
1

Toward dependable interactive systems:
dealing with system faults

at development and run time

Camille Fayollas

Interactive Critical Systems research group (IRIT)

& Dependable Computing and Fault Tolerance research group (LAAS-CNRS)

http://www.irit.fr/~Camille.Fayollas - fayollas@irit.fr

January 6th 2016

2HCI in Critical Context

User Centered Design
(ISO 9241-210)

Usability (ISO 9241-11)

Effectiveness
Efficiency
Satisfaction

Dependable Approach
(prevention, tolerance,
removal, forecasting)

Standards (ARP 4754),
Development processes
(DO-178C), Certification

Interactive Systems Critical Systems

3

DU: Display Unit

A380 Interactive cockpit (flight deck)

4
A380 Interactive cockpit (flight deck)

5

DU: Display Unit

KCCU: Keyboard and
Cursor Control Unit

CDS : Control and Display System

A380 Interactive cockpit (flight deck)

6
A380 Interactive cockpit (flight deck)

7
A380 Interactive cockpit (flight deck)

DU: Display Unit

KCCU: Keyboard and
Cursor Control Unit

CDS : Control and Display System

Interactivity is limited to non-critical functions

8Problem Statement

How to develop dependable interactive systems to make
them amenable for the command and control of critical

functions ?

But it has some advantages
Better evolvability
Less expensive
Better operation performances

Interactivity is limited to non-critical functions

9Outline of the talk

Introduction and Problem Statement

Context (Interactive Cockpits)

Proposed Approach for Dependable Interactive

Systems/Cockpits

Case Study

Conclusions and Perspectives

10

Display Unit
 - Screen -

Window

Layer

Widget

Format

Application 1

Application 3

Application 2

Application 1

Interactive Cockpits - GUI

Based on an avionic standard: ARINC 661
Standardized Graphical User Interface
Standardized protocol between User Applications (UA)

and Cockpit Display System (CDS)

Widget examples:
PushButton EditBoxNumeric Radio Buttons

Widget

Layer

11Interactive Cockpits - Functionning

Example: the engagement of the auto-pilot through a click on the corresponding
PicturePushButton

A661_WidgetEvent

A661_SetParameter

Wich widget ?

Modify display

Click

Look

12Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

13Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

14Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

15Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

16Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

17Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

18Interactive Cockpits – Failure Modes

Control flow (pilot -> UA)
Loss of control
Erroneous control (wrong control or spontaneous control)

Display flow (UA -> pilot)
Loss of display
Erroneous display (wrong display or spontaneous display)

19Interactive Cockpits – Fault Model

Faults and Errors

Phase of
occurrence

System
boundaries

Genotype

Dimension

Objective

Intent

Software Hardware Hdw Hardware Software

Human-made Human-madeNat

Internal Internal External

During Development During Operations

Mal=Malicious – Del=Deliberate – Nat=Natural
Hdw=Hardware

Non
Del Del Del Del

Non
Del Del

Non
Del

Non
Malicious

Non
Malicious

MalMal Non
Mal

Hdw Hdw

Nat Nat

Non
Del

Non
Del

Non
Mal

Non
Mal

Non
Malicious

Del
Non
Del

Non
DelDel Del

Non
Malicious

Mal Mal

Del

Development software faults

Malicious faults

Operational natural faults

Operational human errors

Development hardware faults

Adapté de : Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. Basic concepts and taxonomy of dependable and secure
computing. In IEEE Trans. on Dependable and Secure Computing, vol.1, no.1, pp. 11- 33, Jan.-March 2004

…
propagation causationactivation

Error FailureFault Fault …

20Outline of the talk

Introduction and Problem Statement

Context (Interactive Cockpits)

Proposed Approach for Dependable Interactive

Systems/Cockpits

Case Study

Conclusions and Perspectives

21A Two-Fold Approach

Hypothesis
No faults at hardware and network level
No human error

Approach
Model-Based Approach

=> Software faults prevention

Process and Architecture

=> Tolerance to physical faults & to residual software faults of executive layers

22Outline of the talk

Introduction and Problem Statement

Context (Interactive Cockpits)

