Random Oracles and Obfuscation

Christina Brzuska' Pooya Farshim? Arno Mittelbach?®

"Microsoft Research Cambridge
2Queen’s University Belfast
3Technische Universitit Darmstadt

University of Minho
4 November 16

Pooya Farshim (Queen’s University) RO & IO

Random Oracles

@ Random oracles (ROs) model ideal hash functions [BR93].
In the RO model:
All parties have oracle access to a
uniformly chosen random function.
@ ROs enable the security proofs of a wide range of practical and
strongly secure cryptosystems: encryption & signature schemes,
key exchange, disk encryption, ...

Pooya Farshim (Queen’s University) RO & IO Minho 2

Random Oracles

@ Random oracles (ROs) model ideal hash functions [BR93].
In the RO model:

All parties have oracle access to a
uniformly chosen random function.

@ ROs enable the security proofs of a wide range of practical and
strongly secure cryptosystems: encryption & signature schemes,
key exchange, disk encryption, ...

@ Standard-model counterparts are often less secure and/or less
efficient.

Pooya Farshim (Queen’s University) RO & IO Minho 2

RO Uninstantiability

@ Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

Pooya Farshim (Queen’s University) RO & IO

RO Uninstantiability
@ Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means 3 scheme EncP s.t.

@ Enc®C is secure.
@ Enc™®" is insecure for any concrete Hash.

Pooya Farshim (Queen’s University) RO & IO

RO Uninstantiability

@ Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means 3 scheme EncP s.t.

@ Enc®C is secure.
@ Enc™®" is insecure for any concrete Hash.

Scheme EncO(K, M):
@ |Interpret M as the description of a hash function Hash.
@ If O(x) = Hash(x) for x = 1...nappend K to ciphertexts.
© Else return a normal/good encryption of M.

Pooya Farshim (Queen’s University) RO & IO Minho

RO Uninstantiability

@ Reliance on ROs, although practical, is somewhat debatable:
There are uninstantiable ROM schemes [CGH98].

This means 3 scheme EncP s.t.

@ Enc®C is secure.
@ Enc™®" is insecure for any concrete Hash.

Scheme EncO(K, M):
@ |Interpret M as the description of a hash function Hash.
@ If O(x) = Hash(x) for x = 1...nappend K to ciphertexts.
© Else return a normal/good encryption of M.

@ Lack of a definition formalizing “RO-like” behavior.

Pooya Farshim (Queen’s University) RO & IO Minho

(Very) Naive Attempt at Modeling ROs
Call a hash function “IND-RO” if:

Hiw / RO
bl

A(hK)

Pooya Farshim (Queen’s University) RO & IO

(Very) Naive Attempt at Modeling ROs
Call a hash function “IND-RO” if:

Hiw / RO
bl

AdV8°(\) :==2-Pr b/ = b] -1
A(hk)

Pooya Farshim (Queen’s University) RO & IO

(Very) Naive Attempt at Modeling ROs
Call a hash function “IND-RO” if:

Hiw / RO
bl

AdV8°(\) :==2-Pr b/ = b] -1
A(hk)

Clearly uninstantiable:

Pooya Farshim (Queen’s University) RO & IO

(Very) Naive Attempt at Modeling ROs
Call a hash function “IND-RO” if:

Hi / RO
bl

AdV8°(\) :==2-Pr b/ = b] -1
A(hk)

Clearly uninstantiable:

A(hk): compute Hpk(0) and compare to the oracle’s reply.

Pooya Farshim (Queen’s University) RO & IO

(Very) Naive Attempt at Modeling ROs
Call a hash function “IND-RO” if:

Hi / RO
bl

AdV8°(\) :==2-Pr b/ = b] -1
A(hk)

Clearly uninstantiable:
A(hk): compute Hpk(0) and compare to the oracle’s reply.
But observe:

The adversary knows a full input, namely (hk, 0).

Pooya Farshim (Queen’s University) RO & IO

Can We Fix the Naive Model?
Let’s hide hk. We get PRF security:

Hn / RO
b/

A(1Y)

Pooya Farshim (Queen’s University) RO & IO

Can We Fix the Naive Model?
Let’s hide hk. We get PRF security:

Hn / RO
b/

Adv', () =2 Pr[b/ = b] —1
A(1Y)

Not so useful in the context of hashing: hk is publicly available.

Pooya Farshim (Queen’s University) RO & IO

Can We Fix the Naive Model?
Let’s hide hk. We get PRF security:

/ / Adv‘;{fA(A) :=2-Pr[b/ =b] -1
Ay 2
Not so useful in the context of hashing: hk is publicly available.

First idea:

Split A: one part gets hk and the other gets oracle access.

Pooya Farshim (Queen’s University) RO & IO

Modeling ROs via Split Adversaries

Call the two components of A the source S and the distinguisher D:

Pooya Farshim (Queen’s University) RO & IO

Modeling ROs via Split Adversaries

Call the two components of A the source S and the distinguisher D:

Hi / RO

Pooya Farshim (Queen’s University) RO & IO

Modeling ROs via Split Adversaries

Call the two components of A the source S and the distinguisher D:

Hi / RO

Adv{s p(A) :=2-Pr b = b] -1

Pooya Farshim (Queen’s University) RO & IO

Modeling ROs via Split Adversaries

Call the two components of A the source S and the distinguisher D:

Hi / RO

Adv{s p(A) :=2-Pr b = b] -1

Still uninstantiable:

Pooya Farshim (Queen’s University) RO & IO

Modeling ROs via Split Adversaries

Call the two components of A the source S and the distinguisher D:

Hi / RO

Adv{s p(A) :=2-Pr b = b] -1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Pooya Farshim (Queen’s University) RO & IO

Modeling ROs via Split Adversaries

Call the two components of A the source S and the distinguisher D:

Hi / RO

Adv{s p(A) :=2-Pr b = b] -1

Still uninstantiable:

S leaks oracle’s response on 0 via L, and D(hk) checks where it’s
coming from.

