
On the ’divide & conquer’ metaphor — the
‘quinta essentia’ of programming

J.N. Oliveira

25th InfoBlender Seminar

July 13th, 2016

INESC TEC & University of Minho
Grant FP7-ICT 619606

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Mac Dictionary c©Apple Inc.

divide and conquer (or rule)

the policy of
maintaining
control over
one’s
subordinates or
subjects by
encouraging
dissent between
them.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Some very good at ’dividing’...

Tortuous Convolvulus
(Asterix and the Roman Agent,
by Goscinny & Uderzo, Hachette
Livre, 1970)

...others (nearly as) good at
conquering:

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

What has this to do with

programming?

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

An example, to begin with

Sorting:

y Sorts x = y Permutes x and y is ordered

Meaning of clause y is ordered is obvious.

Clause y Permutes x means “y and x have the same elements,
equaly repeated”.

Example: "cfbc" Permutes "fcbc" because both have
{b → 1, c → 2, f → 1} elements (a bag, not a set).

"bccf" is ordered; "cfbc" is not (alphabet ordering).

So, "bccf" Sorts "cfbc".

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

An example, to begin with

Sorting:

y Sorts x = y Permutes x and y is ordered

Meaning of clause y is ordered is obvious.

Clause y Permutes x means “y and x have the same elements,
equaly repeated”.

Example: "cfbc" Permutes "fcbc" because both have
{b → 1, c → 2, f → 1} elements (a bag, not a set).

"bccf" is ordered; "cfbc" is not (alphabet ordering).

So, "bccf" Sorts "cfbc".

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Example (continued)

Then — why is one of our favourite sorting algorithms 1

algorithm quicksort (A, lo, hi) is

if lo < hi then

p := pivot (A, lo, hi)
left, right := partition (A, p, lo, hi)
quicksort (A, lo, left)
quicksort (A, right, hi)

doubly recursive?

Where is the hint for recursion in the specification of the previous
slide? Nowhere.

1Cf. https://en.wikipedia.org/wiki/Quicksort#Repeated elements.

https://en.wikipedia.org/wiki/Quicksort#Repeated_elements

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Example (continued)

And what about the same question, this time for this (parallel!)
alternative,

algorithm mergesort (A, lo, hi) is

if lo + 1 < hi then

mid = ⌊(lo + hi) / 2⌋
fork mergesort (A, lo,mid)
mergesort (A,mid , hi)
join

merge (A, lo,mid , hi)

also doubly recursive? 2

2Cf.
https://en.wikipedia.org/wiki/Merge sort#Parallel merge sort.

https://en.wikipedia.org/wiki/Merge_sort#Parallel_merge_sort

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Example (closing)

Back to quicksort, if one inspects the run-time stack before the
activation records of the recursive calls disappear, one will find the
pointers there forming a kind of binary tree, for instance

c
qqq

qq OOOOO

b
�� 77

f
��� 66

c

��
� 77

7
when sorting "cfbc".

Textbooks say quicksort and mergesort are divide & conquer

algorithms.

How does the metaphor with “divide et impera” in politics and
sociology get into our way?

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphors

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphors are everywhere

Cognitive linguistics versus Chomskian generative linguistics

• Information science is based on Chomskian generative

grammars

• Semantics is a “quotient” of syntax

• Cognitive linguistics has emerged meanwhile

• Emphasis on conceptual metaphors — the basic building
block of semantics

• Metaphors we live by (Lakoff and Johnson, 1980).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphors we live by

A cognitive metaphor is a device whereby the meaning of an idea
(concept) is carried by another, e.g.

She counterattacked with a winning argument

— the underlying metaphor is argument is war.

Metaphor time is money underlies everyday phrases such as e.g.:

You are wasting my time

Invest your time in something else.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphoric language

Attributed to Mark Twain:

“Politicians and diapers should be changed often and for
the same reason”.

(‘No jobs for the boys’ in metaphorical form.)

