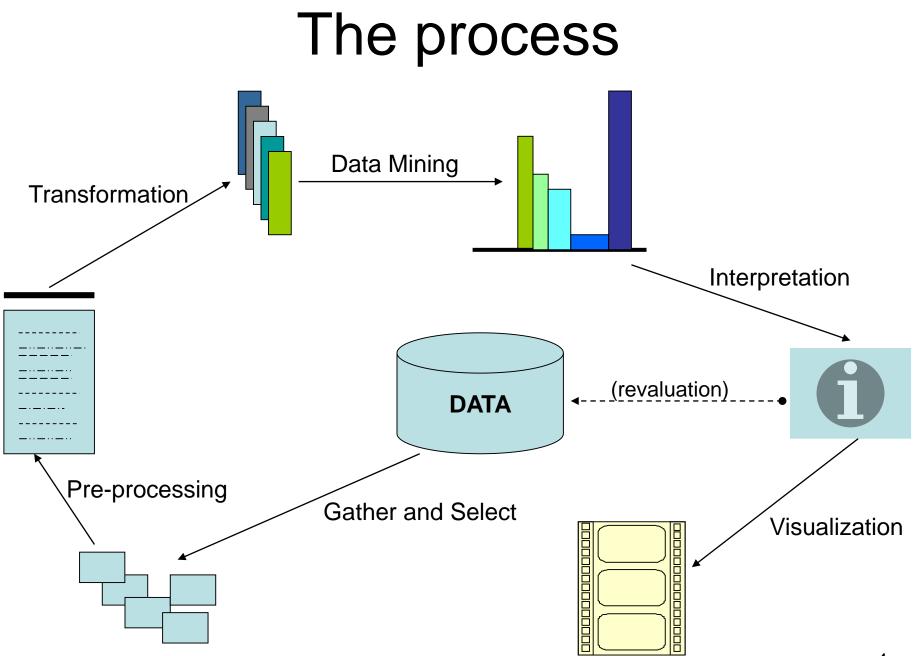
Subgroup Mining (with a brief intro to Data Mining)

Paulo J Azevedo INESC-Tec, HASLab Departamento de Informática

Expectations...

Knowledge Discovery (non trivial relation between data elements) in DataBases

- My personal perspective: it is the task of developing new algorithms (processes) to extract structure from data!
- Structure is alias for statistical patterns, models, relations, etc. It is a reduction process and leads to data summarization
- Data gathering and Pre-processing
- **Data Mining** (extracting the structure)
- Post-processing e results analysis
- Visualization



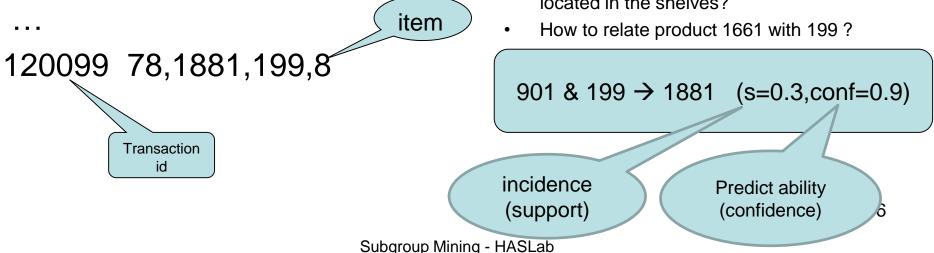
Pattern Mining

- Extract interesting/surprising patterns from data (relations between atomic elements in the data)
- Patterns <=> structure in data
- Brute force like methods
 - Example: Motifs in sequential DNA data highly conserved DNA fragments (high occurrence) along different genes.
- Several types of patterns:
 - Frequent patterns (association rules),
 - Sequences and Motifs
 - Subgraphs
 - Times Series (motifs)
 - etc.

Frequent Patterns

- *Ticket Data Database:*
- *Ex:*
- 1 1901,1881,199,901
- 2 901,1661
- 3 676, 199, 177, 100

- The Marketing department intends to perform a shopping behavior study amongs costumers in a supermarket..
- Data is in the form of sets of "shopping baskets" (basket data)
- Queries to be answered:
- What products related to the consumption of beer?
- How to described the population that consumes peenuts ?
- Where the cleaning products should be located in the shelves?

