
Random Oracles and Obfuscation

Christina Brzuska1 Pooya Farshim2 Arno Mittelbach3

1Microsoft Research Cambridge
2Queen’s University Belfast

3Technische Universität Darmstadt

University of Minho
4 November 16

Pooya Farshim (Queen’s University) RO & IO Minho 1

Random Oracles

Random oracles (ROs) model ideal hash functions [BR93].
In the RO model:

All parties have oracle access to a
uniformly chosen random function.

ROs enable the security proofs of a wide range of practical and
strongly secure cryptosystems: encryption & signature schemes,
key exchange, disk encryption, ...

Standard-model counterparts are often less secure and/or less
efficient.

Pooya Farshim (Queen’s University) RO & IO Minho 2

Random Oracles

Random oracles (ROs) model ideal hash functions [BR93].
In the RO model:

All parties have oracle access to a
uniformly chosen random function.

ROs enable the security proofs of a wide range of practical and
strongly secure cryptosystems: encryption & signature schemes,
key exchange, disk encryption, ...
Standard-model counterparts are often less secure and/or less
efficient.

Pooya Farshim (Queen’s University) RO & IO Minho 2

RO Uninstantiability

Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means ∃ scheme EncO s.t.
1 EncRO is secure.
2 EncHash is insecure for any concrete Hash.

Scheme EncO(K ,M):
1 Interpret M as the description of a hash function Hash.
2 If O(x) = Hash(x) for x = 1 . . . n append K to ciphertexts.
3 Else return a normal/good encryption of M.

Lack of a definition formalizing “RO-like” behavior.

Pooya Farshim (Queen’s University) RO & IO Minho 3

RO Uninstantiability

Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means ∃ scheme EncO s.t.
1 EncRO is secure.
2 EncHash is insecure for any concrete Hash.

Scheme EncO(K ,M):
1 Interpret M as the description of a hash function Hash.
2 If O(x) = Hash(x) for x = 1 . . . n append K to ciphertexts.
3 Else return a normal/good encryption of M.

Lack of a definition formalizing “RO-like” behavior.

Pooya Farshim (Queen’s University) RO & IO Minho 3

RO Uninstantiability

Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means ∃ scheme EncO s.t.
1 EncRO is secure.
2 EncHash is insecure for any concrete Hash.

Scheme EncO(K ,M):
1 Interpret M as the description of a hash function Hash.
2 If O(x) = Hash(x) for x = 1 . . . n append K to ciphertexts.
3 Else return a normal/good encryption of M.

Lack of a definition formalizing “RO-like” behavior.

Pooya Farshim (Queen’s University) RO & IO Minho 3

RO Uninstantiability

Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means ∃ scheme EncO s.t.
1 EncRO is secure.
2 EncHash is insecure for any concrete Hash.

Scheme EncO(K ,M):
1 Interpret M as the description of a hash function Hash.
2 If O(x) = Hash(x) for x = 1 . . . n append K to ciphertexts.
3 Else return a normal/good encryption of M.

Lack of a definition formalizing “RO-like” behavior.

Pooya Farshim (Queen’s University) RO & IO Minho 3

(Very) Naïve Attempt at Modeling ROs
Call a hash function “IND-RO” if:

A(hk)

Hhk / RO

Advind-ro
H,A (λ) := 2 ·Pr

[
b′ = b

]
−1

Clearly uninstantiable:

A(hk): compute Hhk(0) and compare to the oracle’s reply.

But observe:

The adversary knows a full input, namely (hk,0).

Pooya Farshim (Queen’s University) RO & IO Minho 4

(Very) Naïve Attempt at Modeling ROs
Call a hash function “IND-RO” if:

A(hk)

Hhk / RO

Advind-ro
H,A (λ) := 2 ·Pr

[
b′ = b

]
−1

Clearly uninstantiable:

A(hk): compute Hhk(0) and compare to the oracle’s reply.