Proposed Approach for Dependable Interactive

Systems/Cockpits

Model-Based Development

Process and Architecture

Case Study

Conclusions and Perspectives

23Model-Based Approach – Principle

Prevention Approach

Zero-defect software

Use of formal notation

Complete and unambiguous description
Analysis and verification of properties

24Formal Notation for Interactive Systems

Navarre D., Palanque P., Ladry J.-F., Barboni E. ICOs: a Model-Based User Interface Description Technique dedicated to
Interactive Systems Addressing Usability, Reliability and Scalability. In : ToCHI, ACM SIGCHI, Vol. 16 N. 4, p. 1-56, 2009

Specific needs
Interaction specificities

Covering of the interactive system architecture (server, widgets and UA)

Input/output management (rendering/activation)

Expressiveness
(Event, state, object and their values, quantitative time…)

Generic needs
Scalability
Usable tool

ICO

25ICO (Interactive Cooperative Objects)

Formal notation for interactive systems

High-level Petri nets for behavioral description

Expressiveness

Tool support (PetShop)
Model edition
Analysis means
Models execution and simulation

26
ICO description of the architecture components

Server

 Widget
instanciation

 SceneGraph

 Picking

UA

 Application
behaviour

 FCU Backup

Widgets

 Parameters

 Events

Formalization of SceneGraph and Picking components
Enables verification, validation, application of fault tolerant
approach (e.g. for detecting overlapping widgets at execution)

27
Example :
PicturePushButton description using ICO

PicturePushButton
Presents an information
Enables command triggering

PicturePushButton Parameters

Design time parameters
•PosX, PosY,
•SizeX, SizeY
•Etc…
Runtime modifiable parameters
•Visible
•Enable
•Styleset
•LabelString
•PictureReference
Events
A661_evt_selection

PicturePushButton Interface

28
Example :
PicturePushButton description using ICO

Service specification: parameter Visible enabling to change the visibility of
a PicturePushButton

void setVisible(boolean A661_VISIBLE);

29
Example :
PicturePushButton description using ICO

35 places and 20 transitions

30Model-Based Approach - Summary

Model-based approach for the specification and
development of interactive systems software
components
Use of ICO formal notation (as an example)
Use of PetShop for running ICO models (no additional step

towards implementation)

Complete and unambiguous behavioral description of
software components

Enable the description of each components of the
architecture

Better modelling (coverage) of the interactive system
functioning

Formal analysis of model supported

31Outline of the talk

Introduction and Problem Statement

Context (Interactive Cockpits)

Proposed Approach for Dependable Interactive

Systems/Cockpits

Model-Based Development

Process and Architecture

Case Study

Conclusions and Perspectives

32Software Architecture

Requirements
Fault tolerant architecture
Compatible with certification requirements of avionics

functions
Covering of all the components
Compatible with ARINC 661 standard

COM-MON principle
MON = set of assertion monitors

33Self-Checking Component (COM-MON)

Monitoring component
definition

Partitioning is needed

Traverse P., Lacaze I., Souyris J. Airbus fly-by-wire - A total approach to dependability. Building the Information
Society, IFIP 18th World Computer Congress, Topical Sessions, 22-27 August 2004, Toulouse, France. 2004. 191-212.

Laprie J.-C., Arlat J., Beounes C., Kanoun K. Definition and analysis of hardware- and software-fault-tolerant
architectures. Computer 23, no. 7 (1990): 39-51

COM

MON

Applied to Electric Flight
Control Units

34System Software Architecture

35System Software Architecture

Definition of a global safety architecture
- Taking into acount the server
- Enabling segregation

36System Software Architecture

Definition of a global safety architecture
- Taking into acount the server
- Enabling segregation

How to identify content of MON such that:
- Diversity with respect to COM
- Only required functions are tested

=> MON based on assertions monitoring

37Assertions Definition Process

System definition and analysis
Architecture, ICO models and sequence diagrams

Failure modes identification
FMECA

(Failure Mode Effects and Criticality Analysis)

Assertion identification and assertion-based monitoring

Process for a systematic safety analysis

38System Definition and Analysis

39Failure Modes Identification

FMECA template

Failure modes classification (inspired by EASA)

Loss of control
Erroneous control (wrong control & spontaneous control)

Loss of data display
Erroneous data display (wrong display & spontaneous display)

1 2 3 4 5 6 7 8

Target/

item

Failure

Modes

Potential

Causes

Local

effects

Upper-level

effects

Risk

level

Safety

mechanisms

(SM)

Upper-level

effect with SM

}

HW and
remaining SW

faults

Control &
data errors

Assertion-based monitoring
& recovery actions

40Failure Modes Identification

Excerpt of server failure modes

41Assertion Identification & Formalization

Server.widgetIdentification
Identification of the target widget, and forwarding of the
inputEvent to the target widget

