Formalizing Single-assignment Program
Verification: an Adaptation-complete Approach

Claudio Belo Lourengo Maria Jodo Frade Jorge Sousa Pinto

HASLab/INESC TEC & Universidade do Minho, Portugal

April 6, 2016

@
@)@ HasLap

Context Setting Single-assignment Program Verification Conclusion

Context
Program Verification
e Establishing the correctness of software w.r.t. specifications
e Deductive verification achieves this by using program logics,
relying on user-provided contracts and loop invariants
Trends in modern program verifiers
e Intermediate language tailored for verification
e Single-assignment (SA) form

e Verification condition generator + SMT solver

Gap between program verifiers and theory ®

Context

Setting Single-assignment Program Verification Conclusion

Hoare Logic

e Introduces the notion of Hoare triple

{o} C{y}

e Triples are interpreted based on the standard semantics of
the programming language

= {0} C{¥}

e A proof system for reasoning about program correctness -
system H - sound and (relatively) complete

Fu {o} C{y}

Context Setting Single-assignment Program Verification

Adaptation-completeness

If): {n >0A naux = n} Fact {f = naux!}

then = {n =2} Fact {f = 2!}

Conclusion

Context Setting Single-assignment Program Verification Conclusion

Adaptation-completeness
If ={n>0Any,=n}Fact{f =n,x!'}
then = {n =2} Fact {f = 2!}

Thus one expects the following derivation to be possible

{n >0A Ny, = n} Fact {f = nau><!}

{2 = n}Fact{f =21}

If this is always the case the system is called adaptation-complete

Context Setting Single-assignment Program Verification Conclusion

Hoare logic is not adaptation-complete

The consequence rule of Hoare logic

{o} C{v} . @ = ¢ and

{oyClw}y ™ vy

cannot be applied here:

Context Setting Single-assignment Program Verification Conclusion

Hoare logic is not adaptation-complete

The consequence rule of Hoare logic

{o} C{v} . @ = ¢ and
{oyC{y}y Y=

cannot be applied here:

{nEO/\naUX:n}Fact{f:nauxl}] n=2-—n>0An,,x=n and
{n =2} Fact {f = 21} e npl > =2

Context Setting Single-assignment Program Verification Conclusion

Hoare logic is not adaptation-complete

The consequence rule of Hoare logic

{o} C{v} . @ = ¢ and
{oyC{y}y Y=

cannot be applied here:

{n>0Anu =n}Fact{f =n,!} . n=2—-n>0Anu =n and
{n=2}Fact{f =2} ! f=nyu! — f=2l

In 1998, Kleymann proposed an adaptation-complete inference
system for Hoare Logic

oyl ¥ VZYo[d)(Z.0) =

(conseqk) W C{o} V:([E/)Z’i].([[;]]i)Zb o) = [¥1(21, 7))
U
@)@ HasLab

Context Setting Single-assignment Program Verification Conclusion

Dijkstra's predicate transformers

Commonly used in the generation of verification conditions

The weakest precondition of a program w.r.t. a postcondition is
given by the function wp, where:

wp(skip,v) = ¢
wp(x :=e,¥) = le/x]

wp(Cr; G,) = wp(Cr,wp(Ca, 7))
wp(if b then C; else Cr,v) = (b — wp(G, 1)) A (=b — wp(Cr, 1))
@,
@)@ HasLab

Context Setting Single-assignment Program Verification Conclusion

Exponential explosion - example

Let C, be the program:
if (b1) then skip else skip;

if (b,) then skip else skip;

Context Setting Single-assignment Program Verification Conclusion

Exponential explosion - example

Let C, be the program:

if (b1) then skip else skip;

if (b,) then skip else skip;

The generated weakest preconditions are as follows:

1. wp(Ci, %) = (b1 = ¥) A (—b1 — ¥)

Context Setting Single-assignment Program Verification Conclusion

Exponential explosion - example

Let C, be the program:

if (b1) then skip else skip;
if (b,) then skip else skip;

The generated weakest preconditions are as follows:

1. wp(Ci, %) = (b1 = ¥) A (—b1 — ¥)

2. wp(Ca,) = (b2 —= (b1 =) A(mb1 —) A(—b2 = (b1 —) A(—by — ¥))

Context Setting Single-assignment Program Verification Conclusion

Exponential explosion - example

Let C, be the program:
if (b1) then skip else skip;

if (b,) then skip else skip;

The generated weakest preconditions are as follows:
1. wp(Cr1,¥) = (b1 = ¥) A (=b1 — %)