But observe:

The adversary knows a full input, namely (hk,0).

Pooya Farshim (Queen’s University) RO & IO Minho 4

(Very) Naïve Attempt at Modeling ROs
Call a hash function “IND-RO” if:

A(hk)

Hhk / RO

Advind-ro
H,A (λ) := 2 ·Pr

[
b′ = b

]
−1

Clearly uninstantiable:

A(hk): compute Hhk(0) and compare to the oracle’s reply.

But observe:

The adversary knows a full input, namely (hk,0).

Pooya Farshim (Queen’s University) RO & IO Minho 4

(Very) Naïve Attempt at Modeling ROs
Call a hash function “IND-RO” if:

A(hk)

Hhk / RO

Advind-ro
H,A (λ) := 2 ·Pr

[
b′ = b

]
−1

Clearly uninstantiable:

A(hk): compute Hhk(0) and compare to the oracle’s reply.

But observe:

The adversary knows a full input, namely (hk,0).

Pooya Farshim (Queen’s University) RO & IO Minho 4

(Very) Naïve Attempt at Modeling ROs
Call a hash function “IND-RO” if:

A(hk)

Hhk / RO

Advind-ro
H,A (λ) := 2 ·Pr

[
b′ = b

]
−1

Clearly uninstantiable:

A(hk): compute Hhk(0) and compare to the oracle’s reply.

But observe:

The adversary knows a full input, namely (hk,0).

Pooya Farshim (Queen’s University) RO & IO Minho 4

Can We Fix the Naïve Model?

Let’s hide hk. We get PRF security:

A(1�)

Hhk / RO

Advprf
H,A(λ) := 2 · Pr

[
b′ = b

]
− 1

Not so useful in the context of hashing: hk is publicly available.

First idea:

Split A: one part gets hk and the other gets oracle access.

Pooya Farshim (Queen’s University) RO & IO Minho 5

Can We Fix the Naïve Model?

Let’s hide hk. We get PRF security:

A(1�)

Hhk / RO

Advprf
H,A(λ) := 2 · Pr

[
b′ = b

]
− 1

Not so useful in the context of hashing: hk is publicly available.

First idea:

Split A: one part gets hk and the other gets oracle access.

Pooya Farshim (Queen’s University) RO & IO Minho 5

Can We Fix the Naïve Model?

Let’s hide hk. We get PRF security:

A(1�)

Hhk / RO

Advprf
H,A(λ) := 2 · Pr

[
b′ = b

]
− 1

Not so useful in the context of hashing: hk is publicly available.

First idea:

Split A: one part gets hk and the other gets oracle access.

Pooya Farshim (Queen’s University) RO & IO Minho 5

Modeling ROs via Split Adversaries
Call the two components of A the source S and the distinguisher D:

D(hk)S(1�)

Hhk / RO

xi

L
Advuce

H,S,D(λ) := 2·Pr
[
b′ = b

]
−1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S ’s queries.

Pooya Farshim (Queen’s University) RO & IO Minho 6

Modeling ROs via Split Adversaries
Call the two components of A the source S and the distinguisher D:

D(hk)S(1�)

Hhk / RO

xi

L

Advuce
H,S,D(λ) := 2·Pr

[
b′ = b

]
−1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S ’s queries.

Pooya Farshim (Queen’s University) RO & IO Minho 6

Modeling ROs via Split Adversaries
Call the two components of A the source S and the distinguisher D:

D(hk)S(1�)

Hhk / RO

xi

L
Advuce

H,S,D(λ) := 2·Pr
[
b′ = b

]
−1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S ’s queries.

Pooya Farshim (Queen’s University) RO & IO Minho 6

Modeling ROs via Split Adversaries
Call the two components of A the source S and the distinguisher D:

D(hk)S(1�)

Hhk / RO

xi

L
Advuce

H,S,D(λ) := 2·Pr
[
b′ = b

]
−1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S ’s queries.

