Refinement Algebra for an O-O Language with References

Refinement Algebra for an O-O Language
with References

Augusto Sampaio

(joint work with G. Lucero and D. Naumann)

Centro de Informatica
Universidade Federal de Pernambuco
Recife, Brazil

InfoBlender Seminar
HASLab/INESC Tec & Universidade do Minho

April 2015

Refinement Algebra for an O-O Language with References

General context and motivation

Reasoning with pointers and references is difficult
e Aliasing and sharing

New techniques for spatial separation of pointers
@ Separation logic, [implicit] dynamic frames, ...

Few algebraic approaches
e No comprehensive set of algebraic laws for references

Refinement Algebra for an O-O Language with References

General context and motivation

Program semantics
e Operational, denotational, algebraic

The algebraic approach

Properties as (in)equations (laws) relating operators
No explicit mathematical model

Modularity and easy mechanisation

Soundness and completeness?

Refinement Algebra for an O-O Language with References

Refinement algebra versus refinement calculus

Calculi by Back, Morgan, Morris, . ..
e Focus on program derivation

Refinement algebra
@ Semantic framework
e Applications of program transformation
- compilation, hw/sw codesign, optimisation, refactorings,
patterns, test generation, ...

Refinement Algebra for an O-O Language with References

Algebra of imperative programming

Language example (cf. Laws of Programming [Hoare et al])

Skip
abort
x,y:=ef
Ci; C2
ciMeo

ci abr ¢
uwXec

X
var vec

do nothing

unpredictable behaviour
assignment (possibly multiple)
sequential composition
nondeterminism

conditional

recursive program X with body ¢

recursive call
declaration of v for use in program ¢

Refinement Algebra for an O-O Language with References

Examples of laws

Law 1 (Sequence associative)
(c1; ¢2); &3 = c; (€25 Ca)

Law 2 (Combine assignments)
(x :=e; x:=1)=(x:= fle/x])

fle/x] denotes the substitution of e for x in f

Refinement Algebra for an O-O Language with References

Refinement

@ Equality is generally too strong

@ Refinement allows more applicable and deterministic
implementations
(c1Cer) = (ciMNe2=cy)
@ L is a partial ordering
@ Program operators are monotonic wrt C

Refinement Algebra for an O-O Language with References

A few more laws: recursion

Law 3 (Fixed point) F(u X e F(X)) = p X e F(X)
Law 4 (Least fixed point) F(Y)C Y = uXeF(X)C Y

where F stands for an arbitrary context

Refinement Algebra for an O-O Language with References

Algebra of O-O programming (copy semantics)
[Borba, Sampaio]

Law 5 (Move original method to superclass)

class B extends A
ads
meth m = (sSig e b)
mts

end

class C extends B
ads’
meth m = (sige)
mts’

end

provided ...

=cds,c

class B extends A
ads
meth m = (sige
b <not(selfis C)> b/
)

end

class C extends B
ads’

mts’

end

Refinement Algebra for an O-O Language with References

Algebra of imperative programming with references

cd = class A class declaration (record)
f:T field declarations
end
c = ...
|le:=¢ multiple assignment

| Xx < newA new instance

le == x|ef variable, field

Refinement Algebra for an O-O Language with References

Aliasing

Let x be a variable, d and e expressions and p and q left
expressions

alias[x, x| % true
alias[d.f,e.] € d == e

alias|p, q| %' false otherwise

Refinement Algebra for an O-O Language with References

Field Substitution [Morris, Bornat]

Field Substitution

et € gllet.f=d] /]

Conditional Field

e.lel.f:=d| ' dae== e ef

Field Substitution on Left Expressions

(e.f), 29 L (e29).f including when f =g

Refinement Algebra for an O-O Language with References

Example of field substitution

Effect of x.f := eon x.f+y.g+ z.f

(x.f+y.g+z.H5 = (substitution def)
x[xf=e+yg+z[xf:=¢= (cond field def)
(eax==x>xf)+yg+(e<xx==2zp zf)= (x==xlistrue)
e+yg+(e<ax==2zp zf)

Refinement Algebra for an O-O Language with References

Assertions

[e] %! skip <e> L

Assertions are used to record and spread alias information

b<erc=([e]; b)«xerc
b<erc=>b<er ([noteg]; ¢
[e]; (b<d>c)=([e]; b) ad> ([e];)

We use [De] to assert the definedness of expression e

Refinement Algebra for an O-O Language with References

Laws of Assignment

[alias|p, q"]); p:=€; q:=d = [alias[p, g."]]; [De]; p:= df

Refinement Algebra for an O-O Language with References

Laws of Assignment

[alias|p, q"]); p:=€; q:=d = [alias[p, g."]]; [De]; p:= df

ﬁ7q7q::éad1’d2 - E,q::é,d‘] M ﬁ’q::é7d2

Refinement Algebra for an O-O Language with References

Laws of Assignment

[alias|p, q"]); p:=€; q:=d = [alias[p, g."]]; [De]; p:= df
ﬁ7q7q::éad1’d2 - E,q::é,d‘] M ﬁ’q::é7d2
[not alias[p, q]l; p,q:=e,q = [DqAnot aliasp,q]]; p:=e

Refinement Algebra for an O-O Language with References

Laws of Assignment

lalias|p, q.")); p:=e; q:=d = |alias[p, q."]]; [Del; p:=af
p,q,q:=¢€,0d1,db = p,q:=e,di M p,q:=6,0

[not alias|p, q)]; p,q :=e,q = [©q Anot aliasp,q]]; p:=e€
p:=¢ (b<dvc) = (p:=e b)adgr (p:=e; C)

Refinement Algebra for an O-O Language with References

Laws of new

X+ NewA = x < newA; x.f:= default(T)

