Conflict-free Replicated Data Types
in Practice

Georges Younes Vitor Enes
Wednesday 11* January, 2017

HASLab/INESC TEC & University of Minho
InfoBlender

Motivation

Background

Background: CAP Theorem

Brewer’s Conjecture
2000 Eric Brewer, PoDC Conference Keynote
2002 Seth Gilbert and Nancy Lynch, ACM SIGACT News 33(2)

Of three properties of shared-data
system - data Consistency, system
Availability and tolerance to network

Partitions - only two can be achieved
at any given moment in time.

Background: CAP Theorem

5.6‘[_ Server
-J‘. ariaDB

Consistency

AP ACHE

HESASE

All clients see the

same data al the same
time

° mongo

redis

Availability Partition-Tolerance

The system continues:
1o cperate in spite of
natwork failures

] 4@;;? sriak

CouchDB

' cassandra

source: Lourenco et al. Journal of Big Data (2015) 2:18 DOI 10.1186/s40537-015-0025-0

. n
& 1 }
e :
i - F I
|
3: il
I

‘“ The best thing about being me... There are
so many ‘'me’s ”
-Agent Smith

Background: Data Replication

Data Replication: Maintaining multiple data copies on separate machines.

e Improves Availability

e Allows access when some replicas are not available

e increased throughput: let multiple machines serve the data

Optimistic

e Improves Performance
e reduced latency: let users access nearby replicas
Pessimistic
e Provide single-copy consistency °

e Block access to a replica unless it o
is provably up to date

e Perform well in LANs (small °
latencies, uncommon failures)

Not in Wide Area Networks °

Provide eventual consistency

Let access to a replica without a
priori synchronization

Updates propagated in bg,
occasional conflicts resolved later

Offer many advantages over their
pessimistic counterparts 4

Background: Eventual Consistency (EC)

wgi% :

Ash Ketchum

okemaste

Quits job to become @Pokemon trainer
#PokemonGo

g

A

Background: Eventual Consistency (EC)

- Zf; Z=w . o
Ash Ketchum

ﬁf/_—:‘ pokemaster
Quits job to become @Pokemon trainer
Ash Ketchum
#PokemonGo

—

——

*Quits job to become | 7T ETE

#PokemonGo

17 Jul 2016 r ‘V}"
! —— \

< J

&
L.

Background: Eventual Consistency (EC)

- Zf; Z=w . o
Ash Ketchum

ﬁf/_—:‘ pokemaster
Quits job to become @Pokemon trainer
Ash Ketchum
#PokemonGo

—

——

11:07 PM - 17 2018

*Quuits job to become |
#PokemonGo oy

M-17 Jul 2016 “L
- \
. 7
o]
‘ é

At the same moment, two users can see the same
tweet with different number of favorites 8

Conflict-free Replicated Data
Types

Conflict-free Replicated Data Types

CRDTs
e Conflict-free: resolves conflicts automatically converging to the same
state
e Replicated: multiple independent copies

e Data Types: Registers, Counters, Maps, Sequences, Sets,
Graphs..etc

CRDT Flavors
There are two flavors of CRDTs:

e Operation-based: broadcasts update operations to other replicas

e State-based: propagates the local state to other replicas

Op-based CRDTs

— f(x') g(XJ)
), — S
| \ g("“‘%‘ﬁm)
(@ | —s o—
\ \g(xa)_f(xa)
\ // o o
\"-./

Figure 1: Operation based replication

For each update operation do:

e Prepare: Calculate the downstream (the effect observed locally)
e Apply the effect locally

e Disseminate (reliable causal broadcast) the calculated effect to be

applied on all other replicas
10

Op-based (Counter :: N) Op-based (Counter :: N)

replica A replica B
S5A=0 Sg=0
Sa = update(ing, Sp) =0+1=1 Sg = update(dec, Sg) = Sg—1=-1
my = inc my = inc
sendg(my) send ()
on receiveg(m,): on receiveg(m;):

Sa = update(dec,S54) =1—-1=0 Sg = update(inc,Sg) = —-1+1=0

What if m; is lost?
What if m, is duplicated?

11

How do solve these problems?

