil

InfoBlender Seminar
HASLab/INESC Tec & Universidade do Minho

April 2015

Refinement Algebra for an O-O Language with References 2/29

General context and motivation

Reasoning with pointers and references is difficult
Aliasing and sharing

New techniques for spatial separation of pointers
Separation logic, [implicit] dynamic frames, . . .

Few algebraic approaches
No comprehensive set of algebraic laws for references

Refinement Algebra for an O-O Language with References 3/29

General context and motivation

Program semantics
Operational, denotational, algebraic

The algebraic approach
Properties as (in)equations (laws) relating operators
No explicit mathematical model
Modularity and easy mechanisation
Soundness and completeness?

Refinement Algebra for an O-O Language with References 4/29

Refinement algebra versus refinement calculus

Calculi by Back, Morgan, Morris, . . .
Focus on program derivation

Refinement algebra
Semantic framework
Applications of program transformation
- compilation, hw/sw codesign, optimisation, refactorings,

patterns, test generation, . . .

Refinement Algebra for an O-O Language with References 5/29

Algebra of imperative programming

Language example (cf. Laws of Programming [Hoare et al])

Skip do nothing
abort unpredictable behaviour
x , y := e, f assignment (possibly multiple)
c1; c2 sequential composition
c1 u c2 nondeterminism
c1 / b . c2 conditional
µ X • c recursive program X with body c
X recursive call
var v • c declaration of v for use in program c

Refinement Algebra for an O-O Language with References 6/29

Examples of laws

Law 1 (Sequence associative)
(c1; c2); c3 = c1; (c2; c3)

Law 2 (Combine assignments)
(x := e; x := f) = (x := f [e/x])

f [e/x] denotes the substitution of e for x in f

Refinement Algebra for an O-O Language with References 7/29

Refinement

Equality is generally too strong
Refinement allows more applicable and deterministic
implementations

(c1 v c2) =̂ (c1 u c2 = c1)

v is a partial ordering
Program operators are monotonic wrt v

Refinement Algebra for an O-O Language with References 8/29

A few more laws: recursion

Law 3 (Fixed point) F (µ X • F (X)) = µ X • F (X)

Law 4 (Least fixed point) F (Y) v Y ⇒ µ X • F (X) v Y

where F stands for an arbitrary context

Refinement Algebra for an O-O Language with References 9/29

Algebra of O-O programming (copy semantics)

[Borba, Sampaio]

Law 5 (Move original method to superclass)

class B extends A
ads
meth m =̂ (sig • b)
mts

end
class C extends B

ads′

meth m =̂ (sig • b′)
mts′

end

=cds,c

class B extends A
ads
meth m =̂ (sig •

b / not(self is C) . b′

)
end
class C extends B

ads′

mts′

end

provided . . .

Refinement Algebra for an O-O Language with References 10/29

Algebra of imperative programming with references

cd ::= class A class declaration (record)
f : T field declarations

end

c ::= . . .

| le := e multiple assignment
| x ← new A new instance

le ::= x | e.f variable, field

. . .

Refinement Algebra for an O-O Language with References 11/29

Aliasing

Let x be a variable, d and e expressions and p and q left
expressions

alias[x , x] def
= true

alias[d .f ,e.f] def
= d == e

alias[p,q] def
= false otherwise

Refinement Algebra for an O-O Language with References 12/29

Field Substitution [Morris, Bornat]

Field Substitution

ee1.f
d

def
= e [[e1.f := d] / f]

Conditional Field

e.[e1.f := d] def
= d / e == e1 . e.f

Field Substitution on Left Expressions

(e.f)ˆe1.g
d

def
= (ee1.g

d).f including when f ≡ g
. . .