Metaphor structure, where P = politician and D = diaper:

P

chngt′

��

corrupt ��@
@@

@@
@@

D

chng

��

dirty��~~
~~

~~
~

corrupt◦·dirtyoo

IB

dirty (chng x) = False induces chngt ′ over P, and so on.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Formal metaphors

In his Philosophy of Rhetoric, Richards (1936) finds three kernel
ingredients in a metaphor, namely

• a tenor (e.g. politicians)

• a vehicle (e.g. diapers)

• an implicit, shared attribute.

Formally, we have a “cospan”

T

f ��?
??

??
??

V

g
����

��
��

�

A

(1)

where functions f : T → A and g : V → A extract the common
attribute (A) from tenor (T) and vehicle (V).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Formal metaphors

The cognitive, æsthetic, or witty power of a metaphor is obtained
by hiding A, thereby establishing a composite, binary relationship

T V
f ◦·goo

— the “T is V” metaphor — which leaves A implicit.

Remarks on notation:

• x f ◦ y means the same as y f x, that is y = f x.
• In general, x R◦ y asserts the same as y R x.
• Relational composition:

y (R · S) x iff 〈∃ z :: y R z ∧ z S x〉

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphors in science

Scientific expression is inherently metaphoric.

Such metaphors convey the meaning of a complex, new concept in
terms of a simpler, familiar one:

The cell envelope ... proteins behave ... colonies of
bacteria ... electron cloud ...

Mathematics terminology inherently metaphoric too, cf. e.g.

• polynomial functor ...

• vector addition ...

(algebraic structure sharing) and so is computing terminology in
general:

• ... stack, queue, pipe, memory, driver, ...

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Metaphoric” software design?

Text formatting example:

[String]

(>>=words) %%KKKKKKKKKK
String

wordsyyttt
tt

tt
tt

t

Formatoo

[String]

Only this? No:

Formatting consists in (re)introducing white space evenly
throughout the output text lines,

Format = ((>>=words)◦ · words) ↾ R (2)

as specified by some convenient optimization criterion R
(· ↾ · operator to be explained soon.)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphorical specifications

Problem statements are often metaphorical in a formal sense —
input-output relations in which

• some hidden information is preserved (the invariant part)

• some form of optimization takes place (the variant part).

Invariant part:

y (f ◦ · g) x

⇔ { composition and converse }

〈∃ a : a f y : a g x〉

⇔ { functions f and g }

〈∃ a : a = f y : a = g x〉

⇔ { one-point quantification }

f y = g x

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphorical specifications

Variant part:

y (S ↾ R) x

⇔ { anticipating definition (21) below }

y (S ∩ R / S◦) x

⇔ { y (S ∩ R) x = y S x ∧ y R x }

y S x ∧ y (R / S◦) x

⇔ { division (more about this below) }

y S x ∧ 〈∀ y ′ : y ′ S x : y R y ′〉

Altogether:

According to criteria R, y is (among) the best outputs
of S for input x.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphorical specifications

Invariant + variant parts:

M = (f ◦ · g) ↾ R

T

T

f ��?
??

??
??

R
??�������

V

g
����

��
��

�

M
__???????

f ◦·goo

A

(3)

Meaning of y M x :

• f y = g x (the information preserved);

• output y is “best” among all other y ′ such that f y ′ = g x
(this is the optimization).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphorisms

Term “metaphorism” refers to metaphors involving tree-like,
inductive types, e.g.

• Source code refactoring — the meaning of the source
program is preserved, the target code being better styled wrt.
coding conventions and best practices.

• Change of base (numeric representation) — the numbers
represented by the source and the result are the same, cf. the
representation changers of Hutton and Meijer (1996).

• Sorting — the bag (multiset) of elements of the source list is
preserved, the optimization consisting in obtaining an ordered
output.

etc

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

More about (relation) notation

Relation division is for relational composition what whole division
is for multiplication of natural numbers, compare property

z × y 6 x ⇔ z 6 x ÷ y

meaning

x ÷ y is the largest number that multiplied by y
approximates x

with property

Q · S ⊆ R ⇔ Q ⊆ R / S (4)

— R / S is the largest relation that chained with S approximates
R.

