
Verifiable Side-Channel Security of Cryptographic
Implementations: Constant-Time MEE-CBC.

José Bacelar Almeida1,2 Manuel Barbosa2,3

Gilles Barthe4 François Dupressoir4

1Universidade do Minho 2HASLab – INESC Tec
3Universidade do Porto 4IMDEA Software Institute

May 25th, 2016 – HASLab InfoBlender
Braga

Breaking that Title Down

Our main practical contribution: A machine-checked proof of
IND$-CPA and INT-PTXT security for x86 code implementing
MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) against some
timing adversaries.

I Why MEE-CBC? Simple crypto, but very difficult to
implement securely.

I Why machine-checked? Necessary to take implementation
details into account, and verify implementations for properties
not easily testable...

I Such as their timing behaviour, which has been exploited in
the past to break MEE-CBC. We show a new attack on AWS
Labs’s implementation of MEE-CBC in s2n.

To achieve this, we present a framework to break such proofs down
into simpler problems.

Breaking that Title Down

Our main practical contribution: A machine-checked proof of
IND$-CPA and INT-PTXT security for x86 code implementing
MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) against some
timing adversaries.

I Why MEE-CBC? Simple crypto, but very difficult to
implement securely.

I Why machine-checked? Necessary to take implementation
details into account, and verify implementations for properties
not easily testable...

I Such as their timing behaviour, which has been exploited in
the past to break MEE-CBC. We show a new attack on AWS
Labs’s implementation of MEE-CBC in s2n.

To achieve this, we present a framework to break such proofs down
into simpler problems.

Breaking that Title Down

Our main practical contribution: A machine-checked proof of
IND$-CPA and INT-PTXT security for x86 code implementing
MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) against some
timing adversaries.

I Why MEE-CBC? Simple crypto, but very difficult to
implement securely.

I Why machine-checked? Necessary to take implementation
details into account, and verify implementations for properties
not easily testable...

I Such as their timing behaviour, which has been exploited in
the past to break MEE-CBC. We show a new attack on AWS
Labs’s implementation of MEE-CBC in s2n.

To achieve this, we present a framework to break such proofs down
into simpler problems.

MEE-CBC: An Overview

IV

B1 B2 … Bn-1 Bn

Pad

MAC

pld

MAC

Pad

C1 C2 … Cn-1 CnIV

XOR XOR XOR XOR XOR

pld

AES AES AES AES AES

hdr seq I Payload is fed through MAC
with additional data;

I Payload and tag are
concatenated and padded to
multiple of block length;

I The result is fed through
AES-CBC.

On the Side-Channel Security of MEE-CBC

When decrypting:

I Length of padding must be known to check the MAC;

I Padding validity needs to be checked.

The problem: AES-CBC provides only CPA security.

I Decrypted ciphertext is sensitive until MAC has been checked.

Countermeasures and attacks:

I Both padding and MAC computation must be performed
always [Vaudenay, 2002];

I Number of compression function queries in MAC computation
must be independent from padding length or validity
[AlFardan and Paterson, 2013];

On the Side-Channel Security of MEE-CBC

When decrypting:

I Length of padding must be known to check the MAC;

I Padding validity needs to be checked.

The problem: AES-CBC provides only CPA security.

I Decrypted ciphertext is sensitive until MAC has been checked.

Countermeasures and attacks:

I Both padding and MAC computation must be performed
always [Vaudenay, 2002];

I Number of compression function queries in MAC computation
must be independent from padding length or validity
[AlFardan and Paterson, 2013];

On the Side-Channel Security of MEE-CBC

When decrypting:

I Length of padding must be known to check the MAC;

I Padding validity needs to be checked.

The problem: AES-CBC provides only CPA security.

I Decrypted ciphertext is sensitive until MAC has been checked.

Countermeasures and attacks:

I Both padding and MAC computation must be performed
always [Vaudenay, 2002];

I Number of compression function queries in MAC computation
must be independent from padding length or validity
[AlFardan and Paterson, 2013];

Countermeasures in Practice

I After Lucky Thirteen [AlFardan and Paterson, 2013], many
switch to “constant-time” programming policy.

No secret-dependent branching (prevents coarse leaks via
overall execution time, some leaks via branch prediction);
No secret-dependent memory accesses (prevents precise
leakage via cache timing).

I In s2n, AWS Labs do limited mitigation in MEE-CBC and hide
whatever leakage is left behind a random delay.

Randomization is insufficient in practice [Albrecht and
Paterson, 2016];
More mitigation was added (and noise increased).

Countermeasures in Practice

I After Lucky Thirteen [AlFardan and Paterson, 2013], many
switch to “constant-time” programming policy.

