Towards a linear algebra semantics for SQL

J．N．Oliveira
InfoBlender Seminar Series 2016

February 17th， 2016

INESC TEC \＆University of Minho
Grant FP7－ICT 619606

Context

About project LeanBigData:
" (...) queries [identifying] facts of interest take hours, days, or weeks, whereas business processes demand today shorter cycles.

Project motto: bend big data!
However - what are we actually leaning?

What is, after all, a query?

Back to basics

There are jobs:
create table jobs (
j _code char (15) not null,
j _desc char (50),
j _salary decimal $(15,2)$ not null);

Back to basics

There are jobs:

```
create table jobs (
    j_code char (15) not null,
    j_desc char (50),
    j_salary decimal (15, 2) not null);
```

j_code	j_desc	j_salary
Pr	Programmer	1000
SA	System Analyst	1100
GL	Group Leader	1333

Back to basics

There are employees:

create table empl (
e_id	integer not null,
e_job	char (15) not null,
e_name	char (15),
e_branch	char (15) not null,
e_country char (15) not null);	

Back to basics

There are employees:

```
create table empl (
    e_id integer not null,
    e_job char (15) not null,
    e_name char (15),
    e_branch char (15) not null,
    e_country char (15) not null);
```

e_id	e_job	e_name	e_branch	e_country
1	$P r$	Mary	Mobile	UK
2	$P r$	John	Web	UK
3	$G L$	Charles	Mobile	UK
4	SA	Ana	Web	$P T$
5	Pr	Manuel	Web	$P T$

Query

Monthly salary total per country / branch:

```
select e_country, e_branch, sum (j_salary)
    from empl, jobs
    where \(j\) _code \(=e_{-} j o b\)
    group by e_country, e_branch
    order by e_country;
```

sqlite3:
PT|Web|2100
UK|Mobile|2333
UK|Web|1000

Query

Impact of

```
insert into "jobs" values ('SA', 'System Admin', 1000);
```

that is, j _code no longer a key.
sqlite3:

$$
\begin{aligned}
& \text { PT|Web|3100 } \\
& \text { UK|Mobile|2333 } \\
& \text { UK|Web|1000 }
\end{aligned}
$$

Fine - so $S A$ is taken as a kind of "multi-job".
But - where are these semantics specified?

Standard semantics

Given in English:
"The result of evaluating a query-specification can be explained in terms of a multi-step algorithm. The order of [the 7] steps in this algorithm follows the mandatory order of the clauses (FROM, WHERE, and so on) of the SELECT statement"

Cf. pages 71-73 of
X/Open CAE Specification Data Management: Structured Query Language (SQL) Version 2 March 1996, X/Open Company Limited

7 steps

1. For each table-reference that is a joined-table, conceptually join the tables (...) to form a single table
2. Form a Cartesian product of all the table-references (...)
3. Eliminate all rows that do not satisfy the search-condition in the WHERE clause.
4. Arrange the resulting rows into groups (...)

- If there is a GROUP BY clause specifying grouping columns, then form groups so that all rows within each group have equal values for the grouping columns (...)

5. If there is a HAVING clause, eliminate all groups that do not satisfy its search- condition (...)
6. Generate result rows based on the result columns specified by the select-list (...)
7. In the case of SELECT DISTINCT, eliminate duplicate rows from the result (...)

Background

Join operator - ok, well defined in Codd's relation algebra.
However,
[...] relational DBMS were never intended to provide the very powerful functions for data synthesis, analysis and consolidation that is being defined as multi-dimensional data analysis.
E.F.Codd ${ }^{1}$
[...] expressing roll-up, and cross-tab queries with conventional SQL is daunting. [...] GROUP BY is an unusual relational operator [...]
J. Gray et al ${ }^{2}$

[^0]
Background

Do You Really Understand SQL＇s GROUP BY and HAVING clauses？

ज⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌灬丶
There are some things in SQL that we simply take for granted without thinking about them properly．

One of these things are the GROUP BY and the less popular HAVING clauses．

```
[ http://blog.jooq.org/2014/12/04/
do-you-really-understand-sqls-group-by-and-having-clauses/ ]
```


Background

Why these shortcomings / questions ?

