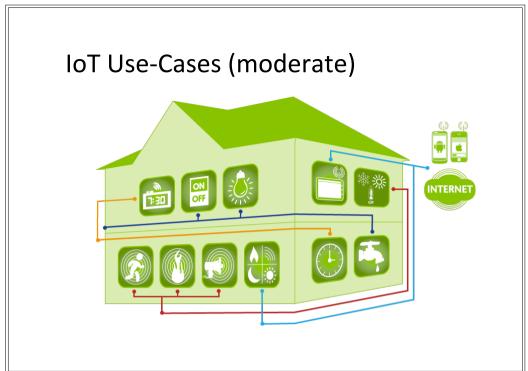
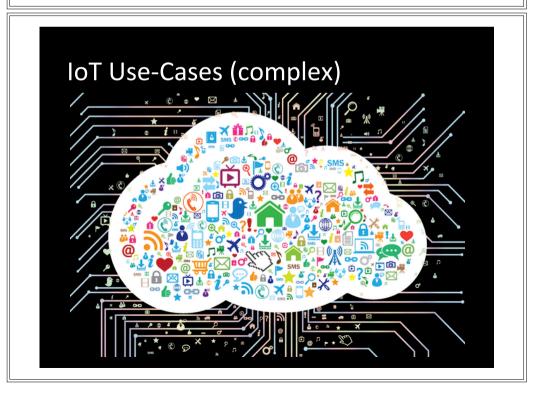
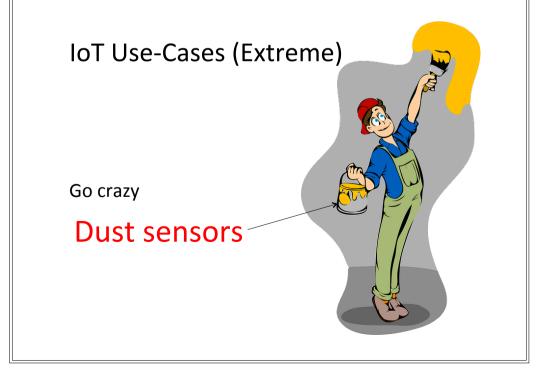
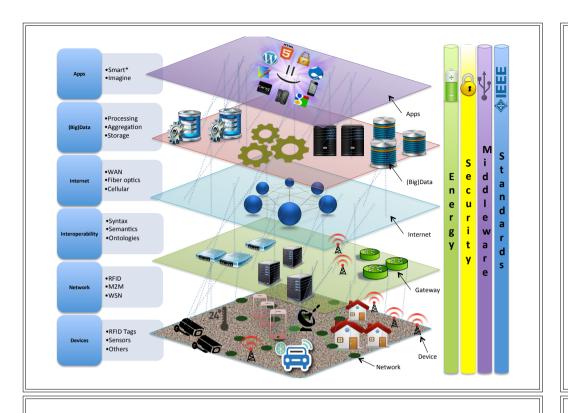

## What is IoT?


Internet of Things (IoT)


is the Internet of Things


### What the slides are about?


- ⋄ To know what is IoT, how it works, and what are the challenges.
- Kind of survey, to identify the IoT parts that
   may fit your expertise or interests.

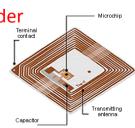


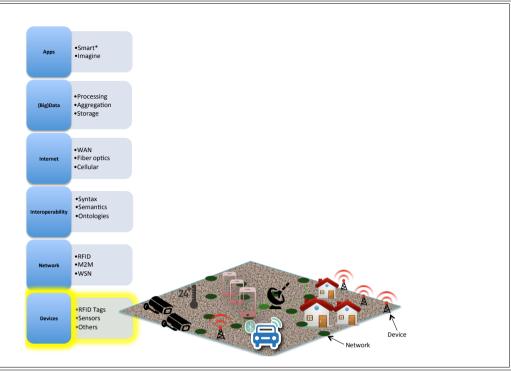












- ♦ RFID: Radio Frequency Identification
- RFID Tag: small object, often powerless, and very cheap (passive) device with a unique identifier.

