
Pattern Based Software
Development

Rui Couto

António Nestor Ribeiro

José Creissac Campos

Outline

• Introduction

• Thesis

• The SCARP Approach

• The uCat Tool

• Validation

• Conclusions and future work

• Contributions

• Publications

2

Introduction

• Several methodologies support the software development
process.

• Model Driven Architecture (MDA) proposes a model driven
development methodology.

• Process is based on the definition and transformation of
architectural models.

• Systematic transformations support the software development.

• Several works support the automation of the transformation
processes.

3

Introduction

• MDA process starts with architectural models.

• Transformation of requirement into architectural models
requires a manual transformation process.

• Manual processes are acknowledged for introducing errors
and subjectivity.

• A framework is proposed in order to mitigate errors resulting
from the manual transformation process.

• As a result, requirement models are included as part of the
MDA standard process.

4

Thesis

• It is possible to create a framework, based on the MDA
and support its extension, by including requirement
models transformation as part of the process. Functional
requirements, specifically use cases, have the required
properties in order to be formalized and support
automatic transformation techniques, which support their
integration in MDA.

5

Proposal

• The proposal is supported by a framework, sustained by a
controlled natural language.

• The specifications are converted into an intermediary
representation in order to identify requirement patterns.

• From requirement patterns, software patterns are selected.

• Software patterns are combined to produce architectural models.

• Architectural models are integrated in the MDA process,
producing source code, user interface prototypes, among other
analysis artifacts.

The SCARP Approach

• Scenario Based Rapid Software Prototyping (SCARP) is
proposed in order to automate the transformation of
requirement models into architectural models.

• A tool (uCat) was developed in order to support SCARP.

7

The SCARP Approach - use cases

• Use cases are formalized through a Controlled Natural
Language (CNL), the Restricted Use Cases Statements
(RUS)

• Based on a triple format, supports automatic
transformation into an OWL representation

8

User Input System Response
user selects the login

system requests the username and password
user provides the fields

system verifies the fields
system creates a session

The SCARP Approach - OWL

• RUS specifications are automatically translated into an
OWL ontology.

• OWL supports representing information in a structured
way.

• OWL provides also support for querying the information.

• Information can be retrieved from the ontology resorting
to the SPARQL query language.

9

The SCARP Approach - OWL

• Example of RUS to OWL mapping:

10

Individual: j.0:system

 Types:
 j.0:Actor

 Facts:
 j.0:selects j.0:login

user selects the login

The SCARP Approach - Requirement Patterns

• Requirement patterns are common requirements found in different
specifications. Examples:

• Has Shopping Cart, Has Catalog, Has Account.

• Represent well known solutions for a given problem, within a certain
context.

• The Use Cases Query Language (uQL) was developed to perform pattern
inference.

• Inferring patterns consists in checking whether the condition is valid in
the ontology.

11

The SCARP Approach - Requirement Patterns

• The requirement pattern to software pattern transition
process is based on the analysis of patterns properties.

12

The SCARP Approach - Requirement Patterns

13

The SCARP Approach - Architectural Solutions

• An API-like format was defined to represent software
patterns in a systematic and operationalizable way.

• The inferred software patterns are instantiated.

• The software pattern instances are combined in order to
create an architectural solution.

14

/**
* @intent Provide a surrogate or placeholder for another object to control access to it.
* @param client Triggers the request.
* @param subject Defines the common interface for RealSubject and Proxy.
* @param realSubject Defines the real object that the proxy represents.
* @param proxy Entry point to handle the request.
*/
proxy(client , subject , realSubject , proxy);

The SCARP Approach - Architectural Solutions

15

The SCARP Approach - Code

• The produced outputs are architectural models.

• Models are represented in XMI.

• The XMI interchangeable format supports interoperability,
enabling the possibility to produce, for instance:

• Source code

• User interface prototypes
16

uCat tool

uCat tool

uCat tool

uCat tool

uCat tool

Validation

• Two studies were performed in order to validate the approach.

• In the first study the expressiveness of the language, suitability of
uCat, and usability were addressed.

• The language expressiveness was successfully validated.

• The tool had a good usability and SUS score (score 74, grade B).

• In the second study was validated the requirements patterns
inference mechanism.

• Patterns were successfully inferred from specifications.

22

Conclusions and Future Work

• Currently, the MDA starts the development process with
architectural models.

• Since requirements affect the software solutions, the
process should start in a earlier phase.

• The transition from requirement to architectural is
currently manual.

• The SCARP approach enables the possibility to automate
the transformation of software models.

23

Conclusions and Future Work

• The uCat tool successfully supports and automates the approach.

• Two performed validation studies support the viability of both
SCARP and uCat.

• The SCARP process can be extended to address behavioral
aspects, as well as traceability.

• RUS can be improved, taking more advantage from OWL.

• Other domains can be explored.

• The application of formal verification techniques can be explored.

24

Contributions

• A controlled natural language to formalize requirements,
and automatic transformation into OWL.

• A software pattern inference mechanism.

• A systematic requirement to software pattern transition
process.

• A tool supporting the SCARP process.

Publications
• Rui Couto et al. MapIt: A model based pattern recovery tool. In MOMPES 2012.

• Rui Couto et al. A patterns based reverse engineering approach for java source code. In SEW
2012.

• Rui Couto et al. Application of ontologies in identifying requirements patterns in use cases. In
FESCA 2014.

• Rui Couto et al. A study on the viability of formalizing use cases. In QUATIC 2014.

• Rui Couto et al. The Modelery: A collaborative web based repository. In ICCSA 2014.

• Rui Couto et al. The Modelery: a model-based software development repository. In IJWIS 2015.

• Rui Couto et al. Validating an approach to formalize use cases with ontologies. In FESCA 2016.

• Marina Machado et al. Modus: uma metodologia de prototipagem de interfaces baseada em
modelos. In INFORUM 2015.

26

Pattern Based Software
Development

Rui Couto

António Nestor Ribeiro

José Creissac Campos