While relation algebra "à la Codd" [works] well for qualitative data science [it is] rather clumsy in handling the quantitative side [..] we propose to solve this problem by suggesting linear algebra (LA) as an alternative suiting both sides [...]

H. Macedo, J. Oliveira ${ }^{3}$

Linear algebra ...

${ }^{3}$ A linear algebra approach to OLAP (2015)

Formalizing SQL data aggregation

VLDB'87, among other research:

SQL Query	Calculus Expression
SELECT f_{1}, \ldots, f_{t} FROM $r_{1}\left(v_{1}\right), \ldots, r_{n}\left(v_{n}\right)$ WHERE P_{w}	$\left(f_{1}^{\prime}, \ldots, f_{l}^{\prime}\right)\left(*: r_{1}\left(v_{1}\right), \ldots, r_{n}\left(v_{n}\right): P_{w}\right)$
SELECT $t_{1}, \ldots, t_{l}(\neq f)$ FROM $r_{1}\left(v_{1}\right), \ldots, r_{n}\left(v_{n}\right)$ WHERE P_{w}	$\left(t_{1}, \ldots, t_{l}\right): r_{1}\left(v_{1}\right), \ldots, r_{n}\left(v_{n}\right): P_{w}$
SELECT t_{1}, \ldots, t_{l} FROM $r_{1}\left(v_{1}\right), \ldots, r_{n}\left(v_{n}\right)$ WHERE P_{w} GROUP BY $v_{i_{1}}\left[\boldsymbol{A}_{i_{1}}\right], \ldots, v_{i_{k}}\left[\boldsymbol{A}_{i_{k}}\right]$ HAVING P_{h}	$\begin{gathered} \left(t_{1}^{\prime}, \ldots, t_{l}^{\prime}\right): \alpha(v): P_{h}^{\prime} \\ \alpha=\left(\phi_{<\left(A_{i_{1}}, \ldots, A_{i_{k}}\right),\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)>}\left(*: r_{1}\left(v_{1}\right), \ldots, r_{n}\left(v_{n}\right): P_{w}\right)\right) ; \\ \left(t_{1}^{\prime}, \ldots, t_{l}^{\prime}, P_{h}^{\prime}\right)=\left(t_{1}, \ldots, t_{l}, P_{h}\right)\left[f_{i} / v[k+i], v_{i_{j}}\left[A_{i},\right] / v[j]\right] ; \\ \left(f_{1}, \ldots, f_{m} \text { aggregate functions in } t_{1}, \ldots, t_{l}, P_{h}\right) \end{gathered}$

G. Bultzingsloewen ${ }^{4}$
${ }^{4}$ Translating and optimizing SQL queries having aggregates (1987)

"Star" diagrams

Entities (cf. tables) surrounded (placed at the center of) by their attributes:

Entities marked in bold.
Attribute types made explicit, linking entities to each other.

"Star" diagrams

What is the (formal) meaning of the arrows in the diagram?
There is one arrow per attribute - column in the database table.
Assigning meanings to the arrows amounts to formalizing a columnar approach to SQL. ${ }^{5}$

Let us do so using the linear algebra of programming (LAoP). ${ }^{6}$

[^1]
Formal star-diagram in (typed) LAoP

Legend:

- Types:

K - Job code
C - Country
B - Branch
\#e - empl record nrs
\#j - jobs record nrs

- Dimensions:
- branch
- code
- country
- job
- Measures:
- salary

Dimensions

HASLab
Dimension attribute columns are captured by bitmap matrices:

$e_{\text {branch }}$	1	2	3	4	5
Mobile	1	0	1	0	0
Web	0	1	0	1	1
$e_{j o b}$	1	2	3	4	5
GL	0	0	1	0	0
Pr	1	1	0	0	1
SA	0	0	0	1	0
$e_{\text {country }}$	1	2	3	4	5
PT	0	0	0	1	1
UK	1	1	1	0	0

$j_{\text {desc }}$	1	2	3
Group Leader	0	0	1
Programmer	1	0	0
System Analyst	0	1	0

jcode	1	2	3
GL	0	0	1
Pr	1	0	0
SA	0	1	0

Meaning of bitmap matrix t_{d}, for d a dimension of table t :

$$
\begin{equation*}
v t_{d} i=1 \Leftrightarrow t[i] . d=v \tag{1}
\end{equation*}
$$

Measures

However - main difference wrt. relation algebra - we won't build

$j_{\text {salary }}$	1	2	3
1000	1	0	0
1100	0	1	0
1333	0	0	1

but rather the row vector $j^{\text {salary }}: \# j \rightarrow 1$ which "internalizes" the quantitative information:

$$
\begin{array}{llll}
j^{\text {salary }} & 1 & 2 & 3 \\
\hline 1 & 1000 & 1100 & 1333
\end{array}
$$

Summary:
Measures are vectors, dimensions are matrices.

Linear algebra

Matrix multiplication, given matrices $B \longleftarrow \frac{M}{\longleftarrow} C \stackrel{N}{\longleftarrow} A$:

$$
\begin{equation*}
b(M \cdot N) a=\left\langle\sum c: \because(b M c) \times(c N a)\right\rangle \tag{2}
\end{equation*}
$$

Matrix converse:

$$
\begin{equation*}
c M^{\circ} b=b M c \tag{3}
\end{equation*}
$$

Functions are (special cases of Boolean) matrices:

$$
y f x=\left\{\begin{array}{l}
1 \text { if } y=f x \tag{4}\\
0 \text { otherwise }
\end{array}\right.
$$

Examples

HASLab
imescrice

$1 \stackrel{j^{\text {salary }}}{\rightleftarrows} \# j \stackrel{j_{\text {code }}^{\circ}}{c} K$	Pr	$S A$	$G L$
1	1000	1100	1333

Calculation:

$$
\left.\begin{array}{cc}
& \begin{array}{c}
1\left(j^{\text {salary }} \cdot j_{\text {code }}^{\circ}\right) k \\
\Leftrightarrow
\end{array} \\
& \{\text { multiplication }(2)\} \\
\Leftrightarrow & \left\langle\sum y::\left(1 j^{\text {salary }} y\right) \times\left(y j_{\text {code }}^{\circ} k\right)\right\rangle \\
& \left\{\text { converse }(3) ; \text { vector } j^{\text {salary }}\right\}
\end{array}\right\}
$$

Examples

HASLab
imescrice

In case of the addition of insert into "jobs" values ('SA', 'System Admin', 1000);
we get non-injective bitmap

$j_{\text {code }}$	1	2	3	4
$G L$	0	0	1	0
$P r$	1	0	0	0
$S A$	0	1	0	1

and

jsalary	1	2	3	4
1	1000	1100	1333	1000

Therefore:

Pointwise LAoP calculus

Quantifier notation follows the Eindhoven style,

$$
\left\langle\sum x: R: T\right\rangle
$$

where R is a predicate (range) and T is a numeric term.
In case $T=B \times M$ where Boolean $B=\llbracket P \rrbracket$ encodes predicate P, we have the trading rule:

$$
\begin{equation*}
\left\langle\sum x: R: \llbracket P \rrbracket \times M\right\rangle=\left\langle\sum x: R \wedge P: M\right\rangle \tag{5}
\end{equation*}
$$

Thus

$$
\begin{align*}
y(f \cdot N) x & =\left\langle\sum z: y=f z: z N x\right\rangle \tag{6}\\
y\left(g^{\circ} \cdot N \cdot f\right) x & =(g y) N(f x) \tag{7}
\end{align*}
$$

hold.

