Next Generation Clouds

... and beyond ...

Rolando Martins

CRACS/INESC TEC

February 8, 2017

About Me - I

About Me - II

Talk Outline

- Part I Classical Cloud-Computing
 - What is "the Cloud"?
 - Why should you care?
 - Types of Clouds
 - Private Cloud OpenStack & Containers
- 2 Some Cloud Components That You Will Need
 - Distributed Storage
 - Middleware systems
 - Computational Frameworks
 - Failure Diagnosis
- Part II Hands on Cloud Computing
 - Stories from a SysOps
- Part III Edge Computing
 - Hyrax
 - Cloudlets

What is "the Cloud"?

- Is it Clustering with a different name?
 - Not really! Althought it has common ground...
 - Neither is a Cluster++. It is meant to support multi-resource sharing across multi-tenants.
- Where, Whom, When and Why?
 - 'Merica, Amazon, 2006, sell over-capacity to make \$\$\$.
 - ► Currently approaching a \$10 billion-a-year business...

Why should you care?

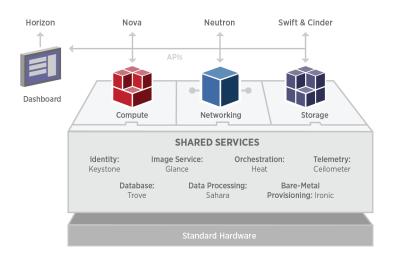
- For entrepreneurs:
 - Access to cheap and almost limitless resources
 - Minimal ramp-up time
- For companies:
 - Cut operational costs
 - ▶ leverage transient peak seasons (X-Mas,...)
- For researchers:
 - Study problems at scale
 - Immediate social and economical impact

One Cloud abstraction to rule them all?

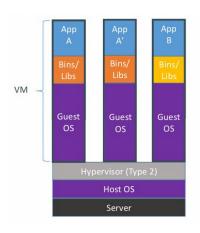
- Multiple abstractions are presently offered (*aaS), namely:
 - PaaS (Platform as a Service):
 - ★ Appscale, Google App Engine
 - SaaS (Software as a Service):
 - ★ Gmail. OneDrive
 - laaS (Infrastructure as a Service):
 - ★ Amazon AWS, Google Cloud, Azure, Rackspace, OpenStack

Basic resources of an IaaS

- Computation provided by instances, e.g., EC2 instances.
 - Segregated by regions, normally backed by a distinct data-center
- Storage provided in different models:
 - ► Volume service that provides strongly consistency, e.g., EBS (Amazon Block Store)
 - NoSQL backed service with eventual consistency (optional but useful), e.g., S3
- DNS management (Route 53)
- SSL termination + load balancers

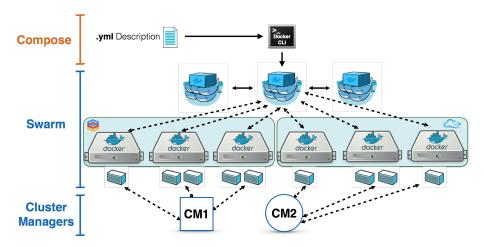


Private, Public and Hybrid Clouds

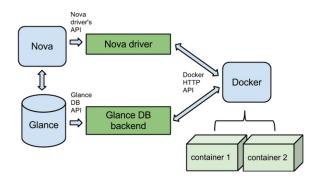

- Public Clouds:
 - Amazon AWS is the most used cloud provider
- Private Clouds:
 - OpenStack is the most widely deployed and known
- Hybrid Clouds = *Private* + *Public*
 - ► Typically an institution has its core services and data in-house and uses the public cloud for long running batch jobs

Deploying Private Clouds - OpenStack Architecture

VMs vs Containers



Containers are isolated, but share OS and, where appropriate, bins/libraries


...result is significantly faster deployment, much less overhead, easier migration, faster restart

Docker Architecture

Meshing OpenStack and Docker

Cloud Service/Components That you will Need

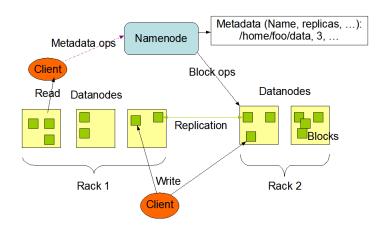
Distributed Storage - DHT

Cassandra Write Data Flows Single Region, Multiple Availability Zone

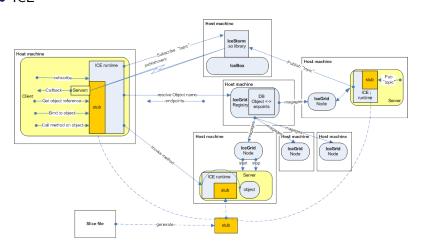
 Client Writes to any Cassandra Node

- Coordinator Node replicates to nodes and Zones
- Nodes return ack to coordinator
- 4. Coordinator returns ack to client
- Data written to internal commit log disk

If a node goes offline, hinted handoff completes the write when the node comes back up.