Pooya Farshim (Queen’s University) RO & IO Minho 6

Modeling ROs via Split Adversaries
Call the two components of A the source S and the distinguisher D:

D(hk)S(1�)

Hhk / RO

xi

L
Advuce

H,S,D(λ) := 2·Pr
[
b′ = b

]
−1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S ’s queries.

Pooya Farshim (Queen’s University) RO & IO Minho 6

Modeling ROs via Split Adversaries
Call the two components of A the source S and the distinguisher D:

D(hk)S(1�)

Hhk / RO

xi

L
Advuce

H,S,D(λ) := 2·Pr
[
b′ = b

]
−1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S ’s queries.

Pooya Farshim (Queen’s University) RO & IO Minho 6

Universal Computational Extractors (UCEs) [BHK13a]

D(hk)S(1�)

Hhk / RO

xi

L

Advuce
H,S,D(λ) := 2·Pr

[
b = b′

]
−1

S(1�)

RO

xi

P x0

Advpred
S,P(λ) := Pr

[
x ′ ∈ {x1, . . . , xn}

]
S is unpredictable iff: Advpred

S,P(·) ∈ NEGL for any efficient P.

H is UCE1 secure iff: Advuce
H,S,D(·) ∈ NEGL for any unpredictable S.

Pooya Farshim (Queen’s University) RO & IO Minho 7

Universal Computational Extractors (UCEs) [BHK13a]

D(hk)S(1�)

Hhk / RO

xi

L

Advuce
H,S,D(λ) := 2·Pr

[
b = b′

]
−1

S(1�)

RO

xi

P x0

Advpred
S,P(λ) := Pr

[
x ′ ∈ {x1, . . . , xn}

]

S is unpredictable iff: Advpred
S,P(·) ∈ NEGL for any efficient P.

H is UCE1 secure iff: Advuce
H,S,D(·) ∈ NEGL for any unpredictable S.

Pooya Farshim (Queen’s University) RO & IO Minho 7

Universal Computational Extractors (UCEs) [BHK13a]

D(hk)S(1�)

Hhk / RO

xi

L

Advuce
H,S,D(λ) := 2·Pr

[
b = b′

]
−1

S(1�)

RO

xi

P x0

Advpred
S,P(λ) := Pr

[
x ′ ∈ {x1, . . . , xn}

]
S is unpredictable iff: Advpred

S,P(·) ∈ NEGL for any efficient P.

H is UCE1 secure iff: Advuce
H,S,D(·) ∈ NEGL for any unpredictable S.

Pooya Farshim (Queen’s University) RO & IO Minho 7

Universal Computational Extractors (UCEs) [BHK13a]

D(hk)S(1�)

Hhk / RO

xi

L

Advuce
H,S,D(λ) := 2·Pr

[
b = b′

]
−1

S(1�)

RO

xi

P x0

Advpred
S,P(λ) := Pr

[
x ′ ∈ {x1, . . . , xn}

]
S is unpredictable iff: Advpred

S,P(·) ∈ NEGL for any efficient P.

H is UCE1 secure iff: Advuce
H,S,D(·) ∈ NEGL for any unpredictable S.

Pooya Farshim (Queen’s University) RO & IO Minho 7

Applications of UCE [BHK13a]

UCE-secure hash functions can instantiate the RO in
Deterministic PKEs
RKA and KDM security
Point-function obfuscation
Message-locked encryption
Proofs of storage
Poly-many hard-core bits for any OWF
OAEP, garbling schemes, . . .

UCEs model many RO-like properties.

Pooya Farshim (Queen’s University) RO & IO Minho 8

Applications of UCE [BHK13a]

UCE-secure hash functions can instantiate the RO in
Deterministic PKEs
RKA and KDM security
Point-function obfuscation
Message-locked encryption
Proofs of storage
Poly-many hard-core bits for any OWF
OAEP, garbling schemes, . . .