Pointwise LAoP calculus

Given a binary predicate $p: B \times A \rightarrow$ Bool, we denote by $\llbracket p \rrbracket: B \leftarrow A$ the Boolean matrix which encodes p, that is,

$$
\begin{equation*}
b \llbracket p \rrbracket a=\text { if } p(b, a) \text { then } 1 \text { else } 0 \tag{8}
\end{equation*}
$$

In case of a unary predicate $q: A \rightarrow B o o l, \llbracket q \rrbracket: 1 \leftarrow A$ is the Boolean vector such that:

$$
\begin{equation*}
1 \llbracket q \rrbracket a=\llbracket q \rrbracket[a]=\text { if } q a \text { then } 1 \text { else } 0 \tag{9}
\end{equation*}
$$

Joins and tabulations

SQL querying amounts to following paths in star diagrams.
The meaning of a path is obtained by composing (multiplying) the matrices involved.

Two particular such compositions deserve special reference, as they correspond to well-known operations in data processing:

- Join:
- Tabulation:

$$
\begin{aligned}
& X=t_{B}^{\circ} \cdot M \cdot p_{B} \\
& Y=p_{B} \cdot N \cdot p_{A}^{\circ}
\end{aligned}
$$

M and N are whatever matrices of their type.

Simple Examples

Equi-join ($M=i d$):

$j_{\text {code }}^{\circ} \cdot e_{\text {job }}$	1	2	3	4	5
1	1	1	0	0	1
2	0	0	0	1	0
3	0	0	1	0	0

Pointwise meaning: $\quad j[y] . \operatorname{code}=e[x] . j o b$

Counting tabulation ($N=i d$):

$e_{\text {country }} \cdot e_{\text {branch }}^{\circ}$	Mobile	Web
$P T$	0	2
$U K$	2	1

Pointwise meaning: $\left\langle\sum k: y=e[k]\right.$.country $\wedge x=e[k]$.branch : 1\rangle recall (6), for y a country, x a branch.

Columnar joins

HASLab imescrite

Excerpt from Abadi et al ${ }^{7}$
For example, the figure below shows the results of a join of a column of size 5 with a column of size 4:

$$
\left.\begin{array}{|l|}
\hline \frac{42}{36} \\
\hline \frac{42}{44} \\
\hline \frac{38}{} \\
\hline
\end{array} \bowtie \begin{array}{|l|l|}
\hline \frac{38}{42} \\
\hline \frac{1}{46} \\
\hline 36 \\
\hline
\end{array} \right\rvert\,=\begin{array}{|l|}
\hline \frac{2}{2} \\
\hline \frac{3}{5} \\
\hline \frac{4}{2} \\
\hline \frac{1}{1} \\
\hline
\end{array}
$$

shows columnar-join "isomorphic" to our matrix joins:

	1	2	3	4	5
1	0	0	0	0	1
2	1	0	1	0	0
3	0	0	0	0	0
4	0	1	0	0	0

${ }^{7}$ The Design (..) of Modern Column-Oriented Database Systems (2012).

Back to the starting SQL query

Minimal diagram accommodating query:

Clearly,
group by \Rightarrow tabulation Q where \Rightarrow join J

Back to the starting SQL query

How do salaries get involved? We need a direct path from employees
select
e_branch,
e_country,
sum (j_salary)
from empl, jobs
where j _code $=e_{-} j o b$
group by
e_country,
e_branch
order by
e_country;
to (their) salaries,

involving the where-clause join:

$$
\begin{equation*}
v=j^{\text {salary }} \cdot j_{\text {code }}^{\circ} \cdot e_{j o b} \tag{10}
\end{equation*}
$$

Query $=$ Group by + Join

HASLab

The group by clause calls for a tabulation - but, how does vector

$j^{\text {salary }} \cdot j_{\text {code }}^{\circ} \cdot e_{\text {job }}$	1	2	3	4	5
1	1000	1000	1333	1100	1000

get into the place of N in the generic scheme?
Easy: every vector v can be turned into a diagonal matrix, e.g.