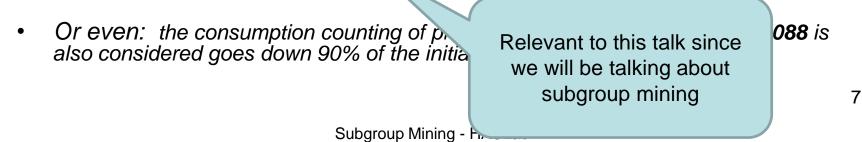


Interest Measures

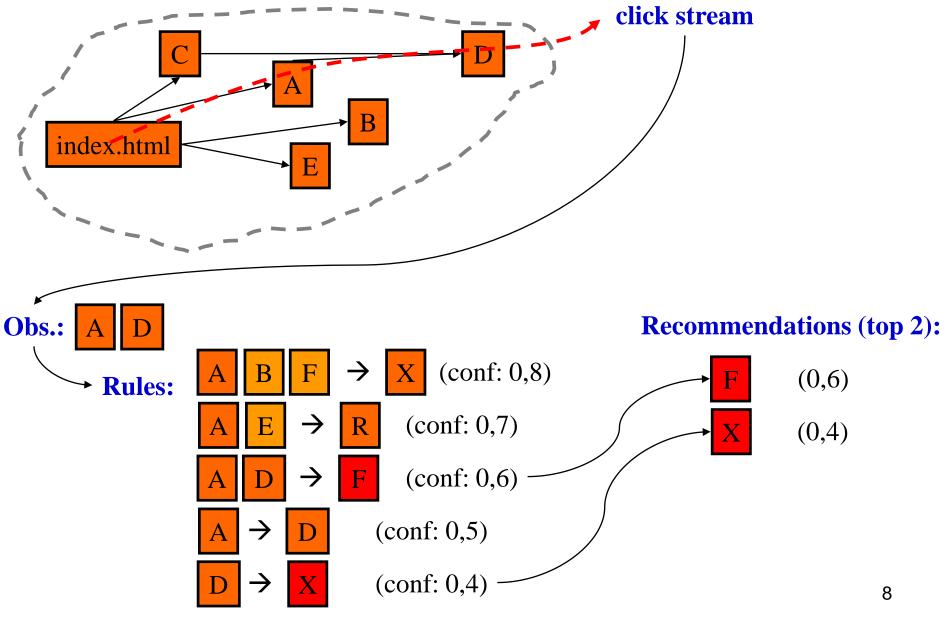
- Pertinent associations are spotted by using an incidence measure
- Support is the most popular (to count itemsets)
- Rules are qualified using a metric of interest (predict ability, strength of a rule).
- Confidence is one example (conditional probability)
- The association rule:

901 & 707 → 1088 (s=0.3,conf=0.9)

- Should be read as: buying products *901*, *707* e *1088* occurs in 30% of the transactions. On the other hand, 90% of the transactions that contain *901* e *707* also contain product *1088*.
- Other readings: 90% of the subpopulation defined by products **901** e **707** also consume **1088**.