Refinement Algebra for an O-O Language with References 13/29

Example of field substitution

Effect of x .f := e on x .f + y .g + z.f

(x .f+ y .g + z.f)x.f
e = (substitution def)

x .[x .f := e] + y .g + z.[x .f := e] = (cond field def)
(e / x == x . x .f) + y .g + (e / x == z . z.f) = (x == x is true)
e + y .g + (e / x == z . z.f)

Refinement Algebra for an O-O Language with References 14/29

Assertions

[e] def
= skip / e . ⊥

Assertions are used to record and spread alias information

b / e . c = ([e]; b) / e . c
b / e . c = b / e . ([not e]; c)

[e]; (b / d . c) = ([e]; b) / d . ([e]; c)
. . .

We use [De] to assert the definedness of expression e

Refinement Algebra for an O-O Language with References 15/29

Laws of Assignment

[alias[p,qˆp
e]]; p := e; q := d = [alias[p,qˆp

e]]; [De]; p := dp
e

p,q,q := e,d1,d2 = p,q := e,d1 u p,q := e,d2

[not alias[p,q]]; p,q := e,q = [Dq ∧ not alias[p,q]]; p := e

p := e; (b / d . c) = (p := e; b) / dp
e . (p := e; c)

. . .

Refinement Algebra for an O-O Language with References 15/29

Laws of Assignment

[alias[p,qˆp
e]]; p := e; q := d = [alias[p,qˆp

e]]; [De]; p := dp
e

p,q,q := e,d1,d2 = p,q := e,d1 u p,q := e,d2

[not alias[p,q]]; p,q := e,q = [Dq ∧ not alias[p,q]]; p := e

p := e; (b / d . c) = (p := e; b) / dp
e . (p := e; c)

. . .

Refinement Algebra for an O-O Language with References 15/29

Laws of Assignment

[alias[p,qˆp
e]]; p := e; q := d = [alias[p,qˆp

e]]; [De]; p := dp
e

p,q,q := e,d1,d2 = p,q := e,d1 u p,q := e,d2

[not alias[p,q]]; p,q := e,q = [Dq ∧ not alias[p,q]]; p := e

p := e; (b / d . c) = (p := e; b) / dp
e . (p := e; c)

. . .

Refinement Algebra for an O-O Language with References 15/29

Laws of Assignment

[alias[p,qˆp
e]]; p := e; q := d = [alias[p,qˆp

e]]; [De]; p := dp
e

p,q,q := e,d1,d2 = p,q := e,d1 u p,q := e,d2

[not alias[p,q]]; p,q := e,q = [Dq ∧ not alias[p,q]]; p := e

p := e; (b / d . c) = (p := e; b) / dp
e . (p := e; c)

. . .

Refinement Algebra for an O-O Language with References 16/29

Laws of new

x ← new A = x ← new A; x .f := default(T)

x ← new A = x ← new A; [x 6= null]

. . .

Refinement Algebra for an O-O Language with References 16/29

Laws of new

x ← new A = x ← new A; x .f := default(T)

x ← new A = x ← new A; [x 6= null]

. . .

Refinement Algebra for an O-O Language with References 17/29

Relative Completeness

Theorem Let c be a command in which h does not occur free
and assume refs = freeRefs(c). We have

c = var h : Heap • load(h, refs); S(c,h); store(h)

where S(c,h) is the simulation of c using the explicit heap h

Refinement Algebra for an O-O Language with References 18/29

Algebra of O-O programming (reference semantics)

Refinement Algebra for an O-O Language with References 19/29

Example of derived law

Law 6 (Replace field by temporary)

Consider that the class T declares a field f : Tf , then

var x : T • x ← new T ; c =

var x : T , t : Tf • x ← new T ; t := x .f ; c[t/x .f]; x .f := t

provided
(1) t is a fresh variable in c;
(2) x is read only, not used as argument nor assigned

to variables or fields in c
(3) if e.f occurs in c then e ≡ x.