No secret-dependent branching (prevents coarse leaks via
overall execution time, some leaks via branch prediction);
No secret-dependent memory accesses (prevents precise
leakage via cache timing).

I In s2n, AWS Labs do limited mitigation in MEE-CBC and hide
whatever leakage is left behind a random delay.

Randomization is insufficient in practice [Albrecht and
Paterson, 2016];
More mitigation was added (and noise increased).

HMAC and s2n’s Additional Mitigation

HComp HCompiv

K ⊕ ipad B1 … Bn

HComp…

HCompiv

K ⊕ opad

HComp

hdr lenseq pld 100..

B1

len100..h

tag

hdr lenseq pld 100..2 HComp
on Finalize

1 HComp
on Finalize

I Mitigation aimed at better
balancing number of
compression function calls.

I Finalize call for inner hash
may make 1 or 2
compression queries
depending on length of final
message block;

I 9 bytes are reserved for
SHA-X padding (8 payload
length bytes + 1 0x80 byte).

An Off-by-One Error, a Leak and an Attack

I When deciding whether or not to make a dummy compression
query, s2n checks whether there are 8 bytes left instead of 9.

I This leads to large timing discrepancies for interesting values
of the payload length:

3450	

3550	

3650	

3750	

3850	

Padding	
Length	

25	 50	 75	 100	 125	 150	 175	 200	 225	 250	

Success	

Fail	

I Without randomized delay, this leads to plaintext recovery,
following Lucky Thirteen.

An Off-by-One Error, a Leak and an Attack

I When deciding whether or not to make a dummy compression
query, s2n checks whether there are 8 bytes left instead of 9.

I This leads to large timing discrepancies for interesting values
of the payload length:

3450	

3550	

3650	

3750	

3850	

Padding	
Length	

25	 50	 75	 100	 125	 150	 175	 200	 225	 250	

Success	

Fail	

I Without randomized delay, this leads to plaintext recovery,
following Lucky Thirteen.

End-to-End Verification of Cryptographic Security
with Side-Channels

Cut the problem of proving security of implementation against
side-channel adversary into three tasks:

Black-box specification security usual notion of provable security;

Functional correctness of implementation: the input-output
behaviour of the implementation is the same as that
of the specification;

Leakage simulation for all inputs, the leakage produced during
execution of the algorithm can be efficiently and
perfectly simulated given only public inputs.

Framework Theorem: black-box specification security ∧ functional
correctness ∧ leakage simulation ⇒ side-channel implementation
security.

End-to-End Verification of Cryptographic Security
with Side-Channels

Cut the problem of proving security of implementation against
side-channel adversary into three tasks:

Black-box specification security usual notion of provable security;

Functional correctness of implementation: the input-output
behaviour of the implementation is the same as that
of the specification;

Leakage simulation for all inputs, the leakage produced during
execution of the algorithm can be efficiently and
perfectly simulated given only public inputs.

Framework Theorem: black-box specification security ∧ functional
correctness ∧ leakage simulation ⇒ side-channel implementation
security.

End-to-End Verification of Cryptographic Security
with Side-Channels

Cut the problem of proving security of implementation against
side-channel adversary into three tasks:

Black-box specification security usual notion of provable security;

Functional correctness of implementation: the input-output
behaviour of the implementation is the same as that
of the specification;

Leakage simulation for all inputs, the leakage produced during
execution of the algorithm can be efficiently and
perfectly simulated given only public inputs.

Framework Theorem: black-box specification security ∧ functional
correctness ∧ leakage simulation ⇒ side-channel implementation
security.

End-to-End Verification of Cryptographic Security
with Side-Channels

Cut the problem of proving security of implementation against
side-channel adversary into three tasks:

Black-box specification security usual notion of provable security;

Functional correctness of implementation: the input-output
behaviour of the implementation is the same as that
of the specification;

Leakage simulation for all inputs, the leakage produced during
execution of the algorithm can be efficiently and
perfectly simulated given only public inputs.

Framework Theorem: black-box specification security ∧ functional
correctness ∧ leakage simulation ⇒ side-channel implementation
security.

End-to-End Verification of Cryptographic Security
with Side-Channels

Cut the problem of proving security of implementation against
side-channel adversary into three tasks:

Black-box specification security usual notion of provable security;

Functional correctness of implementation: the input-output
behaviour of the implementation is the same as that
of the specification;

Leakage simulation for all inputs, the leakage produced during
execution of the algorithm can be efficiently and
perfectly simulated given only public inputs.