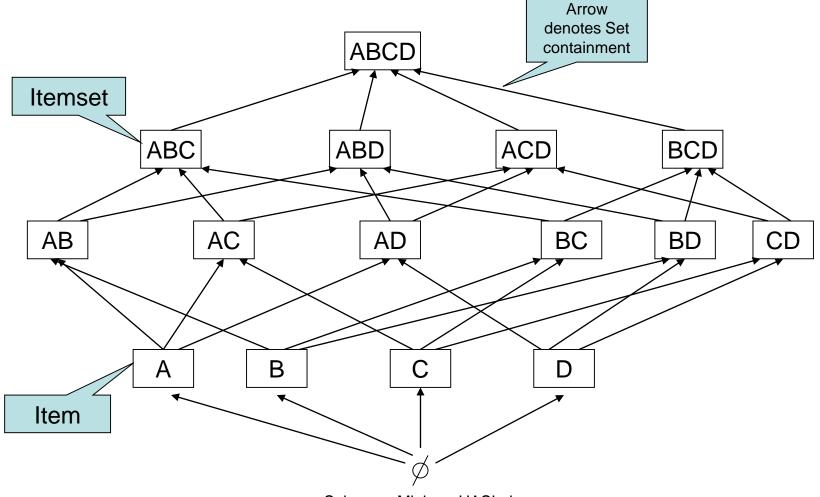


Recommendation systems using ARs



Subgroup Mining - HASLab

Search Space associated to frequent itemsets counting



Subgroup Mining - HASLab

Algorithms

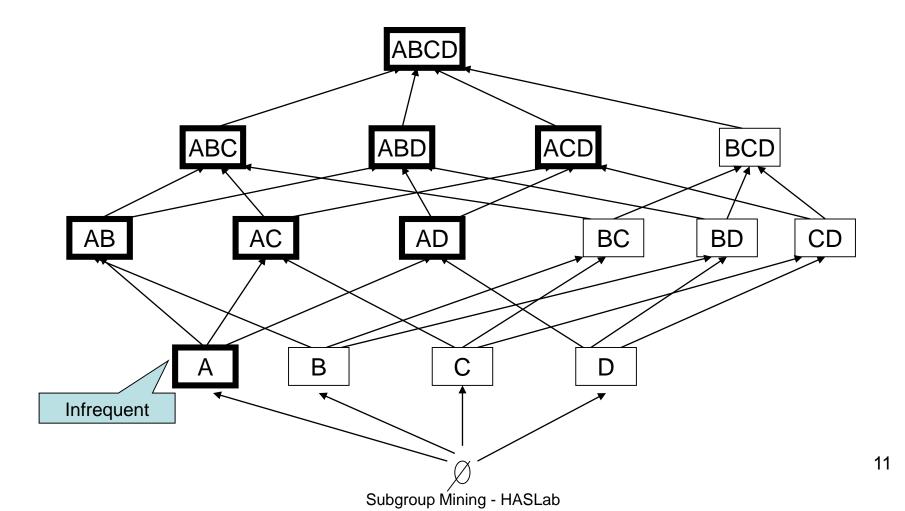
- Extract frequent terms (*itemsets*) i.e. associations (high complexity) following a user defined thresholds for occurrence (defines rarity!)
- Derive rules (low complexity)
- Select the most "interesting" rules!

First problem well studied with hundred of proposals

Seminal paper: *Apriori* [Agrawal&Srikant94]. Make use of downward closure property of support:

If
$$X \subseteq Y$$
 then $s(X) \ge s(Y)$

Effects of using downard closure of Support

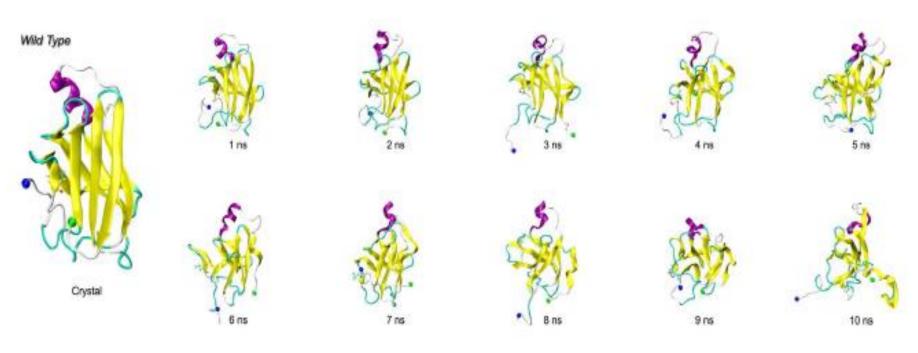


Frequent Itemsets Algorithms

- Apriori-like bottom –up strategies
 - Several database scans
 - "Candidates generation"
- Depth-first strategies
 - Make use of vertical data representations e.g.
 TID Lists, bitmaps, diff-sets, etc.
 - Better pruning opportunities
 - "rule based" friendly