$v \nabla$ id	1	2	3	4	5
1	1000	0	0	0	0
2	0	1000	0	0	0
3	0	0	1333	0	0
4	0	0	0	1100	0
5	0	0	0	0	1000

and vice versa.

Khatri-Rao product

This diagonalization resorts to another LA operator, termed Khatri-Rao product ($M \nabla N$) defined by

$$
\begin{equation*}
(b, c)(M \nabla N) a=(b M a) \times(c N a) \tag{11}
\end{equation*}
$$

Then:

$$
\begin{array}{lc}
& b(v \nabla i d) c=v[c] \times(b \text { id } c) \\
\Leftrightarrow & \{\text { Khatri-Rao }(11) ; \text { function id }\} \\
& b(v \nabla i d) c=v[c] \times(b=c) \\
\Leftrightarrow & \{\text { pointwise LAoP }(8)\} \\
& b(v \vee i d) c=\text { if } b=c \text { then } v[c] \text { else } 0
\end{array}
$$

i.e. non-zeros can only be found in the diagonal.

Linear algebra

HASLab
Property of diagonal matrices:

$$
\begin{equation*}
(v \nabla i d) \cdot(u \nabla i d)=(v \times u) \nabla i d \tag{12}
\end{equation*}
$$

where $M \times N$ is the Hadamard product:

$$
\begin{equation*}
b(M \times N) a=(b M a) \times(b N a) \tag{13}
\end{equation*}
$$

Moreover, for f a function, rule

$$
\begin{equation*}
f \nabla v=f \cdot(v \nabla i d) \tag{14}
\end{equation*}
$$

is easy to derive:

$$
\begin{array}{lc}
& b(f \cdot(v \nabla i d)) a \\
\Leftrightarrow & \{\text { composition; Khatri-Rao }\} \\
& \left\langle\sum c::(b f c) \times(v[a] \times(c \text { id } a))\right\rangle \\
\Leftrightarrow & \left\{\text { trading }(5) ; \text { cancel } \sum \text { cf. } c=a\right\} \\
& (b f a) \times v[a] \\
\Leftrightarrow & \{\text { Khatri-Rao \} } \\
& b(f \nabla v) a
\end{array}
$$

Query $=$ Group by + Join

Query:

Diagram:

```
select
    e_branch,
    e_country,
    sum (j_salary)
    from empl, jobs
        where j_code = e_job
    group by
        e_country,
        e_branch
    order by
        e_country;
```

LA semantics:

$$
\begin{equation*}
Q=e_{\text {country }} \cdot(v \nabla i d) \cdot e_{\text {branch }}^{\circ} \tag{15}
\end{equation*}
$$

where $v=j^{\text {salary }} \cdot j_{c o d e}^{\circ} \cdot e_{j o b}$

Pointwise semantics

Of vector v first:

$$
\begin{aligned}
& v[k] \\
& =\{\text { definition (10) \} } \\
& 1\left(j^{\text {salary }} \cdot j_{\text {code }}^{\circ} \cdot e_{j o b}\right) k \\
& =\{\text { matrix multiplication (2) \} } \\
& \left\langle\sum i::\left(1 j^{\text {salary }} i\right) \times\left(i\left(j_{\text {code }}^{\circ} \cdot e_{j o b}\right) k\right)\right\rangle \\
& =\quad\{\text { trading rules (7) and (5) \} } \\
& \left\langle\sum i: j_{\text {code }} i=e_{j o b} k:\left(1 j^{\text {salary }} i\right)\right\rangle \\
& =\quad\{\text { pointwise notation conventions }\} \\
& \left\langle\sum i: j[i] . \text { code }=e[k] . j o b: j[i] \text {.salary }\right\rangle
\end{aligned}
$$