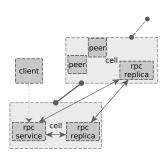

Requests can choose to wait for one node, a quorum, or all nodes to ack the write

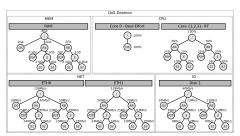
SSTable disk writes and compactions occur asynchronously


Distributed Storage - Distributed FileSystem

• HDFS (inspired by Google File System (GFS))

General Purpose Middleware


ICE



Real-time Fault-tolerant Middleware

Stheno

Stheno - RPC Service Example

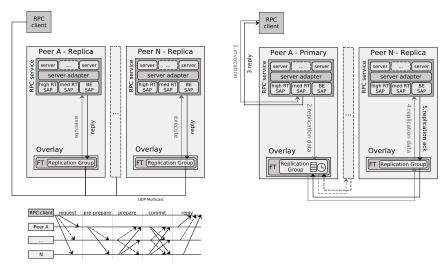
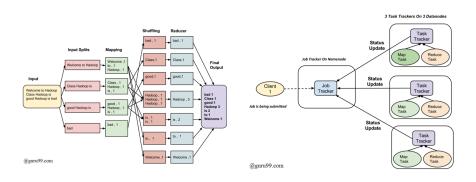
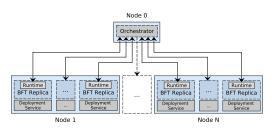
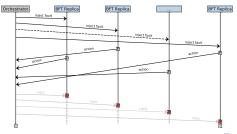



Figure: RPC implementations using Paxos(left) and Passive Replication(right)


Batch Computation Frameworks


MapReduce: Simplified Data Processing on Large Clusters

Fault-Injection

Hermes Fault Injection Framework

Part II - Hands on Cloud Computing

My 2 years on the Grinder

- YinzCam is the leading sports app provider in the US
- Apps with millions of downloads, tens of thousands of very active users
- Clients across the NBA, NHL, NFL, MLS (US) and AFL (Rugby -Australia)
- Features include live streaming, on-the-fly replays, seat upgrades, loyalty, social networks, ads
- All done with a very small team

DevOps Rulebook

- Log everything, literally everything!
 - You will need it to fast debug your system on-the-fly
- Monitor, Monitor, Monitor!
 - Don't rely on vendor's monitoring data!
 - ▶ Use your own! e.g., collectd
- Runaway from vendor lock-in and single vendor syndrome
 - Design your systems to account for multiple vendor, e.g., OpenStack with offloading to multiple vendors
 - Changing a production system may be prohibitive!
- Automate everything

Elasticity

- Boostrapping a new instance may take up to 5 minutes (including DNS's name propagation)
- For large events, e.g., conference news, this can lead to unacceptable levels of performance
- Know your workloads and provision accordingly
- A new recent approach is to provision large instances and then use containers on them, e.g. Docker

Monitoring

- Hardware malfunctioning still happens on the cloud!
- Complex subsystem, such as MySQL manage instances, are prone to performance issues
- Service architecture should handle service migration from scratch:
 - Handle maintenance periods
 - and, host crashes

Vendor Lock-In

- Avoid managed services, e.g., MySQL instances, to avoid black boxes
- This will also allow you to chose between vendors
- That will save you headaches and money!

Security and Privacy

- You are relying on the vendor's perimeter security
- But you will also have to enforce security inside your system
 - ► Turn off HTTP, and only use HTTPS
 - Install an IDS and SIEM (e.g., community version of OSSIM by AlienVault)
 - Turn off password login, only use key-pair for SSH
 - Change periodically the passwords on more "legacy" services, e.g., MySQL
- If you have SENSITIVE information, DON'T use solely public clouds
- Anonimize your data and store it, but better is just to encrypt it and spread it among several vendors

Current Cloud Project

- INESC TEC shared cloud computing facility
- Dual Infiniband + dual ethernet ports per node (98Gbit/s)
- 2 Storages + Blade:
 - ▶ 232 cores + 3TB RAM
 - ▶ 32 TB shared storage

Part III - Edge Computing

What are Edge Clouds?

 "a computational storage cloud comprised solely of a collection of nearby wireless edge devices, with the purpose of pooling these devices data and processing power to support a new class of proximity-aware applications that benefit the owners of these devices."

Whats required to support such applications?

A: Communication infrastructure (traditionally)

- Expensive (3G/4G or WiFi coverage)
- Low user capacity (25-50 users / AP)

 Alternative: Can we take advantage of D2D communication? (WiFi-Direct, TDLS, Bluetooth)

Whats required to support such applications? (cont.)

B: Networking services for mobile devices

- w/ infrastructure:
 - Costly and QoE degrades rapidly in user-dense/emergency scenarios
- wo/ infrastructure:
 - Cheap but complex and cannot guarantee availability (delay-tolerant)

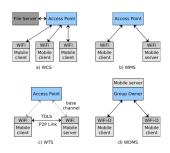
• How to use D2D protocols to create overlays networks and communicate between any two devices within?