42Assertion Identification & Formalization

Server.widgetIdentification
Identification of the target widget, and forwarding of the
inputEvent to the target widget

43Assertion-Based Monitoring

44Software Architecture

45Software Architecture

DU 1 HAS BEEN COMPROMISED

46Implementation

Segregation through software partitioning

The ARINC 653 runtime support
Standard architecture for avionic run-time support
Time & Space Partitioning

48Implementation

49

50

51

Avoiding common point of failures of executive layer

52

53Process and Architecture - Summary

Global fault tolerant system architecture
Fault detection using COM-MON principles
Applied to the generic part (the CDS)

Assertion definition process
Safety analysis
Assertion formalization
Assertion-based monitors

Implementation principles
Based on ARINC 653 principles
Development of an ARINC 653 simulator
Partitioning of COM and MON components

54Outline of the talk

Introduction and Problem Statement

Context (Interactive Cockpits)

Proposed Approach for Dependable Interactive

Systems/Cockpits

Case Study

Conclusions and Perspectives

55FCUS Application

Panneau EFIS CP Panneau AFS CP

56FCUS Application

Type de widget

Nombre

total de

widgets

Nombre de

widgets

critiques

Layer 1 1

BasicContainer 12 10

Panel 7 4

RadioBox 1 1

CheckButton 4 2

ComboBox 3 0

EditBoxNumeric 8 8

PicturePushButton 40 25

PictureToggleButton 2 2

Label 32 4

GP_Line 11 7

Picture 2 0

Widget types
Widgets

number

Critical

widgets

number

Critical widgets

57Model-Based Approach Implementation

2 models for the server

12 widget types modelled
123 widget instances

4 models for the UA

8 models for initialization

58Model-Based Approach Implementation

ARINC 661 and WIMP interaction coverage
Widget classification coverage

3 classes used in FCUS

1 classe used in previous work (Adrienne Tankeu-Choitat)

ARINC 661 server description
SceneGraph

Picking

Scalability

WIDGET

ACTION

AFFICHAGE

OBJET DE
REGROUPEMENT

AUTOMATISATION

Action sur l’UA

Action sur le
widget

Entrée information

Commande

Choix d’Etat

Sélection
d’interface

Sélection de
widget

Sélection de
position

Saisie de données

Sélection de
données

Composant textuel
de présentation

Composant
graphique de
présentation

Externe

Primitive
graphique

Objet de
regroupement non

géographique

Objet de
regroupement
géographique

Notification

Comportement
graphique

59
Short demo:
The FCUS running with ICO and PetShop

60Software Architecture Implementation

61
Assertion & Monitor Definition Process Application

62
Assertion & Monitor Definition Process Application

63
Assertion & Monitor Definition Process Application

64
Assertion & Monitor Definition Process Application

65
Assertion & Monitor Definition Process Application

66
Assertion & Monitor Definition Process Application
Software Architecture Implementation

ARISSIM simulator development
~ 10 000 lines of code

Assertion definition process
~ 30 assertion monitors

PetShop implementation on ARISSIM
~ 1000 lines of code for the connection
~ 140 ICO models

67Outline of the talk

Introduction and Problem Statement

Context (Interactive Cockpits)

Proposed Approach for Dependable Interactive

Systems/Cockpits

Case Study

Conclusions and Perspectives

68Conclusion – A Two-Fold Approach

Model-Based Approach
ICO formal notation
Software faults prevention

Software Fault Tolerant Architecture
Based on COM-MON principles
Safety analysis process for MON definition

Means for implementation
ARISSIM simulator
PetShop and ICO models for COM
C code for MON

Refinement of usability assesment approach

SceneGraph and Picking
models

System architecture
Systematic safety process

Partitioning
Avoidance of common
point of failure (execution)

69Perspectives

Integration in a complete development process
Improved verification & validation of ICO models

Fault tolerance mechanisms validation
Detection coverage (e.g. using fault injection)

Recovery mechanisms (e.g. involving crew operations, self-healing systems)

Model-Based approach extension
Interpretation of models at runtime in an operational context

Code generation towards a certified environment

Fault tolerance approach extension
Application to UA

Input/Output devices

Human error

More sophisticated interaction techniques
Multi-touch // ARINC 661 extensions

Multimodality

7070

Thank you for your attention!

Questions ?