TRCB: Tagged Reliable Causal Broadcast

e Tags each operation with a unique timestamp (VC)
e Delivery of operations respecting causal order
e Reliable bcast: at-least-once to prevent message loss

e Reliable bcast: at-most-once to prevent message duplication

Are all data types commutative?

e Counters are commutative: incr; decr; == decr; incr;
e Not all data types are (In fact most are NOT)

o A Set S; with add(element, Set) and rmv(element, Set) operation is
not

e add(a, S1); rmv(a, S1); value(S;) = {}
e rmv(a, S1); add(a, 51); value(S1) = {a}

e How do we solve concurrent operations? 12

POLog: Partially Ordered Log

-

-~

Polog

POLog: Partially Ordered Log

add(A) add(A) add(A)

Polog

Vision ® {A} 14

POLog: Partially Ordered Log

Ly

A g -wanialliten
add(A) add(A) add(A)
Polog
— S — S —

Mision {A) » 15

POLog: Partially Ordered Log

2 - 4
add(A) add(A)
rmv(A) add(C) mv(A)
Polog add(C) add(C)

POLog: Partially Ordered Log

Polog

Vision

[

add(A)

rmwv(A)
add(C)

add(A)

add(A)

add(C)

add(A)

e

rmv(A)

o

{A

add(A)

rmv(A)

add(C)

add(A)

17

POLog: Partially Ordered Log

Querying the Add-Wins-Set (AWSet)
e An element v is in the set if there is an add, operation in the set
that is not succeeded by rmv, operation
e v|(t,add,) € POLog A #(t',rmv,) € POLog.t — t'

So does the POLog keep growing?

e In the op-based CRDT model, the POLog keeps growing
e Pure op-based CRDT model was introduced to:

e Apply GC on the POLog
e Reduces the message size
e Provides a more generic API

18

Pure op-based in Redis

Client Requests

vV

Redis API

Request Handler

TRCB
C »\
' CRDTs
Client Requests \ Q. Client Requests
Redis Data Types \'%
Vv — %
\%

Redis APl \”? Redis API
Request Handler \\ Request Handler
TRCB - Mq— — — — — — Diiseminition_ _____ TRCB
CRDTs CRDTs

Redis Data Types

Redis Data Types

Figure 2: Pure op-based Architecture in Redis

19

Operation-based (GCounter :: N)

A 1 inc 2 inc 8

my=inc my=inc

B 1 2 3
State-based (GCounter :: T — N)

A (B} —" > {A,B} inc {A2, By}

m1>{A1,B1} m2>{A2J31}
B {B} {A1, B1} {A2, B}
What if m; is lost? (monotonicity)

What if m, is duplicated? (idempotence)
What if m; and m, are reordered? (commutativity)

20

Why are state-based CRDTs so cool?

State-based CRDT

A state-based CRDT is a join-semilattice (S, C, L)) where S is a poset,
C its partial order, and LI a binary join operator that derives the least
upper bound for every two elements of S.

Vs, t,u € S:
e slis=s (idempotence)
e slit=tlUs (commutativity)
e sU(tUu)=(sUt)Uu (associativity)

$ $ full state transmission $ $

21

Avoiding full state transmission

How we can we avoid replica A sending the full state to
replica B?

Two fundamental problems
A knows something about B:

e B has Sold
e A has S,., and knows that B has S,y

e Goal: compute delta d of minimum size s.t. Spe,, = Soig LI d
A knows nothing about B:

e B has Sold
e A has S,

e Goal: protocol that minimizes communication cost

22

Solving the first problem

Delta State Replicated Data Types

Paulo Sérgio Almeida, Ali Sholer, and Carlos Baquero
HASLab/INESC TEC and Universidade do Minho, Portugal

Abstract. CRDTs are distributed data types that make eventual con-
sistency of a distributed object possible and non ad-hoc. Specifically,
state-based CRDTs ensure convergence through disseminating the en-
tire state, that may be large, and merging it to other replicas; whereas
operation-based CRDTs disseminate operations (i.e., small states) as-
suming an exactly-once reliable dissemination layer. We introduce Delta
State Conflict-Free Replicatad Data Types (5-CRDT) that can achieve
the best of both worlds small messages wmh an mcrcmmtal nature,
as in based CRDTs, di

cation channels, as in traditional state-based CRD’I‘s. This is achieved
by defining d-mutators to return a delfa-state, typically with a much
smaller size than the full state, that to be joined with both local and
remote states. We introduce the §-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs. In
addition, we present an anti-entropy algorithm for eventual convergence,
and another one that ensures causal comsistency. Finally, we introduce
several -CRDT specifications of both well-known replicated datatypes
and novel datatypes, including a generic map com position.

ir 2016

d

1 Introduction

Eventual consistency (EC) is a relaxed consistency model that is often adopted 23
by large-scale distributed systems [1[2]3] where availability must be maintained,

01529v1 [es.DC] 4 M

Solving the first problem: Delta-CRDTs

State-based (GSet :: P(E))

A (2 G (k) {x.y,2}
\EX} \E«,y} /;y,z}
B {} {x} {x,y} 25 {x,y, 2}
Delta-state-based
A (2 6 (k) {x,y, 2}
NN A