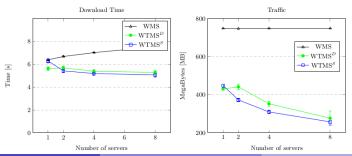
Whats required to support such applications? (cont.)

C: Storage, Computation and Security Services

- Data sharing among devices requires an internet broker (4G / WiFi)
- Easier to enforce security and control mechanisms

• How to securely share computational resources using D2D networks?


Hyrax in Action!

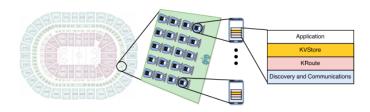

A CMU-Portugal project: CRACS (FCUP), CMU and NOVA-LINCS

Some Results from Hyrax

Edge Clouds: Current Status

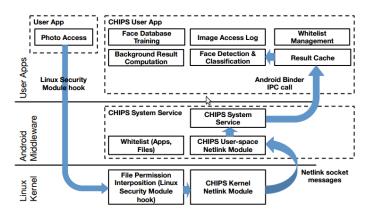
- Churn, Churn and Churn!
 - Depends on the application case, but it normally ranges from medium to highly dynamical systems
- Technological limitations
 - Lack of mobile OS interoperability, .e.g. TDLS only works for AndroidOS
 - Cripple features to safeguard cloud-based business models
- (Lack of) Security
 - All mobile platforms have bad track records
 - Workarounds are possible with customizable roms or through the use of secure tokens
- (Absent) Privacy
 - Probably the biggest issue we face today
 - ► Tagging, meta-data extraction, ...

What Communication Technologies are available?


- Using non-rooted devices (Rodrigues'16):
 - Bluetooth (slow, slow and slow)
 - ★ Limited to 7 connections per device
 - WiFi TDLS
 - Only available on Android
 - AndroidOS makes its use very opaque, .e.g, no information on the state of a link
 - ★ Capabilities very dependent on device
 - WiFi Direct
 - Only available on Android
 - AndroidOS makes its cumbersome to use
 - Very rigid and buggy implementation, .e.g, limited to 5 clients per soft-AP

Batch Processing on the Edge

- Possible but not suitable (Marinelli'09):
 - Jobtracker and NameNode only available on a central server
 - Assumed that nodes were static
 - Only used infrastructure WiFi
- Open problems:
 - Who watches the watchers?
 - Coordination is a nightmare
 - Job handover cannot rely on a central entity
 - Transient failures, i.e. churn, make it very difficult to have complete results


Key-Value Storage (Krowd'15)

- Elegant abstraction but not quite there yet:
 - Assumptions are weak, assume peers are rather stationary
 - ▶ Built on top of consistent hashing
 - Repair costs still not accounted

Privacy and Security in Edge Clouds

 CHIPS: Content-based Heuristics for Improving Photo Privacy for Smartphones (Jiaqi Tan'14)

And what about computation?

- Single-domain trust can achieve it, i.e., verified apps are digitally signed by a trusted provider
- True P2P computation still not possible:
 - Homomorphic encryption still not mature and slow
 - ▶ Proof carrying code still limited

What are Cloudlets?

- Satyanarayanan (CMU) defines Cloudlet as "A new architectural element that arises from the convergence of mobile computing and cloud computing. It represents the middle tier of a 3-tier hierarchy: mobile device - cloudlet - cloud. It can be viewed as a data center in a box whose goal is to bring the cloud closer"
- Seminal work from Satya @CMU:
 - Virtual Machine Introspection
 - ▶ Openstack++
 - Delta upgrades
- Current Status:
 - All things virtualized
 - Viewed as an utility on every city block

Cloudlets, who would use them?

- Museums and hospitals:
 - ► Enhancing low-latency services (e.g., VR, context aware services)
 - ► Complementing or replacing WiFi infrastructure

Cloudlets: Road ahead

- Containers for the rescue
- Middleware for context-aware services
- Support for ad-hoc networking
- Ongoing MSc

Cloudlets as a Middle Tier

- Scalable access to more powerful resources
- Provide wireless connectivity
- Low-latency services
- Self-repair layer
- Indoor localization
- Context-aware as a Service (CaaS)
 - Lightweight Data mining
 - Support for dynamical and fast reconfiguration for mobile applications

What about security and privacy with Cloudlets?

- Cloudlets suffer from the same issue as infrastructure clouds, you lose privacy if you use them
- As of now, security is based on trust on the provider

Another Application Case for Hyrax: Amber Alert

- Amber alert is used to find missing children
- Computer vision algorithms are needed to implement a system
- CV algorithms can be split between feature detection and matching
- We can use this knowledge and split work among edge and cloudlets
- This approach enhances privacy by avoid uploading content to a public cloud
- Energy usage patterns are being researched (Miguel Coimbra@FCUP)
- Ongoing MSc

Thanks!

- Thinking of doing a PhD or MSc on Cloud Computing?
- Reach me at rmartins@dcc.fc.up.pt