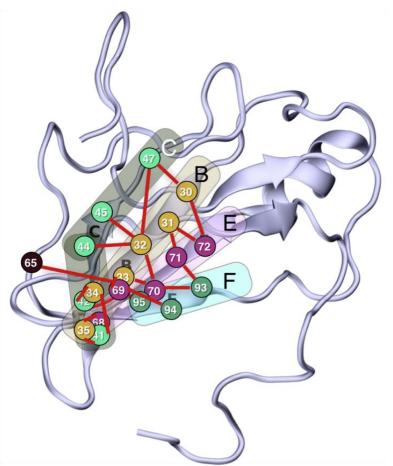
Graph Mining

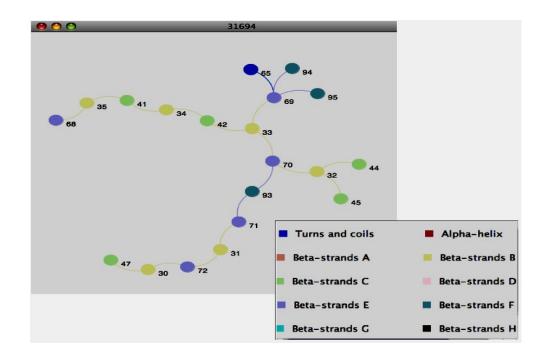
- It is the process of mining fragments (subgraphs) from a graph database e.g. protein conformation database.
- Applications in the web and other networks.
- A large number of biological applications e.g. Proteins unfolding process.



Graph Mining

• Illustrating the identification of a subgraph that persists along the unfolding process.





Problems?

Maybe not!

False Discoveries

• Aim is to identify associations that occur in the phenomena that give rise to the data.

- Brute force like search process tends to yields a high risk of false discoveries
 - i.e. associations appear to exist in our sample but do not occur in the phenomena that lead to the data!

False Discoveries

• Explosive number of rules!

- e.g. Retail data
 - 3182 products (items)
 - -2^{3182} number of possible rules!
 - #rules with <= 4 items in the antecedent > 10^{16}
 - High probability of unlikely real co-occurrence
 i.e they are false discoveries!

Examples

- Redundant rules: (item in the antecedent explains other items)
 - Ex: pregnant → liquid_retention pregnant & female → liquid_retention

Discard rule
$$x \rightarrow y$$
 if:
 $\exists z \in x : supp(x \rightarrow y) = supp(x - z \rightarrow y)$

and

• Non Productive Rules:

male & high_psa & diabetes \rightarrow prostate_cancer conf=0.84 male & high_psa \rightarrow prostate_cancer conf=0.85

Rules Pruning

• Identifying *improvement* in rules

Conf = 0.300 oranges \leftarrow bananas & peaches Conf = 0.315 oranges \leftarrow peaches

- Definition of improvement:
 - A more specific rule has to induce an added value in terms of its interest measure.

 $imp(A \to C) = \min(\forall A' \subset A : met(A \to C) - met(A' \to C))$

met can be ={conf,lift,conv,X²,etc}

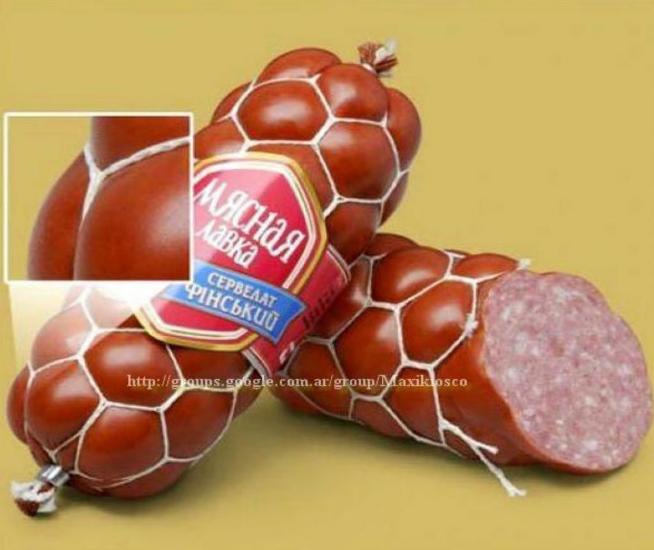
• If improvement > 0 we say that the rules are *productive*.

Statistical Significance

- An alternative to define a minimal improvement is to apply a statistical significant test : discard rules that are *non significant*
- A rule $x \rightarrow y$ is non significant if
 - There exists another rule x z → y where the value met(x → y) met(x z → y)
 is not significantly high (where met(x → y) > met(x-z → y))

• Typically implemented using a Fisher exact Test.

Expectations...



Can be deceiving!!!!!!!

Subgroups Mining

- To identify <u>interesting</u> subpopulations that occurred in our study.
- Represent these phenomena using specific patterns, for instance rules like;

Subgroup_description \rightarrow poi

- Interesting means: deviates in relation to a reference (global) population
- Property of interest (poi) can be a numeric or categoric attribute, an constraint formula or even a contrast.
- Several statistics associated to each rule.