Pointwise semantics

Of the whole query:

$$
\begin{aligned}
& c Q b \\
= & \{\text { definition (15) ; diagonal } v \nabla i d\} \\
& \left\langle\sum k::\left(c e_{\text {country }} k\right) \times(k(v \nabla i d) k) \times\left(k e_{\text {branch }}^{\circ} b\right)\right\rangle \\
\Leftrightarrow & \quad\{\text { trading rule (5) }\} \\
& c Q b=\left\langle\sum k: c=e_{\text {country }} k \wedge b=e_{\text {branch }} k: v[k]\right\rangle
\end{aligned}
$$

Putting both together:

$$
\begin{aligned}
& \text { query }(c, b)=\sum k, i: \\
& \quad c=e[k] . \text { country } \wedge b=e[k] . b r a n c h ~ \wedge j[i] . c o d e=e[k] . j o b: \\
& \quad j[i] . \text { salary }
\end{aligned}
$$

Rest point :-)

Clearly:

- SQL is a path-language
- SQL is pointfree - see how the surface language hides the double-cursor k, i pointwise for-loop.

SQL tries to be as pointfree as natural language is so, compare "dogs are mammals"
to the (boring!)

$$
\langle\forall d: d \in \operatorname{Dog}: d \in \text { Mammal }\rangle
$$

We don't speak using cursors!

Simplification

LA script (15)

$$
Q=e_{\text {country }} \cdot(v \nabla i d) \cdot e_{\text {branch }}^{\circ} \text { where } v=j^{\text {salary }} \cdot j_{\text {code }}^{\circ} \cdot e_{j o b}
$$

can be simplified into

$$
Q=\left(e_{\text {country }}{ }^{\nabla} v\right) \cdot e_{\text {branch }}^{\circ}
$$

thanks to Khatri-Rao law (14). Note how matrix

$e_{\text {country }}{ }^{\nabla} v$	1	2	3	4	5
$P T$	0	0	0	1100	1000
$U K$	1000	1000	1333	0	0

nicely combines qualitative (functional) with quantitative information.

LA script for TPC-H query3

query3 =
select
I_orderkey, o_orderdate, o_shippriority;
sum (I_extendedprice $\left.*\left(1-I_{\text {_discount }}\right)\right)$ as revenue
from
orders, customer, lineitem
where
c_mktsegment $=$ ' MACHINERY ${ }^{\prime}$
and c_custkey $=$ o_custkey
and I_orderkey = o_orderkey
and o_orderdate < date '1995-03-10'
and I_shipdate $>$ date '1995-03-10'
group by
l_orderkey, o_orderdate, o_shippriority
order by
revenue desc, o_orderdate;

Diagram for TPC-H query3

"Big-plan" tabulation again dictated by the group by clause:

$$
Q=K \stackrel{l_{\text {orderkey }}}{\leftarrow} \# I \stackrel{X}{\leftarrow} \# 0 \stackrel{\left(o_{\text {shippriority }}{ }^{\nabla} o_{\text {shipdate }}\right)^{\circ}}{\leftarrow} P \times D
$$

LA semantics for TPC-H query3

Data aggregation is performed over a derived vector

$$
\begin{equation*}
\text { revenue }=l_{\text {extendedprice }} \times\left(!-I_{\text {discount }}\right) \tag{16}
\end{equation*}
$$

where !: $\# I \rightarrow 1$ is the unique (constant) function of its type - a row vector wholly filled with ones.

We move on:

LA semantics for TPC-H query3

As expected, the link Y between the two tables is the join in the where clause:

LA semantics for TPC-H query3

Moving on, clauses

```
o_orderdate < date '1995-03-10'
and l_shipdate > date '1995-03-10'
```

convert to vectors $v: \# o \rightarrow 1$ and $u: \# I \rightarrow 1$ defined by

$$
\begin{aligned}
& v[i]=\llbracket o[i] . \text { orderdate }<' 1995-03-10^{\prime} \rrbracket \\
& u[k]=\llbracket[k] . \text { shipdate }>\prime 1995-03-10^{\prime} \rrbracket
\end{aligned}
$$

recall (9).