Refinement Algebra for an O-O Language with References 20/29

Rule: Replace Method with Method Object

class A extends C
ads
meth m =̂ (x : T •

var t : R •
c[self, x , t])

mts
end

=cds,b

class A extends C
ads
meth m =̂ (x : T •

var s : M
s ← new M(self, x);
s.m())

mts
end
class M extends Object

pri a :A
pri x : T
pri t : R
meth ctr =̂ (a : A, x : T •

self.a,self.x := a, x)
meth m =̂ (•

c[self.a,self.x ,self.t])
end

Refinement Algebra for an O-O Language with References 21/29

Ownership and Confinment

Data refinement based on confinement notions

Definition. A local coupling is a relation between two different
representations of Own (one using Rep and other using Rep′)

Definition. A simulation is a local coupling that is preserved at
the creation of Own instances and also at the end of every
method call to Own instances.

Refinement Algebra for an O-O Language with References 22/29

Change of data Representation

Based on a notion of ownership confinement

Law 7 (Data Refinement of class hierarchies)

cs =cds,c cs′

provided

cs and cs′ are hierarchies with root Own, and cds has no
subclasses of Own;
cds, cs is confined for Own, Rep;
cds, cs′ is confined for Own, Rep′;
. . .
There exists a simulation R.

Refinement Algebra for an O-O Language with References 23/29

Rule 1 (Pull up field)

class M extends N
adsm
mtsm

end
class L extends M

prot x : T ; adsl
mtsl

end
class K extends M

prot y : T ; adsk
mtsk

end
cds1

=cds,c

class M extends N
prot z : T ; adsm
mtsm

end
class L extends M

adsl
mts′

l
end
class K extends M

adsk
mts′

k
end
cds′

1

where mts′
l = mtsl [z/x], mts′

k = mtsk [z/y]
similar for cds′

1 . . .

Refinement Algebra for an O-O Language with References 24/29

Some proof steps

(1) Apply law to move attributes x and y to class M
(2) Apply data refinement law with M = Own, no Reps

and local coupling:
type(self) = type(self′)

∧ (self is L⇒ self′.z = self.x)
∧ (self is K ⇒ self′.z = self.y)
∧ ∀ f ∈ fields(type(self))

f 6= x ∧ f 6= y ⇒ self′.f = self.f
(3) Prove that this is a simulation

Refinement Algebra for an O-O Language with References 25/29

Summary: overall reasoning framework

Semantics

Command laws Class laws Data refinement

Refactoring rules

Patterns

Refinement Algebra for an O-O Language with References 26/29

Ongoing and future work

Permissions for framing
- [implicit] dynamic frames, separation logic

Ownership + data refinement as in Morgan’s calculus
Proofs of the laws on a relational model

- Extension of that for Laws of Programming
More refactorings and design patterns

- Observer, Flyweight, creational patterns, . . .

Other applications: compiler optimisations
Mechanisation

- A major challenge is dealing with refactoring provisos

Refinement Algebra for an O-O Language with References 27/29

Refinement Algebra for an O-O Language
with References

Augusto Sampaio

(joint work with G. Lucero and D. Naumann)

Centro de Informática
Universidade Federal de Pernambuco

Recife, Brazil

InfoBlender Seminar
HASLab/INESC Tec & Universidade do Minho

April 2015

Refinement Algebra for an O-O Language with References 28/29

More on the semantics of new

[y == alloc]; x ← new A =

[y == alloc]; x ← new A; [x 6∈ y ∧ alloc == y ∪ {x}]

As a consequence:

x ← new A; x ← new A 6= x ← new A

Refinement Algebra for an O-O Language with References 28/29

More on the semantics of new

[y == alloc]; x ← new A =

[y == alloc]; x ← new A; [x 6∈ y ∧ alloc == y ∪ {x}]

As a consequence:

x ← new A; x ← new A 6= x ← new A

Refinement Algebra for an O-O Language with References 29/29

Algebra of concurrent programming

CSP, occam, . . . and respective laws

Some applications:

Hardware compilers [He et al] [Perna et al]

Hardware/software codesign [Silva, Sampaio] [He et al]
S v (c1 || c2 || . . . || cn) v SW || HW1 || . . . || HWk

Test case generation using CSP and FDR [Nogueira, Sampaio]
- assert model v modelmarks
- Industrial partners: Motorola and Embraer