Framework

- Make use of a association rule algorithm to extract interesting subgroups
- rule-based algorithm.
- Detect deviation using statistical significance
- Control specialization (*overfitting*) using the same type of statistical test

Several types of subgroups/rules

Numeric Properties of Interest

- Quantitative Association Rules
- [Aumann&Lindell2003]
- e.g:

smoker=n & wine_drinker=s \rightarrow life_expectation=85 (overall=80)

Sex=female \rightarrow Wage: mean=\$7.9 (overall = \$9.02)

• Rule interest is determined by a comparative test using poi average value and complement value. 25

Distribution Rules [Jorge&Azevedo2007]

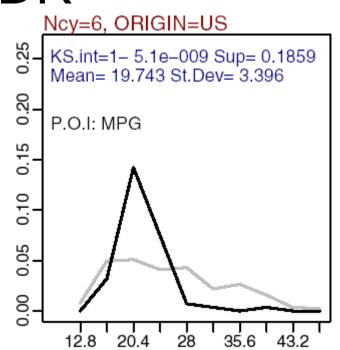
- The consequent is a distribution,
- Enables the distribution analysis according to other parameters like Skewness (degree of asymmetry) and Kurtosis (degree of sharpness).
- Make uses of the goodness of fit *Kolmogorov-Smirnov test*, to evaluate rule's interest.

- Specialization of subpopulations also controlled by KS test (KS-improvement).
- Several applications

Subgroup Mining - HASLab

Interest measure of a DR

- KS-interest:
 - Given a rule A→y=D_{y|A}, its KS-interest is 1-p,
 - p is the p-value of the KS test comparing $D_{y|A}$ and $D_{y|\emptyset}$

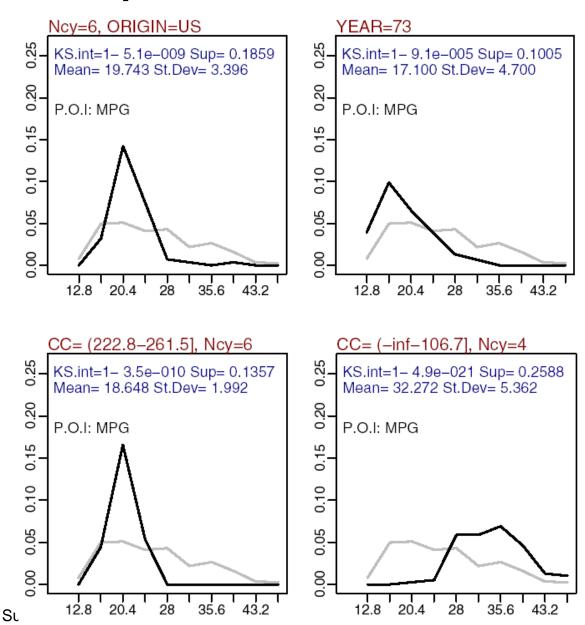


•KS-improvement

- value added by the refinements of a rule
- imp(A→B) is min({KS-interest(A→B) - KS-interest(As→B) | As _A})
- other variants to control refinements.

Distribution Rule presentation

- property of interest
- each DR is a plot
- distribution plot
 - frequency polygon
 - static binning
- distribution statistics
- comparison with default distribution



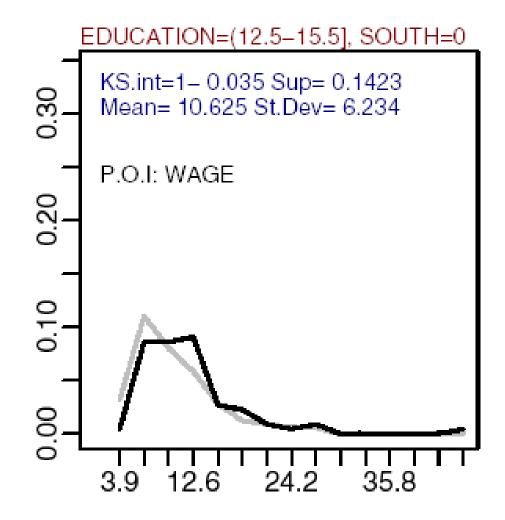
Case Study

- Descriptive data mining
 - dataset: Determinants of Wages from the 1985 Current Population Survey in the United States, a.k.a. Wages
 - property of interest: WAGE
- Rule discovery
 - min-sup=0.1, KS-int=0.95
 - numerical attributes in the antecedent were pre-discretized
 - compact internal representation of rules
 - rules can be output as text or graphically