(Both are so-called Galois connections.)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

More about (relation) notation

Moreover, we can define a kind of symmetric division by

S

R
= (S◦ / R◦)◦ ∩ R◦ / S◦

B

R ��?
??

??
??

C

S����
��

��
�

S
Roo

A

(5)

Pointwise:

b
S

R
c ⇔ 〈∀ a :: a R b ⇔ a S c〉 (6)

In the case of functions:

y
f

g
x ⇔ g y = f x (7)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphors = ”rational” relations

So metaphors are nicely described by ”fractions” f
g

which,
incidentally, share several properties (when paralleled with)
rational numbers, e.g.

(
f

g

)◦

=
g

f
,

f

id
= f (8)

id

g
·
h

k
·

f

id
=

h · f

k · g
(9)

Moreover, metaphors are closed by intersection:

f

g
∩

h

k
=

f ▽ h

g ▽ k
(10)

where (f ▽ h) x = (f x , h x) is the pairing operator.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Predicates and diagonals

As in the politics is dirt metaphor, metaphors can involve
predicates p, q, ... for instance

y
true

q
x = q y

where true is the everywhere-true predicate.

Put in another way, we can encode predicates in the form of
diagonal metaphors:

p? = id ∩
true

p
(11)

that is,

y (p?) x ⇔ (y = x) ∧ (p y)

holds.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Weakest preconditions

More generally,

f ∩
true

q
= q? · f f ∩

p

true
= f · p?

hold. Moreover, equality

f ∩
p

true
=

true

q
∩ f

expresses a weakest precondition (p) / strongest postcondition
(q) relationship.

Another way to write this:

f · p? = q? · f ⇔ p = q · f (12)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Post-conditioned metaphors

Special case of metaphor shrinking relevant in the sequel:

f

g
↾

true

q
(13)

This indicates that only outputs satisfying q are regarded as good

enough.

Thus q acts as a post-condition on f
g
.

Example of (13):

Sort =
bag

bag
↾

true

ordered
(14)

Function bag extracts the bag (multiset) of elements of a finite
list and predicate ordered checks whether it is ordered.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Post-conditioned metaphors

The following equality shows why these metaphors are referred to
as post-conditioned:

f

g
↾

true

q
= q? ·

f

g

Thus the sorting metaphor (14)

Sort =
bag

bag
↾

true

ordered

re-writes to:

Sort = ordered? · Perm where Perm =
bag

bag
(15)

So y Perm x means that y is a permutation of x .

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

Can we derive programs from a given metaphor

M =
f

g
↾ R (16)

by calculation?

By this law of shrinking

(S · f) ↾ R = (S ↾ R) · f (17)

we can shift f out of the metaphor:

f

g
↾ R = (

id

g
↾ R) · f

This is known as the inverse of a function refinement strategy.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

D&C programming consists in adding an intermediate, auxiliary structure
W between vehicle and tenor,

T Woo Voo

intended to gain control of the “pipeline”.

This can be done in two ways. Assume a surjection h : W → T on the
tenor side, that is, ρ h = h · h◦ = id .

Range of a function:
y ′ (h · h◦) y ⇔ y ′ = y ∧ 〈∃ x :: y = h x〉.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

Then h : W → T provides an intermediate representation of the
tenor.

As we shall see shortly, the splitting works as follows

T W
hoo

h
$$JJJ V

f��		
		

		

Xoo

f
g
↾R

xx

T
g $$HHH

A

(18)

provided one can find a relation X such that h · X = f
g

↾ R.

Note how the outer metaphor gives way to an inner metaphor
between the vehicle (V) and the intermediate type (W).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

Alternatively, we can imagine surjection h working on the vehicle

side, say h : W → V in

T

g

��2
22

22
22

W
Yoo

h
{{ww

w
V

h◦

oo

f
g
↾R

yy

V

f
||yy

y

A

(19)

and try and find relation Y such that Y · h◦ = f
g

↾ R.

