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General context and motivation

Reasoning with pointers and references is difficult
Aliasing and sharing

New techniques for spatial separation of pointers
Separation logic, [implicit] dynamic frames, . . .

Few algebraic approaches
No comprehensive set of algebraic laws for references
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General context and motivation

Program semantics
Operational, denotational, algebraic

The algebraic approach
Properties as (in)equations (laws) relating operators
No explicit mathematical model
Modularity and easy mechanisation
Soundness and completeness?
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Refinement algebra versus refinement calculus

Calculi by Back, Morgan, Morris, . . .
Focus on program derivation

Refinement algebra
Semantic framework
Applications of program transformation
- compilation, hw/sw codesign, optimisation, refactorings,

patterns, test generation, . . .
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Algebra of imperative programming

Language example (cf. Laws of Programming [Hoare et al ])

Skip do nothing
abort unpredictable behaviour
x , y := e, f assignment (possibly multiple)
c1; c2 sequential composition
c1 u c2 nondeterminism
c1 / b . c2 conditional
µ X • c recursive program X with body c
X recursive call
var v • c declaration of v for use in program c
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Examples of laws

Law 1 (Sequence associative)
(c1; c2); c3 = c1; (c2; c3)

Law 2 (Combine assignments)
(x := e; x := f ) = (x := f [e/x ])

f [e/x ] denotes the substitution of e for x in f
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Refinement

Equality is generally too strong
Refinement allows more applicable and deterministic
implementations

(c1 v c2) =̂ (c1 u c2 = c1)

v is a partial ordering
Program operators are monotonic wrt v
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A few more laws: recursion

Law 3 (Fixed point) F (µ X • F (X )) = µ X • F (X )

Law 4 (Least fixed point) F (Y ) v Y ⇒ µ X • F (X ) v Y

where F stands for an arbitrary context



Refinement Algebra for an O-O Language with References 9/29

Algebra of O-O programming (copy semantics)

[Borba, Sampaio]

Law 5 (Move original method to superclass)

class B extends A
ads
meth m =̂ (sig • b)
mts

end
class C extends B

ads′

meth m =̂ (sig • b′)
mts′

end

=cds,c

class B extends A
ads
meth m =̂ ( sig •

b / not(self is C) . b′

)
end
class C extends B

ads′

mts′

end

provided . . .
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Algebra of imperative programming with references

cd ::= class A class declaration (record)
f : T field declarations

end

c ::= . . .

| le := e multiple assignment
| x ← new A new instance

le ::= x | e.f variable, field

. . .
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Aliasing

Let x be a variable, d and e expressions and p and q left
expressions

alias[x , x ] def
= true

alias[d .f ,e.f ] def
= d == e

alias[p,q] def
= false otherwise
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Field Substitution [Morris, Bornat]

Field Substitution

ee1.f
d

def
= e [[e1.f := d ] / f ]

Conditional Field

e.[e1.f := d ] def
= d / e == e1 . e.f

Field Substitution on Left Expressions

(e.f )ˆe1.g
d

def
= (ee1.g

d ).f including when f ≡ g
. . .
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Example of field substitution

Effect of x .f := e on x .f + y .g + z.f

(x .f+ y .g + z.f )x.f
e = (substitution def)

x .[x .f := e] + y .g + z.[x .f := e] = (cond field def)
(e / x == x . x .f ) + y .g + (e / x == z . z.f ) = (x == x is true)
e + y .g + (e / x == z . z.f )
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Assertions

[e] def
= skip / e . ⊥

Assertions are used to record and spread alias information

b / e . c = ([e]; b) / e . c
b / e . c = b / e . ([not e]; c)

[e]; (b / d . c) = ([e]; b) / d . ([e]; c)
. . .