Refinement Algebra for an O-O Language with References

Laws of new

X+ NewA = x < newA; x.f:= default(T)

X newA = x < newA; [x # null]

Refinement Algebra for an O-O Language with References

Relative Completeness

Theorem Let ¢ be a command in which h does not occur free
and assume refs = freeRefs(c). We have

c = var h: Heap e load(h, refs); S(c, h); store(h)

where S(c, h) is the simulation of ¢ using the explicit heap h

Refinement Algebra for an O-O Language with References

Algebra of O-O programming (reference semantics)

class A extends B

priv fiint

methm=(xT@cl) QNENRIRIERTS
end and
class B extends C 0-0 commands

class A extends B
pub fiint

end

class B extends C
pubg:D

privg:D end
methm=(xT @ c2) —

s @..;(varxT @x=e; (um @ ...)); ...

Laws of commands
with references
class A extends B
pub fiint

end

class B extends C
pubg:D

end

@ ..; x.m(e); ...

@ var h:Heap @ load(h,...); ...; store(h)

Refinement Algebra for an O-O Language with References

Example of derived law

Law 6 (Replace field by temporary)
Consider that the class T declares a field f : T;, then

varx: Tex<«<newT; c =
varx : T,t: Trex < new T; t:= x.f; c[t/x.f]; x.f:=t

provided
(1) tis a fresh variable in c;

(2) x is read only, not used as argument nor assigned
to variables or fields in ¢

(3) ife.f occurs in c then e = x.

Refinement Algebra for an O-O Language with References

Rule: Replace Method with Method Object

class A extends C
ads
meth m = (x:Te
var (:Re
clself,x,])
mts
end

=cds,b

class A extends

ads
meth m = (x:Te
var s: M
S + new M(self, x);
s.m())
mts
end

class M extends Object

pri a:A

pri x: T

pri t:R

meth ctr = (a:Ax:Te
self.a, self x := a,x)

meth m= (e
c[self.a, self.x, self.1])
end

Refinement Algebra for an O-O Language with References

Ownership and Confinment

Data refinement based on confinement notions

Ch 1 Oh; | \Oh;
- - | owners
clients **"W;}’ﬂln’\i;";flf\’i fffffff b
CRh | Rh; | Rh; |reps
R A S I
| | |

Definition. A Jocal coupling is a relation between two different
representations of Own (one using Rep and other using Rep’)

Definition. A simulation is a local coupling that is preserved at
the creation of Own instances and also at the end of every
method call to Own instances.

Refinement Algebra for an O-O Language with References

Change of data Representation

Based on a notion of ownership confinement
Law 7 (Data Refinement of class hierarchies)
CS =cds,c CS'
provided

@ c¢s and cs' are hierarchies with root Own, and cds has no
subclasses of Own;

@ cds, cs is confined for Own, Rep;
@ cds, cs’ is confined for Own, Rep’;
° ...

@ There exists a simulation R.

Refinement Algebra for an O-O Language with References

Rule 1 (Pull up field)

class M extends N class M extends N
adsn prot z:T; adsp,
mtsm mitsm

end end

class L extends M class L extends M
prot x:T; ads ads;
mts, — cdsc mts;

end " |end

class K extends M class K extends M
prot y: T; ads adsy
mts, mts;,

end end

cdsq cds]

where mts; = mts)[z/x|, mts; = mis[z/y]
similar for cds] ...

Refinement Algebra for an O-O Language with References

Some proof steps

(1) Apply law to move attributes x and y to class M

(2) Apply data refinement law with M = Own, no Reps
and local coupling:
type(self) = type(self’)
A (selfis L = self' .z = self.x)
A (selfisK = self' .z = self.y)
N VYT € fields(type(self))
f#£xNf+#y= self.f =self.f

(3) Prove that this is a simulation

Refinement Algebra for an O-O Language with References

Summary: overall reasoning framework

Patterns

Refactoring rules

Command laws

Class laws

Data refinement

Semantics

Refinement Algebra for an O-O Language with References

Ongoing and future work

@ Permissions for framing
- [implicit] dynamic frames, separation logic
@ Ownership + data refinement as in Morgan’s calculus
@ Proofs of the laws on a relational model
- Extension of that for Laws of Programming
@ More refactorings and design patterns
- Observer, Flyweight, creational patterns, ...
@ Other applications: compiler optimisations
@ Mechanisation
- A major challenge is dealing with refactoring provisos

Refinement Algebra for an O-O Language with References

Refinement Algebra for an O-O Language
with References

Augusto Sampaio

(joint work with G. Lucero and D. Naumann)

Centro de Informatica
Universidade Federal de Pernambuco
Recife, Brazil

InfoBlender Seminar
HASLab/INESC Tec & Universidade do Minho

April 2015

Refinement Algebra for an O-O Language with References

More on the semantics of new

[y ==alloc]; x < newA =
[y == alloc]; x + newA; [x ¢ y Aalloc == y U {x}]

Refinement Algebra for an O-O Language with References

More on the semantics of new

[y ==alloc]; x < newA =
[y == alloc]; x + newA; [x ¢ y Aalloc == y U {x}]

As a consequence:

X< NewA; x < newA # X < newA

Refinement Algebra for an O-O Language with References

Algebra of concurrent programming

CSP, occam, ... and respective laws

Some applications:
@ Hardware compilers [He et al] [Perna et al]

@ Hardware/software codesign [Silva, Sampaio] [He et al]
SC(erilleal|l---1len) 5ESW || HWy || ... || HW

@ Test case generation using CSP and FDR [Nogueira, Sampaio]

- assert model C modelnarks
- Industrial partners: Motorola and Embraer