Note how intermediate type W acts as representation of T or V

in, respectively, (18) and (19) — h acts as a typical data
refinement abstraction function.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Examples again, please
Quicksort — example of (18):

[a] BTree a
flattenoo

flatten ''OOO
OO

[a]

bag
����

��
��

�

Xoo

bag
bag

↾ true
ordered

vv

[a]

bag
&&MMM

Bag a

Mergesort — example of (19):

[a]

bag
��<

<<
<<

<<
LTree a

Yoo

tipswwooo
oo

[a]
tips◦oo

bag
bag

↾ true
ordered

vv

[a]

bag
xxqqqq

Bag a

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Another (a bit degenerate) example

Matrix-matrix multiplication (mmm) — example of (19):

Mat a

id

��8
88

88
88

88
88

88
88

L
T
re

e
(V

ec
a,

V
ec

a)

Yoo

pack

||zzzzzzzzzzzzz

(M
at

a,
M

at
a)

unpack=pack◦

oo

mmm
id

↾ true
true

tt

(Mat a,Mat a)
mmmrrfffff

Mat a

Equation is Y · unpack = mmm, since mmm
id

↾ true
true

= mmm.

(Recall Google Map-Reduce.)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

Let us calculate “conquer” step Y (19) in the first place:

f

g
↾ R

= { identity of composition }

(
f

g
↾ R) · id

= { h assumed to be a surjection, h · h◦ = id }

(
f

g
↾ R) · h · h◦

= { law (17) }

(
f · h

g
↾ R)

︸ ︷︷ ︸

Y

·h◦

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

Altogether:

f

g
↾ R = (

f · h

g
↾ R) · h◦ for h surjective (20)

In a diagram, completing (19):

T

T

R
99

g
��3

33
33

33
W

f ·h
goo

f ·h
g

↾R
eeKKKKKKKKK

h
{{ww

w
V

h◦

oo

f
g
↾R

tt

V

f
||yyy

A

Strategy is known by
“Easy Split, Hard Join”
(Howard, 1994), where
“Split” (resp. “Join”)
stands for “divide” (resp.
“conquer”)

Thus the hard work is deferred to the conquer stage.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Divide & conquer metaphors

Next we calculate the alternative “Hard Split, Easy Join”
strategy. We will need

S ↾ R = S ∩ R/S◦. (21)

to solve equation

T W
hoo

h
$$JJJ V

f��		
		

		

Xoo

f
g
↾R

xx

T
g $$HHH

A

for X (next slide).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Hard Split, Easy Join”

f

g
↾ R

= { (21) ; converse of a metaphor (8) }

f

g
∩ R /

g

f

= { h assumed to be a surjection, ρ h = h · h◦ = id }

h · h◦ · (
f

g
∩ R /

g

f
)

= { injective h◦ distributes by ∩ }

h · (
f

g · h
∩ h◦ · R /

g

f
)

(Thumb rule: the converse of a function is always injective.)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Hard Split, Easy Join”

We recall property

R /
g

f
= (R / g) · f (22)

— which follows from (4) — and carry on:

h · (
f

g · h
∩ h◦ · R /

g

f
)

= { above ; shunting }

h · (
f

g · h
∩ h◦ · (R / g) · f)

︸ ︷︷ ︸

X

Clearly, the divide step X is now where most of the work is done.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Hard Split, Easy Join”

The choice of intermediate w by X mirrors where the optimization has
moved to, check this in the pointwise version:

w X v ⇔
let a = f v ∈

(g (h w) = a) ∧ 〈∀ t : a = g t : (h w) R t〉

In words:

Given vehicle v , X will select those w that represent tenors
(h w) with the same attribute (a) as vehicle v , and that are
best among all other tenors t exhibiting the same attribute a.