UCEs model many RO-like properties.

Pooya Farshim (Queen’s University) RO & IO Minho 8

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
S: Choose a random x . Query x to get y . Leak as L the values

y , Obf(H(·, x)) .

D: Run the obfuscated code on hk. Check if the output matches y .

Recall we need unpredictability for a nontrivial attack:

Obf(H(·, x)) must hide x for unpredictability.

It’s unclear if such obfuscators exist.

Perhaps a different circuit and/or obfuscator might help?

Pooya Farshim (Queen’s University) RO & IO Minho 9

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
S: Choose a random x . Query x to get y . Leak as L the values

y , Obf(H(·, x)) .

D: Run the obfuscated code on hk. Check if the output matches y .

Recall we need unpredictability for a nontrivial attack:

Obf(H(·, x)) must hide x for unpredictability.

It’s unclear if such obfuscators exist.

Perhaps a different circuit and/or obfuscator might help?

Pooya Farshim (Queen’s University) RO & IO Minho 9

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
S: Choose a random x . Query x to get y . Leak as L the values

y , Obf(H(·, x)) .

D: Run the obfuscated code on hk. Check if the output matches y .

Recall we need unpredictability for a nontrivial attack:

Obf(H(·, x)) must hide x for unpredictability.

It’s unclear if such obfuscators exist.

Perhaps a different circuit and/or obfuscator might help?

Pooya Farshim (Queen’s University) RO & IO Minho 9

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
S: Choose a random x . Query x to get y . Leak as L the values

y , Obf(H(·, x)) .

D: Run the obfuscated code on hk. Check if the output matches y .

Recall we need unpredictability for a nontrivial attack:

Obf(H(·, x)) must hide x for unpredictability.

It’s unclear if such obfuscators exist.

Perhaps a different circuit and/or obfuscator might help?

Pooya Farshim (Queen’s University) RO & IO Minho 9

Indistinguishability Obfuscation (iO)

Let C0 and C1 be two functionally equivalent circuits:

∀x : C0(x) = C1(x) .

iO security: cannot efficiently distinguish obfuscations of such circuits:

iO(C0)
c≈ iO(C1) .

[GGH+13]: indistinguishability obfuscation for all poly-sized circuits
from intractability assumptions related to multi-linear maps.

Can we use iO to attack UCEs?

Pooya Farshim (Queen’s University) RO & IO Minho 10

Indistinguishability Obfuscation (iO)

Let C0 and C1 be two functionally equivalent circuits:

∀x : C0(x) = C1(x) .

iO security: cannot efficiently distinguish obfuscations of such circuits:

iO(C0)
c≈ iO(C1) .

[GGH+13]: indistinguishability obfuscation for all poly-sized circuits
from intractability assumptions related to multi-linear maps.

Can we use iO to attack UCEs?

Pooya Farshim (Queen’s University) RO & IO Minho 10

The iO Attack
S: Leak an indistinguishably obfuscation of the Boolean circuit

H(·, x) ?
= y

where y := oracle’s response on x .

D: Run the obfuscation on hk and return the result.
Oracle = H : y = H(hk, x) =⇒ check always passes.
Oracle = RO: y is random =⇒ check passes with prob 2−|y |.

Advantage of (S,D) is:
1− 2−|y | .

Is S unpredictable?

Pooya Farshim (Queen’s University) RO & IO Minho 11

The iO Attack
S: Leak an indistinguishably obfuscation of the Boolean circuit

H(·, x) ?
= y

where y := oracle’s response on x .

D: Run the obfuscation on hk and return the result.

Oracle = H : y = H(hk, x) =⇒ check always passes.
Oracle = RO: y is random =⇒ check passes with prob 2−|y |.

Advantage of (S,D) is:
1− 2−|y | .

Is S unpredictable?

Pooya Farshim (Queen’s University) RO & IO Minho 11

The iO Attack
S: Leak an indistinguishably obfuscation of the Boolean circuit

H(·, x) ?
= y

where y := oracle’s response on x .