♦ Requires an expensive RFID reader

See details later







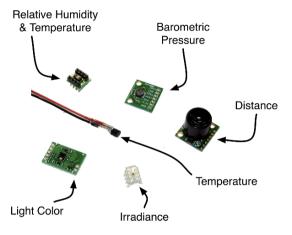
### **Devices: Sensors**

♦ Categories:

○ Sensor: physical parameter → electrical output.

■ E.g., temperature, humidity, motion sensors

○ Transducer: energy → energy

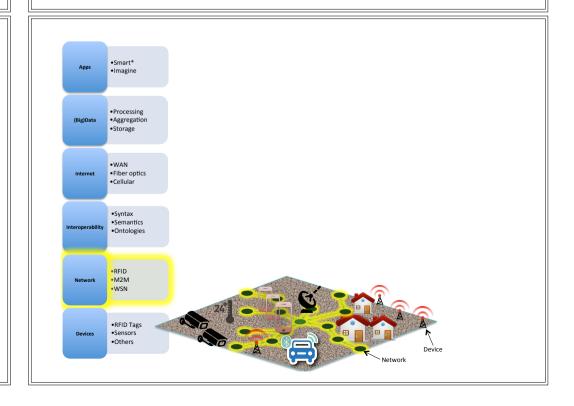

■ E.g., microphones

○ Actuator: electrical signal → physical output

■ E.g., speakers, LED, etc.

♦ Properties: active, powered, memory ...

### **Devices: Sensors**




**Devices: Challenges** 

**Not only** energy, size, price, security, standards

### **Devices: Others**

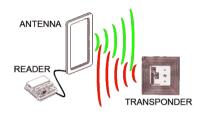
- ♦ Motes
  - Autonomous nodes with power, CPU, memory, connection...
  - o Several sensors can be plugged in.
  - o E.g., Arduino, Waspmote..
- ♦ Smarter machines
  - o Smartphones, computers, vehicules...
- ♦ Even more sensing
  - o Internet traffic, human (social networks), ...



#### Network

#### We address these:

- ♦ RFID: Radio Frequency Identification
  - o Single hop, passive, unidirectional, unpowered
- ♦ M2M: Machine to Machine
  - o Single hop, active, bi-directional, mains power
- WSN Wireless Sensor Networks
  - o Multi hop, active, unidirectional, battery


### Network: M2M

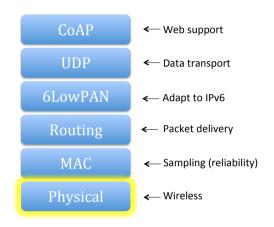
- ♦ Machine to Machine network (e.g., via WIFI router).
  - Often conventional networks are used
- Machines are often fixed, and not energy constrained (use mains power)
- ♦ Simple topology: master-slave, star...
- ♦ Examples:
  - Smart Cities:
    - Smart lights, traffic monitors..
  - o Smart home:
    - Smart meters, cameras, ..



#### **Network: RFID**

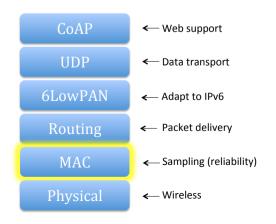
- ♦ RFID communication requires an RFID Reader & Tag
  - Reader: a high powered and expensive (active) device that beams energy to a tag.
  - Tag: small, often powerless, and very cheap (passive) device with a unique identifier.
  - Reader+Tag: near-field communication (NFC)
    - E.g, share contact details via two new smartphones.
- ♦ Communication via Radio waves
  - o LF(kHz), HF(MHz), UHF(GHz)
- ♦ Range: 3 cms to few meters
  - Useful for security




## Network: Wireless Sensor Network (WSN)

#### The IoT stack




### Network: Wireless Sensor Network (WSN)

#### The IoT stack



## Network: Wireless Sensor Network (WSN)

#### The IoT stack



## Network: WSN (Physical layer)

- Provides wireless communication between devices.
- Majority of WSN wireless technologies operate in an ISM band (no licensing is needed)
  - o Short range:
    - WIFI: 50m, 1Gbps
    - BLE (Bluetooth Low-Energy): 150m, 1Mbps
    - Others: Zigbee, NFC, Zwave
  - o Long range:
    - Cellular: 200KM, 10Mbps
    - Sigfox: 3-50KM (Rural), 1Kbps
  - o Medium range:
    - LoRaWAN: (urban), Neul (urban), Sigfox (rural)