Altogether:

f

g
↾ R = h · (

f

g · h
∩ h◦ · (R / g) · f) for h surjective (23)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Back to post-conditioned metaphors

Recall (15)

Sort = ordered? · Perm where Perm =
bag

bag

from slide 28.

For this special case, “Hard Split, Easy Join” (23) boils down to

q? ·
f

g
= h · p? ·

f

g · h
for h surjective and p = q · h (24)

see next slide.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Back to post-conditioned metaphors

q? · id ·
f

g

= { h assumed surjective }

q? · h · h◦ ·
f

g

= { switch to wp p (12), cf. q? · h = h · p? }

h · p? ·
f

g · h
︸ ︷︷ ︸

X

The counterpart of (20) is even more immediate:

q? ·
f

g
= q? ·

f · h

g
︸ ︷︷ ︸

Y

·h◦ for h surjective (25)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

What happens next?

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

In a diagram

Case (18), for instance:

T

q?
-- G T

koo

W

p?
--

(|k|)

OO

G W

G (|k|)

OO

inWoo

T

[(D)]

OO

D
// G T

G [(D)]

OO

Legend:

h = (|k|) — k
will be the final
conquer step
X = [(D)] — D
will be the final
divide step

Final D&C program will
be as simple as

P = k · (G P) · D

This is known as a (relational) hylomorphism.

Technical details in the appendix and in (Oliveira, 2015).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Background — AoP, pp.154–155

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Wrapping up

We have generalized the calculation of quicksort given in the AoP
textbook (Bird and de Moor, 1997).

Generic calculation of the refinement of metaphorisms into
hylomorphisms by changing the virtual data structure.

Metaphorism identified as a broad class of relational
specifications.

Merit of relation algebra — typed, calculational and productive.

Overall aim: scientific software engineering (as SE “founding
fathers” planned in 1969...)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Annex

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Metaphorisms

Metaphorisms are metaphors over inductive types.

The tree-like structure of the intermediate type W will be central
to the derivation of programs from divide & conquer metaphors.

Eventually, W will disappear, leaving its mark in the
algorithmic process only.

This is why this refinement strategy is often known as “changing
the virtual data structure” (Swierstra and de Moor, 1993).

Now we know more about the types
involved — assuming such initial,
term-algebras exist for functors F, G

and H, respectively.

T F T
inToo

W G W
inWoo

V H V
inVoo

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Initial algebras

Take T F T
inToo , for instance. The unique F-homomorphism

from the initial T F T
inToo to any other (relational) algebra

A F A
Roo is written (|R|)

X =

T

(|R|)
��

A

⇔

T

X

��

F T
inToo

F X

��
A F A

R
oo

and is termed catamorphism (or fold) over R:

X = (|R|) ⇔ X · inT = R · (F X) (26)

S · (|R|) = (|Q|) ⇐ S · R = Q · F S (27)

(|R|) · inT = R · F (|R|) (28)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Sorting example (details)

• T = finite cons-lists, inT = [nil , cons].

• W = binary leaf trees, W F W
inW=[leaf ,fork]oo where

F f = id + (f × f).

• bag = (|k|) — converts finite lists to bags (multisets of
elements).

• h = tips = (|[singl , conc]|) where singl x = [x] and
conc (x , y) = x ++ y . (Surjection h lists the leafs of a tree.)

• ordered = (|[nil , cons] · (id + mn?)|) where
mn (x , xs) = 〈∀ x ′ : x ′ ǫT xs : x ′ 6 x〉, ǫT denoting list
membership.3

3Predicate mn (x , xs) ensures that list x : xs is such that x is at most the
minimum of xs, if it exists.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Result needed (F-congruences)

Say that equivalence relation R is a congruence for algebra
h : F A → A of functor F wherever

h · (F R) ⊆ R · h i .e. y (F R) x ⇒ (h y) R (h x) (29)

hold. Then this is the same as stating:

R · h = R · h · (F R) (30)