LA semantics for TPC-H query3

Altogether, thus far:

$$
\begin{aligned}
& P \times D \\
& \left(o_{\text {shippriority }}{ }^{\nabla} o_{\text {shipdate }}\right)^{\circ} \downarrow \\
& \# 0<v^{\nabla} \text { id } \# \\
& \# 1 \stackrel{\left(I_{\text {orderkey }}\right)^{\circ}}{\rightleftarrows} \stackrel{\text { O orderkey }^{K}}{K} \\
& \begin{array}{l}
\downarrow \text { re } \\
\# 1
\end{array} \\
& \begin{array}{r}
I_{\text {orderkey }} \downarrow \\
K
\end{array}
\end{aligned}
$$

where $v[i]=\llbracket o[i]$. orderdate $<$ '1995-03-10' \rrbracket and $u[k]=\llbracket l[k]$.shipdate $>{ }^{\prime} 1995-03-10^{\prime} \rrbracket$

LA semantics for TPC-H query 3

Finally, clauses
c_mktsegment = 'MACHINERY' and c_custkey = o_custkey
amount to Boolean path (vector)
which counts how many customers exhibit the specified market segment:

$$
\begin{align*}
& z[k]= \\
& \quad\left\langle\sum i: c[i] . c u s t k e y=o[k] . c u s t k e y \wedge c[i] . m k t \text { segment }=\right.\text { MACHINERY: }
\end{align*}
$$

Query final path

Simplification of ("water fall") path

Thanks to LA laws:

$$
\begin{aligned}
& \text { Q3 }=
\end{aligned}
$$

Notice the same overall pattern: a join inside a tabulation.
Other simplifications possible, likely changing performance - in what sense?

Divide and conquer

Block linear algebra enables distributed evaluation of query paths by "divide \& conquer" laws for all operators involved, cf.

$$
\begin{align*}
& {[A \mid B] \cdot\left[\frac{C}{D}\right]=A \cdot C+B \cdot D} \tag{17}\\
& {\left[\frac{A}{B}\right]^{\circ}=\left[A^{\circ} \mid B^{\circ}\right]} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
{[A \mid B] \vee[C \mid D] } & =[A \vee C \mid B \vee D] \tag{19}\\
{[A \mid B] \times[C \mid D] } & =[A \times C \mid B \times D] \tag{20}
\end{align*}
$$

which generalize to any finite number of blocks.

Map-reduce

HASLab
Overall path splits in two parts,

- Workload over table \#o:

$$
\begin{aligned}
& \# 0 \stackrel{\left(o_{\text {shippriority }}{ }^{\nabla} o_{\text {shipdate }}\right)^{\circ}}{ }{ }^{\circ} \times D \\
& { }^{o_{\text {orderkey }}{ }^{\nabla}(v \times z)} \\
& K
\end{aligned}
$$

- Workload over table \#I:

With n machines, each table is divided into n slices, each slice residing into its machine.

Map runs the two workloads on each machine, in parallel.
Reduce joins all machine-contributions together, then performing the final composition of the 2 paths.

Summary

Recall the X/Open CAE Specification:
"The result of evaluating a query-specification can be explained in terms of a multi-step algorithm. The order of [the 7] steps in this algorithm follows the mandatory order of the clauses (FROM, WHERE, and so on) of the SELECT statement"

Our evaluation order is clearly different!
It is "demand driven" by the group by clause.
In theory, everything is embarrassingly parallel... but read Rogério's MSc dissertation ${ }^{8}$ before getting too excited...