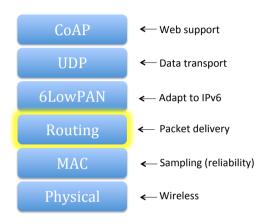
## Network: WSN (MAC layer)

- ♦ MAC layer: when to speak and when to listen
- ♦ Why matters?
  - o Reliability: wireless uses a shared medium
    - Different signals interfere (interference)
    - Reflected signals interfere (multi-path fading)
- Solution: sampling and/or hopping
  - o Time slices (TDMA)
  - Frequency slices (FDMA)
  - o Code slices (CDMA)

## Network: WSN (MAC layer)

- Challenges and tradeoffs:
  - Cheap clocks are not perfect (re-schedule)
  - o Power consumption sleep more
  - Response time sleep less
- ♦ Even more challenging:
  - o Centralized?
    - Controller is not always reachable
    - Single point of failure
  - o Distributed?
    - How to coordinate?
    - Listening is too expensive, when to sleep?!
    - Protocols: MAC, S-MAC, X-MAC

# Network: WSN (Routing layer)


- How packets should be sent from a source to a destination
- ♦ Problem: often mesh network → Dynamic

neighborhood



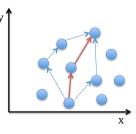
### Network: Wireless Sensor Network (WSN)

#### The IoT stack



## Network: WSN (Routing layer)

Approaches


o Build a Tree

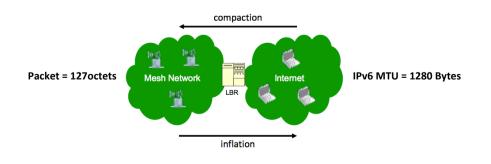


o Impose a hierarchy



- Use geographic info.
  - GPS (5-50m accuracy), Infrared, Radio
  - Next-hop, lowest-cost path, or flooding (LAR, DREAM, GRID)

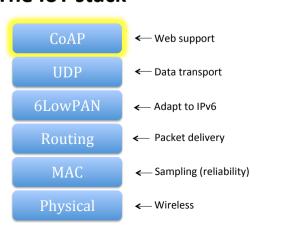



## Network: WSN (Routing layer)

- ♦ Challenges:
  - o Energy: discovery/probe, load balance
  - o Failures and mobility
  - Limited resources (small buffers)
- - o depends on application needs!

This interplay between layers (Physical-MAC-Routing) is very difficult to study

#### Network: 6LowPAN


- ♦ 6LowPAN: IPv6 over Low power wireless PAN
- ♦ PAN: Personal Area Networks
- ♦ Adapts smart objects (e.g., using 6TOP) to IPv6



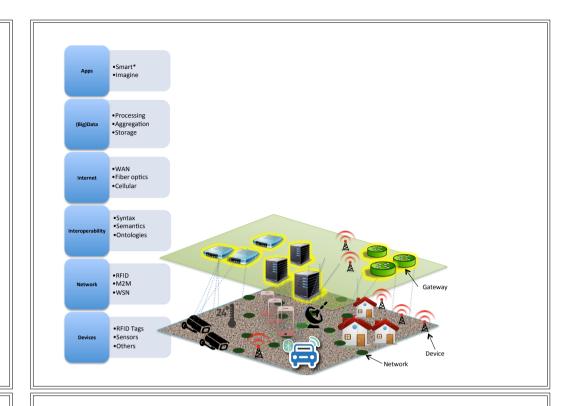
## 

Network: Wireless Sensor Network (WSN)

#### The IoT stack



### **Network: CoAP**


- ♦ CoAP: Constrained Application Protocol (RFC 7252)
- Lightweight application layer web transfer protocol
   Say HTTP for smart objects
- ♦ Why not HTTP?
  - o constrained nodes
  - o constrained networks
- ♦ Supports *REST (maybe SOAP?)* webservice model.

## Network: Gateways

♦ Gateways are mainly interfaces between the IoT worlds and a more familiar world (Internet..)



- ♦ Gateways are not dummy machines
  - o Memory, processing, storage, power, reliable, ...



Continue on file Part 2