B {} {x} {x,y} 25 (x,y, 2}

24

Solving the second problem

Join Decompositions for Efficient Synchronization
of CRDTs after a Network Partition

[Work in progre:

Vitor Enes Carlos Baquero

report]

Paulo Sérgio Almeida Al Shoker

HASLaWINESC TEC and Universidade do Minho

Ahstract

State-based CRDTS allow updates on local replicas without re-
mote synchronization. Once these updates are propugated, possi-
ble conflicts are resolved deterministically seross all replicas, 5
CRDTS bring significant advantages in terms of the size of mes-
sages exchanged between replicas durin al operation. How-
ever, when a replica joins the system afier a netwark partition, it
needs 1o receive the updates it missed and propagate the ones per-
formed locally. Current syste s solve this by exchanging the full
state bidireetionally or additional metadata along the
CRDT. We introduce the concept of join-decomposition for state-
based CRDTS, & technique orthogonal and complementary 1 delta-
mutation, and propose two synchronization methods that reduce the
amount of information exchanged, with no need 1o modify current
CRDT definitions

1. Introduction

The concept of Conflict-free Replicated Data Tipe (CRDT) was
introduced in (Shapiro et al. 2011) and presents two flavors of
CRDT: state-based and operation-based. A state-based CRDT can
be defined as a triple (5, C.L1) where § isa join-semilatice, C its
p.mm order, and L is a binary join operator that derives the least
upper bound for every two elements of 5.

In this paper we will present a mechanism that does not add
additional metadata 1o standard state-based CRDTs, but instead is
able to decompose the state into snialler states than can be selected
and grouped in a A for efficient transmission

L1 Problem Statement

Consider replica A with state a and replica B with state b, which
at some point stop disseminating updates but keep updating thei
local state. When these replicas go online, what should replica A
send 10 replica B so that B sees the updates performed on a since
they stopped communicating? We could try to find ¢ such that:

a=bue

but if both replicas performed updates while they were offline, their
states are concurrent, and there’s no such ¢, (We say two states a
and b are concurrent if a is not less than b and b is not less than a
inthe partial order: a || h<=>a [b A b [a.) The trick is how 10
find ¢ (A from now on) which reflects the updates in the join of a
and b still missing in b

aub=buA

The trivial example would be & = o, but we would like to send
less information than the full state. So, how can replica A caleulate
a smaller A to be sent o replica /2, reflecting the missed updates?

25

Solving the second problem: Join Decompositions

State-driven
A (& Y {axy) o {axy.2)
e N
B {a} 2% (52 {a,x,y,z}

Digest-driven

A {Q}M{Q,X,y} {37X7Y} {a,X,y,Z}
/"B wy}’d@/{;
B {a} *2>{sz} {a,x,y,2}

26

Who uses that?

BlLasp « w’g m

TomTom
N\ Y - viak mmromc
akka . sriak TRFoRk.

basho

PROJECT

27

BdLasp

e Lasp is a language for distributed, eventually consistent

computations = CRDTs
e from basho/riak_dt to lasp/types

e lasp/types:
e State-based CRDTs
e Delta-based CRDTs
e Pure-op-based CRDTs

28

GCounter state transmission

Advertisement Impression Counter
45 1 i ' i

GB Transmitted

state delta state delta state delta state delta

128 256 512 1024
(Client Number)

m—— State

29

LDB & LSim

LDB

e benchmarking platform for CRDTs
e lasp/types + replication
e State-based CRDTs

e Delta-based CRDTs
e Delta-based CRDTs + Join Decompositions
e Pure-op-based CRDTs
LSim
e LDB + Peer Services + Workloads
e experiments in DC/OS (Apache Mesos + Marathon)

* r R

docker maratHon MESOS 30

GSet state transmission

0.35

[1

| |
State - Ring
State - HyParView
State - Erdos Renyi
0.25 Decompositions - HyParView ———
' Decompositions - Erdos Renyi ———

0.3

°
g Decompositions - Ring
‘€ 0.2
(%]
©
£ 015
[a]
= o1

0.05

0 —— T T J

0 20 40 60 80 100 120 140 160 180 200

Time in Seconds
31

Challenges

1. Log aggregation
2. Time

e Time-based graphs (e.g. x axis is time)

e Total-effort graphs demands equal total-time across all runs
3. Bugs

e LDFI
IronFleet

Jepsen

4. $$ (On-Demand vs Spot Instances)

32

Questions?

bit.ly /crdts-infoblender

	Motivation
	Background
	Conflict-free Replicated Data Types
	Operation-based
	State-based

	Who uses that?