Sup=0.118 KS.int=1-0.0085 Mean=10.982 St.Dev=6.333 EDUCATION=(12.5-15.5] & SOUTH=0 & RACE=3

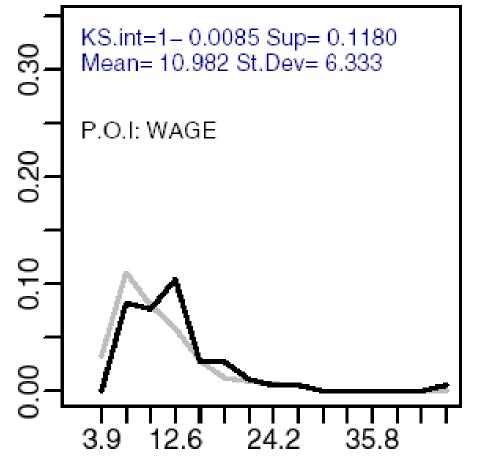
^{-&}gt; WAGE={ 3.98/1,4.0/1,4.17/1,4.5/1,4.55/1,4.84/1,5.0/1,5.62/1,5.65/1,5.8/1,6.0/1,6.25/4,7.14/1,7.5/1,7.67/1,7.7/1,7.96/1, 8.0/2,8.4/1,8.56/1,8.63/1,8.75/1,8.9/1,9.22/1,9.63/1,9.75/1,9.86/1,10.0/3,10.25/1,10.5/1,10.53/1,10.58/1,10.61/1, 11.11/1,11.25/2,12.0/1,12.47/1,12.5/4,13.07/1,13.75/1,13.98/1,14.29/1,15.0/1,16.0/1,16.14/1,16.42/1,17.25/1,17.86/1, 18.5/1,21.25/1,22.5/1,26.0/1,44.5/1 }

- antecedent
 - people with 13 to 15 years of education
 - not from the south
- consequent
 - wage distribution is better than the whole population but still concentrated on the same interval

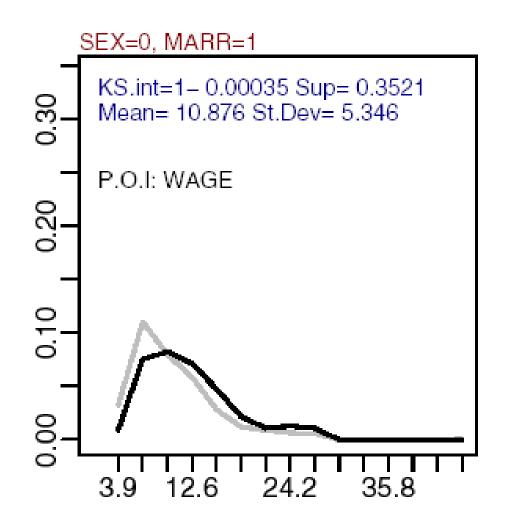


- antecedent
 - refinement of previous
 - race is white
- consequent
 - wage distribution is even better than before
 - KS-improvement is higher than 0.01
 - the wages still are concentrated on the same interval as before

EDUCATION=(12.5–15.5], SOUTH=0 RACE=3



- antecedent
 married males
- consequent
 - less interesting
 - still signif. different