2. Wp(Cg,’l/}) = (bz — (b]_ — 1/1) /\(ﬁbl — ’LZJ))/\ (ﬁbz — (b1 — ’LZJ)/\ (ﬁb]_ — ’lL‘))

(133 — (b2 — (b1 — ¥) A (mby — 1)) A (mba — (b1 —) A (mb1 — ¥)))
A (mb3 = (b2 = (b1 = ¥) A (mb1 = ¥)) A (mb2 = (b1 — ¥) A (mb1 — 7))

Context Setting Single-assignment Program Verification Conclusion
Single-assignment programs

The exponential explosion can be avoided if programs are converted
first into passive-form (similar to single-assignment programs)
[Flanagan & Saxe, 2001]

Context Setting Single-assignment Program Verification Conclusion
Single-assignment programs

The exponential explosion can be avoided if programs are converted
first into passive-form (similar to single-assignment programs)
[Flanagan & Saxe, 2001]

Let C°* be the program

if(xo < 0) then

X1 = —Xo
else
X1 ‘= Xo

Calculating the WP is now direct

wp (€ x1 >0) = ((x0<0AxX1=—x)V(=(x0<0)Axi=x0))

= x>0 9
@)@ HasLab

Context

Contributions

We formalize and prove a verification technique based on the
translation of programs into a single-assignment intermediate form:

e a novel notion of annotated SA programs

e a translation of While programs (resp. Hoare triples) into SA
programs (resp. SA Hoare triples)

e alogic and an efficient VCGen to reason about SA programs
e an adaptation-complete extension of the logic

helping to bridge the gap between program verifiers and theoretical
foundations ®

Context Setting Single-assignment Program Verification Conclusion

Setting

While programs
Comm> C == skip | x:=e | C; C| if bthen Celse C

| while bdo C

Context Setting Single-assignment Program Verification Conclusion

Setting
While programs
Comm> C == skip | x:=e | C; C| if bthen Celse C
| while bdo C

Annotated while programs
AComm > C == skip | x:=e | C; C| if bthen Celse C

| while bdo {6} C

Erasing annotations
|.] : AComm — Comm

Context

Setting Single-assignment Program Verification Conclusion

Goal directed logic - system Hg

(w) (OFskip (0} TV () (@b ximequy 0 Y
{¢t G {0} {0} G{v} {onb} Ce{y} {oAn-b}Cr{y}
(seq) {6} Ci; G{y} (if) {¢}if bthen C; else Cr {1}
{0 A b} C{0} . ¢—0 and

(whie) {} while b do {8} C (¢} = OA—b—1

e Hg is shown to be sound w.r.t. system H

e A program C is said to be correctly annotated w.r.t. (¢,1),

if - C| {} implies g {¢} C ®
H {d)} L J {¢} p H {(Z)} {¢} .Y'.HASLab

11/23

Context

Single-assignment Program Verification

Setting

Factorial example

{nZO/\naux:n}
f=1:
i=1;
while i < ndo{f=(—1)!Ai<n+1Any,=n}

{
fi="Ffxi;

i=i+1

{f = naux!'}

Conclusion

Context

while /

{

Single-assignment Program Verification

Setting

Factorial example

ndo{f=((—-1)!'Ai<n+1Anuux=n}

=f %1,

=i+1

Conclusion

Context Setting Single-assignment Program Verification Conclusion

Factorial example

while (i < np) do{h = (o —1)! Aip < ng + 1 A Nayxy = No}

{

fri=fxip;
3:=ih+1
u
}
@,
@)@ HasLab

Context Setting Single-assignment Program Verification Conclusion

lterating single-assignment language

AComm® > C u=skip | x:=e | C; C| if bthen Celse C
| for (Z,b,U)do {0} C

Restrictions on the use of variables imposed
e x:=e € AComm* only if x ¢ Vars(e)

e (;; G € AComm® only if G, C; € AComm*®® and
Vars(Cy) N Asgn(G) = 0

W : AComm* — AComm @

Context Setting Single-assignment Program Verification Conclusion

Factorial example - single-assignment

h=1;
nh=1;
for (Z,i» < no, U) do{
fb=(—1)!Ai2<ng+1 A Naux, =no}
{

3:=ih+1

Context Setting Single-assignment Program Verification Conclusion

Factorial example - single-assignment

h=1;
nh=1;
for ({i:=1i1; h:=h},i2 <no,{ir:=i3; :=f})do{
fr=(ir— 1) A <no+1 A Ny — no}
{
f3:=hHhx*ip;
3:=ih+1