Framework Theorem: black-box specification security ∧ functional
correctness ∧ leakage simulation ⇒ side-channel implementation
security.

Application to MEE-CBC

I We formalize a black-box security proof in EasyCrypt.
I We prove equivalence of a new C implementation of

MEE-CBC to a functional spec extracted from EasyCrypt.

EasyCrypt specification is generic in block and tag lengths and
(length-regular and invertible) padding function.
We instantiate it with relevant values (and discharge proofs)
before extraction.

I We compile it using CompCert (formally proved C compiler).

I We verify leakage simulation of the compiled code using the
certified constant-time verifier by [Barthe et al., 2014].

Application to MEE-CBC

I We formalize a black-box security proof in EasyCrypt.
I We prove equivalence of a new C implementation of

MEE-CBC to a functional spec extracted from EasyCrypt.

EasyCrypt specification is generic in block and tag lengths and
(length-regular and invertible) padding function.
We instantiate it with relevant values (and discharge proofs)
before extraction.

I We compile it using CompCert (formally proved C compiler).

I We verify leakage simulation of the compiled code using the
certified constant-time verifier by [Barthe et al., 2014].

Application to MEE-CBC

I We formalize a black-box security proof in EasyCrypt.
I We prove equivalence of a new C implementation of

MEE-CBC to a functional spec extracted from EasyCrypt.

EasyCrypt specification is generic in block and tag lengths and
(length-regular and invertible) padding function.
We instantiate it with relevant values (and discharge proofs)
before extraction.

I We compile it using CompCert (formally proved C compiler).

I We verify leakage simulation of the compiled code using the
certified constant-time verifier by [Barthe et al., 2014].

Application to MEE-CBC

I We formalize a black-box security proof in EasyCrypt.
I We prove equivalence of a new C implementation of

MEE-CBC to a functional spec extracted from EasyCrypt.

EasyCrypt specification is generic in block and tag lengths and
(length-regular and invertible) padding function.
We instantiate it with relevant values (and discharge proofs)
before extraction.

I We compile it using CompCert (formally proved C compiler).

I We verify leakage simulation of the compiled code using the
certified constant-time verifier by [Barthe et al., 2014].

Black-Box Specification Security Formally

Game IND$-CPAA
Π ():

b
$← {0, 1}

key
$← Gen()

b′
$← ARoR,Dec()

Return (b′ = b)

proc. RoR(m):

If (b = Ideal)

Then c
$← Enc(m, key)

Else c
$← {0, 1}|m|

Return c

proc. Dec(c):

m← Dec(c, key)
Return ⊥

I We also prove some weak length hiding.

Not shown here: we don’t transfer it to implementation.

Side-Channel Implementation Security Formally

Game M-IND$-CPAAΠ∗,φ(b):

key
$← M(Gen∗) `g

b′
$← ARoR Decrypt(`g)

Return (b′ = b)

proc. RoR(m):

c
$← M(Enc∗,m, key) `e

If (b = Ideal) Then c
$← {0, 1}|m|

Return (c, `e)

proc. Dec(c):

m← M(Dec∗, c, key) `d
Return (⊥, `d)

I Applies to implementations of the primitive in a language L...

I ... whose leaky semantics are animated by a machine M.
I We use the same M as [Barthe et al., 2014]:

language is x86,
semantics are those of CompCert,
leakage trace reveals ordered sequence of branching operations
and memory accesses.

Side-Channel Implementation Security Formally

Game M-IND$-CPAAΠ∗,φ(b):

key
$← M(Gen∗) `g

b′
$← ARoR Decrypt(`g)

Return (b′ = b)

proc. RoR(m):

c
$← M(Enc∗,m, key) `e

If (b = Ideal) Then c
$← {0, 1}|m|

Return (c, `e)

proc. Dec(c):

m← M(Dec∗, c, key) `d
Return (⊥, `d)

I Applies to implementations of the primitive in a language L...

I ... whose leaky semantics are animated by a machine M.
I We use the same M as [Barthe et al., 2014]:

language is x86,
semantics are those of CompCert,
leakage trace reveals ordered sequence of branching operations
and memory accesses.

Side-Channel Implementation Security Formally

Game M-IND$-CPAAΠ∗,φ(b):

key
$← M(Gen∗) `g

b′
$← ARoR Decrypt(`g)

Return (b′ = b)

proc. RoR(m):

c
$← M(Enc∗,m, key) `e

If (b = Ideal) Then c
$← {0, 1}|m|

Return (c, `e)

proc. Dec(c):

m← M(Dec∗, c, key) `d
Return (⊥, `d)

I Applies to implementations of the primitive in a language L...