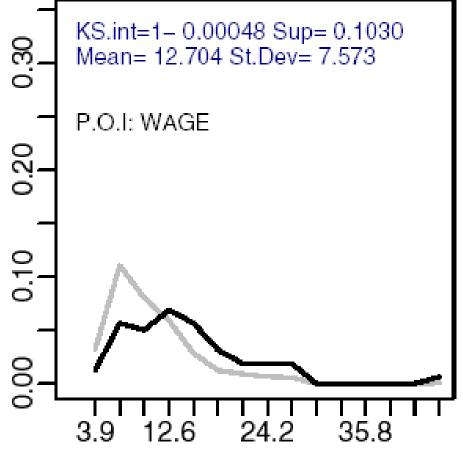


- antecedent
 Occupation=Clerical
- consequent
 - concentrated on lower income

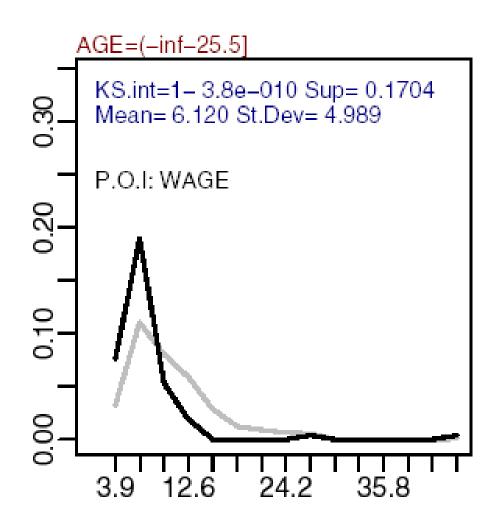


- antecedent
 - Occupation=Management
- consequent
 - clearly better wage distribution
 - we also observe a slightly lifted right tail

OCCUPATION=1



- antecedent
 young people
- consequent
 - lower wages, very concentrated
 - some secondary modes are suggested



Case Study (2): BUS trip time deviation study

Trip time deviation study

What are the factors, or combination of factors, that are associated with significant deviations in trip duration?

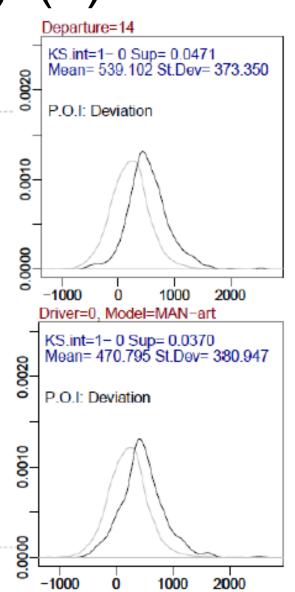
STCP

- Case:
 - Porto urban buses company
 - Line 205 (a circular line)

Case Study (2):

Delays: top rules

- the period after lunch appears frequently in discovered contexts.
 - Mean 9 minutes delay
 - Strong KS-interest
- change of shift and articulated vehicles are also related to delays
 - The latter case is probably due to use in rush hour

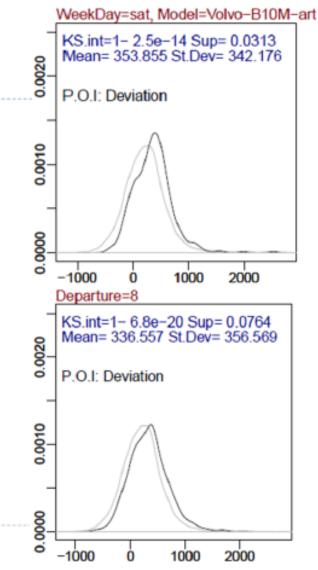


37

Case Study (2):

Delays: top rules

- An articulated model is also associated to delays on Saturdays
 - Saturday is a difficult day
- Trips at morning rush hour have less severe delays but also appear.
 - Represent 7.6% of trips



19

Max Leverage Rules

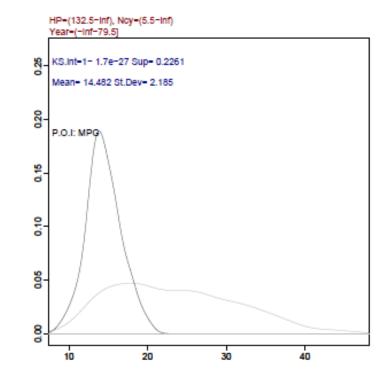
- [Jorge&Azevedo2011]
- Rules:

ant \rightarrow A ϵ I,

where I is the interval that defines the maximal value of leverage (add value) of A for antecedent ant, and A is our poi.

- Rules are derived from correspondent distribution rules.
- Intervals that maximize *leverage* / (*added value*) are obtained from the *KS* test.
- $AV(A \rightarrow C) = conf(A \rightarrow C) sup(C)$.

