
A Framework for Quality Assessment
of ROS Repositories

2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems

André Santos
Alcino Cunha Nuno Macedo Cláudio Lourenço

INESC TEC & Universidade do Minho, Portugal

October 13th, 2016



Software in Robotics

Challenge: many interesting robot applications (e.g. health, industry)
require high levels of safety and flexibility. These come from software –
high-quality software.

We analysed some popular robots, and produced a framework to automate
the process.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 1/13



Software Quality

One way to minise safety issues is to produce high-quality software.

To improve safety and quality, adopting coding standards – rules and
recommendations about how to write the software – is a common practice
(e.g. ROS C++ Style Guide, MISRA C++, HIC++).

Another common technique is to analyse quality metrics – numeric values
about how much a property manifests (e.g. lines of code, number of
dependencies, function complexity).

A. Santos, A. Cunha, N. Macedo, C. Lourenço 2/13



The HAROS Framework: Overview

The HAROS Framework (High-Assurance ROS) aims at providing an
analysis platform for ROS systems, making robots more reliable.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 3/13



The HAROS Framework: Common Questions

Q: Why not use SonarQube, Eclipse or . . . instead?

A: HAROS is free, extensible, ROS-oriented and

platform-independent.

Q: Why does robotics software need its own tool?

A: There are some analyses that we can explore in more detail:

configurations, software role, models, etc.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 4/13



The HAROS Framework: Main Features

〉 Source code fetching of indexed ROS packages.

〉 Plug-ins enable integration of third-party analysis tools.

〉 Interactive graphic reports of the results mirroring the ROS
architecture.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 5/13



The HAROS Framework: Visualisation

The visualiser builds a diagram of the analysed packages.
Package colours denote the amount of issues.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 6/13



The HAROS Framework: Visualisation

Issues can be filtered or ignored by tags.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 7/13



The HAROS Framework: Visualisation

Package details are also available.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 8/13



The HAROS Framework: Visualisation

Issues can be inspected in detail.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 9/13



The HAROS Framework: Case Study

HAROS was applied on 11 ROS robots, using CCCC, Radon, Cpplint and
Cppcheck as plug-ins.

〉 Analysis sample: 46 repositories – more than 350 000 lines of C++.

〉 Assessment of over 100 rules and 15 metrics.

〉 Covering ROS and Google’s C++ Style Guide, and a small portion of
MISRA C++, HIC++, and JSF AV C++.

〉 Source metrics: lines of code/comments, comment ratio,
maintainability, dependencies, cyclomatic complexity, . . .

〉 Process metrics (from GitHub): commits, contributors, number of
issues.

〉 Packages categorised as drivers, libraries, or applications.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 10/13



The HAROS Framework: Case Study

Some observations:

〉 The projects have thousands of coding rule violations.

〉 There are few correlations between metrics – the quality is
inconsistent.

〉 Drivers and applications are more active – more developers and
commits, but also more issues.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 11/13



Future Work

〉 Integration of stronger analysis techniques,
e.g. formal verification and model checking.

〉 Model extraction from source code.

〉 Inter-operation between plug-ins.

〉 Integration with the catkin build system.

〉 Continuous tracking of package quality.

A. Santos, A. Cunha, N. Macedo, C. Lourenço 12/13



Thank you!