D: Run the obfuscation on hk and return the result.
Oracle = H : y = H(hk, x) =⇒ check always passes.

Oracle = RO: y is random =⇒ check passes with prob 2−|y |.
Advantage of (S,D) is:

1− 2−|y | .

Is S unpredictable?

Pooya Farshim (Queen’s University) RO & IO Minho 11

The iO Attack
S: Leak an indistinguishably obfuscation of the Boolean circuit

H(·, x) ?
= y

where y := oracle’s response on x .

D: Run the obfuscation on hk and return the result.
Oracle = H : y = H(hk, x) =⇒ check always passes.
Oracle = RO: y is random =⇒ check passes with prob 2−|y |.

Advantage of (S,D) is:
1− 2−|y | .

Is S unpredictable?

Pooya Farshim (Queen’s University) RO & IO Minho 11

The iO Attack
S: Leak an indistinguishably obfuscation of the Boolean circuit

H(·, x) ?
= y

where y := oracle’s response on x .

D: Run the obfuscation on hk and return the result.
Oracle = H : y = H(hk, x) =⇒ check always passes.
Oracle = RO: y is random =⇒ check passes with prob 2−|y |.

Advantage of (S,D) is:
1− 2−|y | .

Is S unpredictable?

Pooya Farshim (Queen’s University) RO & IO Minho 11

Proving Unpredictability
Need to ensure obfuscation hides x when y is truly random:

unpredictability was defined wrt the random oracle.

S(1�)

RO

xi

P x0

For any x , by the union bound we have

Pr
y←$ Rng

[
∃hk s.t. H(hk, x) = y

]
≤ |KSp|
|Rng| .

If |KSp| � |Rng|, we get that

H(·, x) ?
= y ≡ Constant zero circuit

with overwhelming probability. Now by the security of iO

iO(H(·, x) ?
= y) leaks no more than iO(Zero) ,

and the latter is independent of x .

Pooya Farshim (Queen’s University) RO & IO Minho 12

Proving Unpredictability
Need to ensure obfuscation hides x when y is truly random:

unpredictability was defined wrt the random oracle.

For any x , by the union bound we have

Pr
y←$ Rng

[
∃hk s.t. H(hk, x) = y

]
≤ |KSp|
|Rng| .

If |KSp| � |Rng|, we get that

H(·, x) ?
= y ≡ Constant zero circuit

with overwhelming probability. Now by the security of iO

iO(H(·, x) ?
= y) leaks no more than iO(Zero) ,

and the latter is independent of x .

Pooya Farshim (Queen’s University) RO & IO Minho 12

Proving Unpredictability
Need to ensure obfuscation hides x when y is truly random:

unpredictability was defined wrt the random oracle.

For any x , by the union bound we have

Pr
y←$ Rng

[
∃hk s.t. H(hk, x) = y

]
≤ |KSp|
|Rng| .

If |KSp| � |Rng|, we get that

H(·, x) ?
= y ≡ Constant zero circuit

with overwhelming probability.

Now by the security of iO

iO(H(·, x) ?
= y) leaks no more than iO(Zero) ,

and the latter is independent of x .

Pooya Farshim (Queen’s University) RO & IO Minho 12

Proving Unpredictability
Need to ensure obfuscation hides x when y is truly random:

unpredictability was defined wrt the random oracle.

For any x , by the union bound we have

Pr
y←$ Rng

[
∃hk s.t. H(hk, x) = y

]
≤ |KSp|
|Rng| .

If |KSp| � |Rng|, we get that

H(·, x) ?
= y ≡ Constant zero circuit

with overwhelming probability. Now by the security of iO

iO(H(·, x) ?
= y) leaks no more than iO(Zero) ,

and the latter is independent of x .

Pooya Farshim (Queen’s University) RO & IO Minho 12