Max Leverage Rules Example



(Cov=0.226 Lev=0.148 AV=0.653 Conf=0.922)

HP=(132.5-inf) & Ncy=(5.5-inf) & Year=(-inf-79.5] → MPG < 18

Rule states that cars with power output (HP) above 132.5, with more than 5 cylinders (Ncy) and assembly year (Year) before a 1980 tends to yield a performance (MPG) inferior to 18 when compared to a generic car (global population).

A generic car has much less probability of having such a bad performance. In fact, the probability of a generic car to have such bad performance is 65,3% (Added Value) lower than the probability of the car described by the rule. 40

Contrast Sets Rules

- Rules for Contrast Sets [Azevedo2010]
- Describe the difference between contrasting groups.
- A contrast set is a conjunction of characteristics that describes a subpopulation which occurs with different proportions along different groups.
- Examples:
 - Different temporal instances (sales in 1998 versus 1999),
 - Different locations (find distinct characteristics for the location of a gene x in human DNA in relation to mice DNA),
 - Along different classes (difference between brunettes and blonds).

RCS

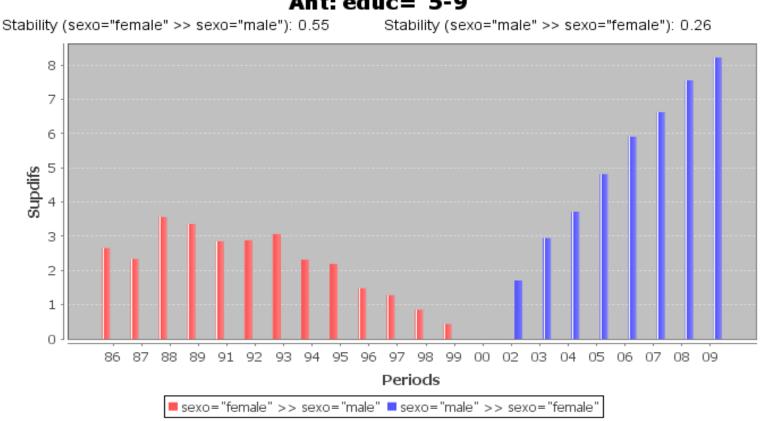
- The characteristics of the subpopulation to be found (contrast sets) are interesting (significant) if the proportions of the individual occurrences along groups are significantly distinct.
- i.e. subpopulation is *not independent* to group belonging. Significance is computed using a Fisher exact test.

Gsup = 0.17191 | 0.04121 p = 1.1110878451E-017 Gsup = 0.17191 | 0.01681 p = 3.0718399575E-040 Sup(CS) = 0.03097 education=Doctorate >> education=Masters education=Doctorate >> education=Bachelors ← workclass=State-gov & class > 50K.

 Specialization of a *contrast set* is controlled also through a Fisher test.

Case Study

Data representing employment from the Portuguese private sector between 1986 and 2009.

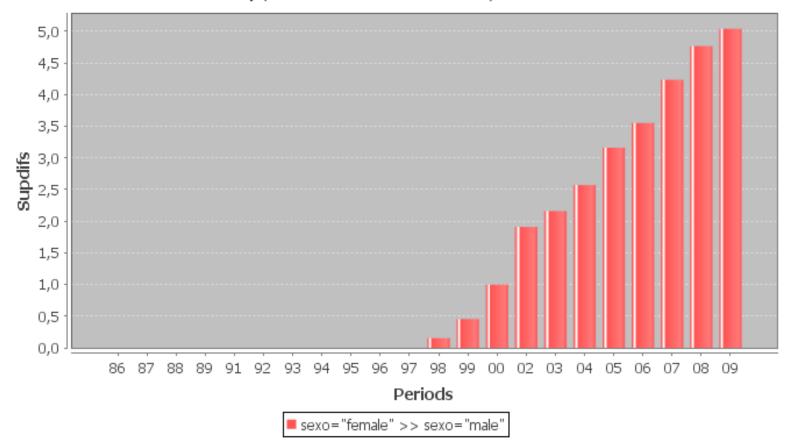


Ant: educ="5-9"

Contrast on individuals with basic (lower) education

Ant: educ=">12"

Stability (sexo="female" >> sexo="male"): 0.48



Contrast found on individuals with higher education

Subgroup Mining - HASLab

Summary

- Introduction to Data Mining
- Pattern Mining
- Descriptive data mining
- Association Rules

 Subgroup Mining implemented using Association rules like algorithms