I ... whose leaky semantics are animated by a machine M.
I We use the same M as [Barthe et al., 2014]:

language is x86,
semantics are those of CompCert,
leakage trace reveals ordered sequence of branching operations
and memory accesses.

Total Functional Correctness Formally

Game CorrAM,Π,Π∗():

bad← false
AEval

Return ¬ bad

proc. Eval(k , i , r):

o ← Π[k](i ; r)
o ′ ←M(Π∗[k], i ; r) `

If o 6= o ′ then bad = true

I Captures perfect (rather than probabilistic) correctness.

Prevents algorithm substitution attacks IF the property can be
checked before running.
Some weakening may be possible if a proof of resilience against
ASA exists on the specification.

I This is trivially implied by standard notions of correctness in
program verification:

Functional correctness; or
When lifted to the compiler: semantic preservation.

Total Functional Correctness Formally

Game CorrAM,Π,Π∗():

bad← false
AEval

Return ¬ bad

proc. Eval(k , i , r):

o ← Π[k](i ; r)
o ′ ←M(Π∗[k], i ; r) `

If o 6= o ′ then bad = true

I Captures perfect (rather than probabilistic) correctness.

Prevents algorithm substitution attacks IF the property can be
checked before running.
Some weakening may be possible if a proof of resilience against
ASA exists on the specification.

I This is trivially implied by standard notions of correctness in
program verification:

Functional correctness; or
When lifted to the compiler: semantic preservation.

Leakage Simulation Formally

Game LeakSimAM,Π∗,Sim():

bad← false
ALeak

Return ¬ bad

proc. Leak(alg, i , r):

o ←M(Π∗[alg], i ; r) `

`′ ← Sim[alg](τalg(i ; r))
If ` 6= `′ then bad = true

I τalg is determined by the black-box security experiment for
each algorithm:

τGen = ∅,
τEnc = {|key|, |m|},
τDec = {|key|, c}.

I Corresponds exactly to the standard language-based security
notion of non-interference.

Easily and efficiently verified using type systems.

I Can be weakened by allowing simulator to use public outputs
while retaining results.

Leakage Simulation Formally

Game LeakSimAM,Π∗,Sim():

bad← false
ALeak

Return ¬ bad

proc. Leak(alg, i , r):

o ←M(Π∗[alg], i ; r) `

`′ ← Sim[alg](τalg(i ; r))
If ` 6= `′ then bad = true

I τalg is determined by the black-box security experiment for
each algorithm:

τGen = ∅,
τEnc = {|key|, |m|},
τDec = {|key|, c}.

I Corresponds exactly to the standard language-based security
notion of non-interference.

Easily and efficiently verified using type systems.

I Can be weakened by allowing simulator to use public outputs
while retaining results.

BAck to application to MEE-CBC

I We formalize a black-box security proof in EasyCrypt.
I We prove equivalence of a new C implementation of

MEE-CBC to a functional spec extracted from EasyCrypt.

EasyCrypt specification is generic in block and tag lengths and
(length-regular and invertible) padding function.
We instantiate it with relevant values (and discharge proofs)
before extraction.

I We compile it using CompCert (formally proved C compiler).

I We verify leakage simulation of the compiled code using the
certified constant-time verifier by [Barthe et al., 2014].

Performance

Implementation Compiler Time
s2n GCC -O2 5µs
OpenSSL GCC -O2 9µs
MEE-CBCC (AES-NI) CompCert? 21µs
MEE-CBCC GCC -O2 25ms
MEE-CBCC GCC -O1 26ms
MEE-CBCx86 CompCert 42ms
MEE-CBCC GCC -O0 99ms

I Time taken to decrypt a 1.5kB TLS record.
I A very large part of the cost is due to constant-time AES.

Vector instructions not supported by CompCert
AES-NI gives reasonable results even with modified CompCert
But not all proofs have been adapted

I Some is due to CompCert (typically ca. 2× w.r.t. GCC -O2).

I A small part is due to constant-time MEE-CBC.

Performance

Implementation Compiler Time
s2n GCC -O2 5µs
OpenSSL GCC -O2 9µs
MEE-CBCC (AES-NI) CompCert? 21µs
MEE-CBCC GCC -O2 25ms
MEE-CBCC GCC -O1 26ms
MEE-CBCx86 CompCert 42ms
MEE-CBCC GCC -O0 99ms

I Time taken to decrypt a 1.5kB TLS record.
I A very large part of the cost is due to constant-time AES.

Vector instructions not supported by CompCert
AES-NI gives reasonable results even with modified CompCert
But not all proofs have been adapted

I Some is due to CompCert (typically ca. 2× w.r.t. GCC -O2).