For h = in initial, (30) is equivalent to:

R = (|R · in|) (31)

(30,31) useful: inductive equivalence relation generated by a fold
is such that the recursive branch F can be added or removed where
convenient.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

Permutations (example)

For R = Perm (15), for instance, (31) unfolds into

Perm · in = Perm · in · (F Perm)

whose useful part is

Perm · cons = Perm · cons · (id × Perm)

i.e.

y Perm (a : x) = 〈∃ z : z Perm x : y Perm (a : z)〉

written pointwise. In words:

Permuting a sequence with at least one element is the
same as adding it to the front of a permutation of the
tail and permuting again.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Easy Split, Hard Join”

Let us use mergesort as example, which relies on leaf trees based
on functor K f = id + f 2, as W is of shape W = L + W2.

We go back to (25), the instance of (19) which fits the sorting
metaphorism:

q? ·
bag

bag
= q? ·

bag · tips

bag
︸ ︷︷ ︸

Y=(|Z |)

·tips◦

Recall tips = (|t|) where 4

t = [singl , conc]
singl a = [a]
conc (x , y) = x ++ y

4Also note that the empty list is treated separately from this scheme.

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Easy Split, Hard Join”

Our aim is to calculate Z , the K-algebra which shall control the
conquer step:

(|Z |) = q? ·
bag

bag
· (|t|)

⇐ { fusion (27) ; functor K }

q? ·
bag

bag
· t = Z · (K q?) · K

bag

bag

⇐ { (30) ; Leibniz }

q? ·
bag

bag
· t = Z · K q?

(Left pending: bag
bag

is a K-congruence for algebra t.)

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Easy Split, Hard Join”

Next, we head for a functional implementation z ⊆ Z :

z · K q? ⊆ q? ·
bag

bag
· t

⇐ { cancel q? assuming z · K q? = q? · z (12) }

z ⊆
bag · t

bag

Algebra z : K T → T should implement (inner) metaphor bag ·t
bag

,
essentially requiring that z preserves the bag of elements of the
lists involved.

Standard z is the well-known list merge function that merges two
ordered lists into an ordered list. Check that this behaviour is
required by the last assumption above: z · K q? = q? · z .

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

“Hard Split, Easy Join”

Calculations in this case (cf. quicksort) are more elaborate.

Recall the overall scheme, tuned for this case:

T W
flattenoo

flatten
$$JJJ V

bag��		
		

		

Xoo

q?· bag
bag

xx

T

bag
$$HHH

A

W = 1 + A × W2 in this case, in which h instantiates to flatten,
the fold which does inorder traversal of W.

Details in (Oliveira, 2015).

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

References

Introduction Formal metaphors Metaphorisms Programming from metaphors Wrapping up References

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall, 1997.

B.T. Howard. Another iteration on Darlington’s ‘A Synthesis of
Several Sorting Algorithms’. Technical Report KSU CIS 94-8,
Department of Computing and Information Sciences, Kansas
State University, 1994.

G. Hutton and E. Meijer. Back to basics: Deriving representation
changers functionally. JFP, 6(1):181–188, 1996.

G. Lakoff and M. Johnson. Metaphors we live by. University of
Chicago Press, Chicago, 1980. ISBN 978-0-226-46800-6.

J.N. Oliveira. Metaphorisms in programming. In RAMiCS 2015,
volume 9348 of LNCS, pages 171–190. Springer-Verlag, 2015.
doi: 10.1007/978-3-319-24704-5 11.

I.A. Richards. The Philosophy of Rhetoric. Oxford University
Press, 1936.

D. Swierstra and O. de Moor. Virtual data structures. In
B. Möller, H. Partsch, and S. Schuman, editors, Formal Program
Development, volume 755 of LNCS, pages 355–371.
Springer-Verlag, 1993. ISBN 978-3-540-57499-6.

	Introduction
	Formal metaphors
	Metaphorisms
	Programming from metaphors
	Wrapping up
	References