[^2]
Practical side of all this

Future (practical) work:

- Define a DSL for the LA path language
- Mount a map-reduce interpreter for such a DSL running on a data-distributed environment
- Write a compiler mapping (a subset of) SQL to the DSL
- Enjoy experimenting with the overall toy :-)

In particular,

- Compare LA paths with TPC-H query plans
- Complete the benchmark already carried out. ${ }^{9}$
${ }^{9}$ R.Pontes, Benchmarking a Linear Algebra Approach to OLAP (2015).

Theory side of all this

A lot!

- Compare with related work on columnar DB systems
- Parametrize DSL on appropriate semirings for non arithmetic aggregations (min, max etc)
- Extend semantic coverage as much as possible, keeping the LA encoding such as e.g. in

$$
t_{B}^{\circ} \cdot t_{B}=i d
$$

expressing UNIQUE constraints, or integrity constraints such as in e.g.

$$
p_{F} \leqslant t_{K} \cdot t_{K}^{\circ} \cdot p_{F}
$$

(K primary key, F foreign key.)

- Null values ? ...

Today, as in 1567...

... quien sabe por Algebra, sabe scientificamente ${ }^{10}$

${ }^{10}(\ldots)$ who knows by Algebra knows scientifically - Pedro Nunes, Libro de Algebra (1567).

Appendix

What about queries without group by?

Query: ${ }^{11}$
Define
select

$$
\begin{aligned}
& \operatorname{sum}\left(r_{-} a\right) \\
& \text { from } r, s \\
& \text { where } r_{-} c=s_{-} b \text { and } \\
& 5<r_{-} a<20 \text { and } \\
& 40<r_{-} b<50 \text { and } \\
& 30<s_{-} a<40
\end{aligned}
$$

Star diagram:

$$
\begin{aligned}
1 \leftarrow_{r^{a}} \# r \xrightarrow{r_{b}} & B \\
& \downarrow^{r_{c}} \\
& C \stackrel{\overbrace{b}}{s_{b}} \# s \xrightarrow{s_{a}} A
\end{aligned}
$$

${ }^{11}$ Example taken from D. Abadi et al, The Design (...) Systems (2012).

Faster, this time

Vector \#s $\xrightarrow{!} 1$ models the implicit 'group by all' clause:

Thanks to (LA)

$$
\begin{align*}
& (M \nabla N)^{\circ} \cdot(P \nabla Q)=\left(M^{\circ} \cdot P\right) \times\left(N^{\circ} \cdot Q\right) \tag{22}\\
& b\left(v^{\circ} \cdot u\right) a=v[b] \times u[a] \tag{23}\\
& 1(!\cdot M) a=\left\langle\sum b:: b M a\right\rangle \tag{24}
\end{align*}
$$

we get the expected output scalar:

$$
\rho=\left\langle\sum j, i: u i \wedge v i \wedge r[i] \cdot c=s[j] \cdot b \wedge x j: r[i] \cdot a\right\rangle
$$

Details

Details about the "hidden" tabulation in (21):

$$
\begin{array}{ll}
& \begin{array}{c}
t=!\cdot(v \nabla i d) \cdot!^{\circ} \\
\Leftrightarrow
\end{array} \quad \begin{aligned}
& \{(14)\}
\end{aligned} \\
& t=(v \nabla!) \cdot!^{\circ} \\
\Leftrightarrow & \quad\{!\text { is the unit of Khatri-Rao }\} \\
& t=v \cdot!^{\circ} \\
\Leftrightarrow & \quad\{\text { definition of } \rho\}
\end{array}
$$

[^0]: ${ }^{1}$ Providing OLAP to User-Analysts: An IT Mandate (1998)
 ${ }^{2}$ Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals (1997)

[^1]: ${ }^{5}$ D. Abadi et al, The Design and Implementation of Modern
 Column-Oriented Database Systems (2012).
 ${ }^{6}$ J. Oliveira, Towards a Linear Algebra of Programming (2012).

[^2]: ${ }^{8}$ R. Pontes, Benchmarking a Linear Algebra Approach to OLAP (2015)