Context Setting Single-assignment Program Verification Conclusion

Factorial example - single-assignment

{no > 0N naux, = no}

f1:=1;

h:=1;

for ({iz = il; f2 = ﬂ}, i2 < no,{ig = i3; f2 = f:),}) dO{
f2:(i2—1)!/\i2§n0+1}

{
fi=rfx*ip,;
i3 =10h+1
}
{f2 = nauxo!}
U
@)@ HasLab

Context

Setting Single-assignment Program Verification Conclusion

SA translation

o We let ¢#C denote Asgn(C) N FV(¢) =0
e We call {¢} C{¢} an SA triple if C € AComm** and ¢p#C

e A function
T : Assert x AComm x Assert — Assert x AComm* x Assert

is said to be a single-assignment translation if when

T (o, C, 1) = (¢, C",9") we have ¢'#C’, and:
LoIf = {¢} IW(C)] {¢'}, then = {¢} [C] {+}
2. If Fug {¢} C {v}, then g {¢'}W(C') {2}

Context Setting Single-assignment Program Verification Conclusion

Inference system for annotated SA programs - system Hsa

(skip) {}skip{6 AT} (assign) {@}x = e{dpAx=e}

{p} G{d AP} {dAY} G{d Ath1 A2}
(seq) {9} Gii G{d A1 A2}

{onb} Ce{onbAY} {dA—b} G {dA—bAYs}
(if) {o}if bthen C else Cr{p A ((bA)V (=bAr))}

{OAB}C{ONADbAY} . ¢ —Z(0) and
(for) {¢}for (Z,b,Ud) do {0} C{6AOA—D} ' OAbAD - U®B)

e Hsa is shown to be sound w.r.t H for SA triples

e Hsa is shown to be complete w.r.t. Hg for SA triples #-.HASLab

19/23

Context Setting Single-assignment Program Verification Conclusion

Adaptation-complete system - system Hsa™

Let Hsa™ be the system Hsa with the addition of the following rule

{¢} C{o A} if o#C
{#YC{d N(VZ ¢ —)} F=FV()\(FV(#')UVars(C))

Hsa™ is an adaptation-complete system for SA programs

Context Setting Single-assignment Program Verification Conclusion

Adaptation-complete system - system Hsa™

Let Hsa™ be the system Hsa with the addition of the following rule

{¢} C{o A} if o#C
{#YC{d N(VZ ¢ —)} F=FV($)\(FV(#')OVars(C))

Hsa™ is an adaptation-complete system for SA programs

In this system the following derivation is possible

{n>0Ans, =n}Fact®{n>0A naux = nAfy = nal}
{n=2}Fact®{n=2A(Vnaux.-n > 0A naux = n— fr = na)}

and En=2A(Vnaux.n>0Anaux =n— o = naue!) — F =21

Context Setting Single-assignment Program Verification Conclusion

Verification technique

{¢'} C'{v'}
N

VCG(¢', C')

l

v, T

Context Setting Single-assignment Program Verification Conclusion

{¢'} C'{v'}
N

Verification technique

VCG(¢,

)

l

7

/

=T ¢ Ay =y

r

Context Setting Single-assignment Program Verification Conclusion

Verification technique
{0} C{v}
}

T(QS, C7 /l/})
'
{¢'} C"{y'}
N\

VCG(¢', C')

l

v, T

/
E T ¢ Ay =y
i

yes/no O1® Hsian

Context Setting Single-assignment Program Verification Conclusion

Verification technique

{o} C{¥}
l
T(9, C, %)
J Soundness
{¢'} C"{y'} If =T, ¢' Ay — 4 then = {¢} [C] {4}
\
VCG(¢/, C')
l Completeness
If={¢} [C]{¥} and Cis
v. T correctly-annotated w.r.t. (¢,1), then
/ ST 6 Ay

ETT, ¢ Ay = o
l

es/no W.r
y @)@ HasLab

Conclusion
e Our work proposes a theoretical foundation for program
verifiers based on intermediate single-assignment form
e Hsa logic for SA programs with annotated loops

e proved sound and complete
e admits adaptation-complete extension

o allows for the generation of linear-sized VCs

e As future work we intend to use this formulation to reason
about bounded verification of programs

Conclusion

Formalizing Single-assignment Program
Verification: an Adaptation-complete Approach

Claudio Belo Lourengo Maria Jodo Frade Jorge Sousa Pinto

HASLab/INESC TEC & Universidade do Minho, Portugal

April 6, 2016
@
@)@ HasLab
@)@ HasLab

Hoare calculus - system H

(skip) {¢} Sklp {¢} (assign) {w[e/x]} X:=e€ {1/)}

{o} G {6} {6} G{v} {onb}G{y} {oA-b}Cr{y}
(seq) {9} C1; G2 {y} (if) {#}if b then C; else Cr {1}
{0 A b} C {0} {¢} C{¥} if ¢ — ¢ and

(while) {9} while b do C {9 A —|b} (conseq) {d)/} C {’l,[)/} I ¢ — 1//

H is shown to be sound and complete (in the sense of Cook) w.r.t
the semantics of Hoare triples

	Setting
	Single-assignment Program Verification
	Conclusion
	Appendix