I A small part is due to constant-time MEE-CBC.

Performance

Implementation Compiler Time
s2n GCC -O2 5µs
OpenSSL GCC -O2 9µs
MEE-CBCC (AES-NI) CompCert? 21µs
MEE-CBCC GCC -O2 25ms
MEE-CBCC GCC -O1 26ms
MEE-CBCx86 CompCert 42ms
MEE-CBCC GCC -O0 99ms

I Time taken to decrypt a 1.5kB TLS record.
I A very large part of the cost is due to constant-time AES.

Vector instructions not supported by CompCert
AES-NI gives reasonable results even with modified CompCert
But not all proofs have been adapted

I Some is due to CompCert (typically ca. 2× w.r.t. GCC -O2).

I A small part is due to constant-time MEE-CBC.

Summary

I Some formal guarantees can be obtained in realistic settings.

I We propose a framework that breaks the problem down into
more manageable parts, essentially by successive refinements.

I There is still a cost to pay for formal guarantees.
I In proof effort:

in practice, most effort expended in top two levels;
twisting the implementation to guarantee leakage simulation
makes it harder to verify functional correctness.

I In performance:

in practice, most of that cost comes from primitive design;
in theory, most of what’s left could be absorbed by proof effort.

I Our framework would support this, among other things.

Summary

I Some formal guarantees can be obtained in realistic settings.

I We propose a framework that breaks the problem down into
more manageable parts, essentially by successive refinements.

I There is still a cost to pay for formal guarantees.
I In proof effort:

in practice, most effort expended in top two levels;
twisting the implementation to guarantee leakage simulation
makes it harder to verify functional correctness.

I In performance:

in practice, most of that cost comes from primitive design;
in theory, most of what’s left could be absorbed by proof effort.

I Our framework would support this, among other things.

Summary

I Some formal guarantees can be obtained in realistic settings.

I We propose a framework that breaks the problem down into
more manageable parts, essentially by successive refinements.

I There is still a cost to pay for formal guarantees.
I In proof effort:

in practice, most effort expended in top two levels;
twisting the implementation to guarantee leakage simulation
makes it harder to verify functional correctness.

I In performance:

in practice, most of that cost comes from primitive design;
in theory, most of what’s left could be absorbed by proof effort.

I Our framework would support this, among other things.

(Some) Advantages of Successive Refinements

I Modular trust:

Trust [Paterson, Ristenpart and Shrimpton, 2011]? Get
black-box LH-AEAD and side-channel INT-CTXT for free on
the compiled code.
Trust the C code? No need to verify its equivalence with the
functional specification.

I Proof Reuse:

Black-box specification security can be used for many
implementations;
C-level equivalence proof is valid (almost) independently of the
compiler;

I Tool (and Language) Independence. Leverage advances and
expertise in each subtask.

[Beringer et al., 2015]: FCF, Verified-C and CompCert to
prove properties of HMAC implementation.
[Bernstein and Schwabe, 2016]: GFVerif for automatic proofs

of correctness for finite field arithmetic implemented in C.

(Some) Advantages of Successive Refinements

I Modular trust:

Trust [Paterson, Ristenpart and Shrimpton, 2011]? Get
black-box LH-AEAD and side-channel INT-CTXT for free on
the compiled code.
Trust the C code? No need to verify its equivalence with the
functional specification.

I Proof Reuse:

Black-box specification security can be used for many
implementations;
C-level equivalence proof is valid (almost) independently of the
compiler;

I Tool (and Language) Independence. Leverage advances and
expertise in each subtask.

[Beringer et al., 2015]: FCF, Verified-C and CompCert to
prove properties of HMAC implementation.
[Bernstein and Schwabe, 2016]: GFVerif for automatic proofs

of correctness for finite field arithmetic implemented in C.

(Some) Advantages of Successive Refinements

I Modular trust:

Trust [Paterson, Ristenpart and Shrimpton, 2011]? Get
black-box LH-AEAD and side-channel INT-CTXT for free on
the compiled code.
Trust the C code? No need to verify its equivalence with the
functional specification.

I Proof Reuse:

Black-box specification security can be used for many
implementations;
C-level equivalence proof is valid (almost) independently of the
compiler;

I Tool (and Language) Independence. Leverage advances and
expertise in each subtask.

[Beringer et al., 2015]: FCF, Verified-C and CompCert to
prove properties of HMAC implementation.
[Bernstein and Schwabe, 2016]: GFVerif for automatic proofs

of correctness for finite field arithmetic implemented in C.

The End: Thank you for your attention!

Questions?