We use [De] to assert the definedness of expression e
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Laws of Assignment

[alias[p,qˆp
e ]]; p := e; q := d = [alias[p,qˆp

e ]]; [De]; p := dp
e

p,q,q := e,d1,d2 = p,q := e,d1 u p,q := e,d2

[not alias[p,q]]; p,q := e,q = [Dq ∧ not alias[p,q]]; p := e

p := e; (b / d . c) = (p := e; b) / dp
e . (p := e; c)

. . .
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Laws of new

x ← new A = x ← new A; x .f := default(T )

x ← new A = x ← new A; [x 6= null]

. . .
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Relative Completeness

Theorem Let c be a command in which h does not occur free
and assume refs = freeRefs(c). We have

c = var h : Heap • load(h, refs); S(c,h); store(h)

where S(c,h) is the simulation of c using the explicit heap h
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Algebra of O-O programming (reference semantics)
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Example of derived law

Law 6 (Replace field by temporary)

Consider that the class T declares a field f : Tf , then

var x : T • x ← new T ; c =

var x : T , t : Tf • x ← new T ; t := x .f ; c[t/x .f ]; x .f := t

provided
(1) t is a fresh variable in c;
(2) x is read only, not used as argument nor assigned

to variables or fields in c
(3) if e.f occurs in c then e ≡ x.
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Rule: Replace Method with Method Object

class A extends C
ads
meth m =̂ ( x : T •

var t : R •
c[self, x , t ] )

mts
end

=cds,b

class A extends C
ads
meth m =̂ ( x : T •

var s : M
s ← new M(self, x);
s.m() )

mts
end
class M extends Object

pri a :A
pri x : T
pri t : R
meth ctr =̂ ( a : A, x : T •

self.a,self.x := a, x )
meth m =̂ (•

c[self.a,self.x ,self.t ])
end



Refinement Algebra for an O-O Language with References 21/29

Ownership and Confinment

Data refinement based on confinement notions

Definition. A local coupling is a relation between two different
representations of Own (one using Rep and other using Rep′)

Definition. A simulation is a local coupling that is preserved at
the creation of Own instances and also at the end of every
method call to Own instances.
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Change of data Representation

Based on a notion of ownership confinement

Law 7 (Data Refinement of class hierarchies)

cs =cds,c cs′

provided

cs and cs′ are hierarchies with root Own, and cds has no
subclasses of Own;
cds, cs is confined for Own, Rep;
cds, cs′ is confined for Own, Rep′;
. . .
There exists a simulation R.
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Rule 1 (Pull up field)

class M extends N
adsm
mtsm

end
class L extends M

prot x : T ; adsl
mtsl

end
class K extends M

prot y : T ; adsk
mtsk

end
cds1

=cds,c

class M extends N
prot z : T ; adsm
mtsm

end
class L extends M

adsl
mts′

l
end
class K extends M

adsk
mts′

k
end
cds′

1

where mts′
l = mtsl [z/x ], mts′

k = mtsk [z/y ]
similar for cds′

1 . . .



Refinement Algebra for an O-O Language with References 24/29

Some proof steps

(1) Apply law to move attributes x and y to class M
(2) Apply data refinement law with M = Own, no Reps

and local coupling:
type(self) = type(self′)

∧ (self is L⇒ self′.z = self.x)
∧ (self is K ⇒ self′.z = self.y)
∧ ∀ f ∈ fields(type(self))

f 6= x ∧ f 6= y ⇒ self′.f = self.f
(3) Prove that this is a simulation
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Summary: overall reasoning framework

Semantics

Command laws Class laws Data refinement

Refactoring rules

Patterns
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Ongoing and future work

Permissions for framing
- [implicit] dynamic frames, separation logic

Ownership + data refinement as in Morgan’s calculus
Proofs of the laws on a relational model

- Extension of that for Laws of Programming
More refactorings and design patterns

- Observer, Flyweight, creational patterns, . . .

Other applications: compiler optimisations
Mechanisation

- A major challenge is dealing with refactoring provisos
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More on the semantics of new

[y == alloc]; x ← new A =

[y == alloc]; x ← new A; [x 6∈ y ∧ alloc == y ∪ {x}]

As a consequence:

x ← new A; x ← new A 6= x ← new A
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Algebra of concurrent programming

CSP, occam, . . . and respective laws

Some applications:

Hardware compilers [He et al ] [Perna et al ]

Hardware/software codesign [Silva, Sampaio] [He et al]
S v (c1 || c2 || . . . || cn) v SW || HW1 || . . . || HWk

Test case generation using CSP and FDR [Nogueira, Sampaio]
- assert model v modelmarks
- Industrial partners: Motorola and Embraer