Second idea:

Restrict L: it must not leak any of S’s queries.

Pooya Farshim (Queen’s University) RO & IO

Universal Computational Extractors (UCEs) [BHK13a]

Hi / RO

Adv{{s p(A) :==2-Pr[b=b']—1

Pooya Farshim (Queen’s University) RO & IO

Universal Computational Extractors (UCEs) [BHK13a]

Hne / RO
4
/ !
sany Lo ppwy LY sy - x

AdVSS p(N) i=2-Pr[b=b]-1 | AdVES()) :=Pr X € {xi,..., Xn}]

Pooya Farshim (Queen’s University) RO & IO

Universal Computational Extractors (UCEs) [BHK13a]

Hie / RO
VA
/ !
sany Lo ppwy LY O — Z

AdVSS p(N) i=2-Pr[b=b]-1 | AdVES()) :=Pr X € {xi,..., Xn}]

S is unpredictable iff: Advgr;‘i(-) € NEGL for any efficient P.

Pooya Farshim (Queen’s University) RO & IO

Universal Computational Extractors (UCEs) [BHK13a]

Hne / RO

T T

sy by Y = 2’

Advii p(A) = 2:Pr [b= b -1 | AdVEL(N) == Pr[x' € {x1,.... xn}]

S is unpredictable iff: Advgr;‘i(-) € NEGL for any efficient P.

H is UCE1 secure iff: Adv{’s 5(-) € NEGL for any unpredictable S.

Pooya Farshim (Queen’s University) RO & IO

Applications of UCE [BHK13a]

UCE-secure hash functions can instantiate the RO in
@ Deterministic PKEs
@ RKA and KDM security
@ Point-function obfuscation
@ Message-locked encryption
@ Proofs of storage
@ Poly-many hard-core bits for any OWF
@ OAEP, garbling schemes, ...

Pooya Farshim (Queen’s University) RO & IO

Applications of UCE [BHK13a]

UCE-secure hash functions can instantiate the RO in
@ Deterministic PKEs
@ RKA and KDM security
@ Point-function obfuscation
@ Message-locked encryption
@ Proofs of storage
@ Poly-many hard-core bits for any OWF
@ OAEP, garbling schemes, ...

UCEs model many RO-like properties.

Pooya Farshim (Queen’s University) RO & IO

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
@ S: Choose a random x. Query x to get y. Leak as L the values

y, Obf(H(-,x)) .

@ D: Run the obfuscated code on hk. Check if the output matches y.

Pooya Farshim (Queen’s University) RO & IO

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
@ S: Choose a random x. Query x to get y. Leak as L the values

y, Obf(H(-,x)) .

@ D: Run the obfuscated code on hk. Check if the output matches y.

Recall we need unpredictability for a nontrivial attack:

Obf(H(-, x)) must hide x for unpredictability.

Pooya Farshim (Queen’s University) RO & IO

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
@ S: Choose arandom x. Query x to get y. Leak as L the values

y, Obf(H(,X)) .
@ D: Run the obfuscated code on hk. Check if the output matches y.
Recall we need unpredictability for a nontrivial attack:

Obf(H(-, x)) must hide x for unpredictability.

It's unclear if such obfuscators exist.

Pooya Farshim (Queen’s University) RO & IO Minho 9

Is UCE Security Instantiable?

Suppose we could strongly obfuscate H:
@ S: Choose arandom x. Query x to get y. Leak as L the values
y, Obf(H(,X)) .

@ D: Run the obfuscated code on hk. Check if the output matches y.

Recall we need unpredictability for a nontrivial attack:

Obf(H(-, x)) must hide x for unpredictability.
It's unclear if such obfuscators exist.

Perhaps a different circuit and/or obfuscator might help?

Pooya Farshim (Queen’s University) RO & IO Minho 9

Indistinguishability Obfuscation (iO)

Let Cy and C; be two functionally equivalent circuits:
Vx : Co(x) = Cy(x) .

iO security: cannot efficiently distinguish obfuscations of such circuits:

Cc

[GGH™13]: indistinguishability obfuscation for all poly-sized circuits
from intractability assumptions related to multi-linear maps.

Pooya Farshim (Queen’s University) RO & IO

Indistinguishability Obfuscation (iO)

Let Cy and C; be two functionally equivalent circuits:
Vx : Co(x) = Cy(x) .

iO security: cannot efficiently distinguish obfuscations of such circuits:

c

i0(Cy) < 0(Cy) .

[GGH™13]: indistinguishability obfuscation for all poly-sized circuits
from intractability assumptions related to multi-linear maps.

Can we use iO to attack UCEs?

Pooya Farshim (Queen’s University) RO & IO Minho 10

The iO Attack

S: Leak an indistinguishably obfuscation of the Boolean circuit

?

H(-,X) y

where y := oracle’s response on x.

Pooya Farshim (Queen’s University) RO & IO

The iO Attack

S: Leak an indistinguishably obfuscation of the Boolean circuit

?

H(-, x)

y

where y := oracle’s response on x.

D: Run the obfuscation on hk and return the result.

Pooya Farshim (Queen’s University) RO & IO

The iO Attack

S: Leak an indistinguishably obfuscation of the Boolean circuit

?

H(-, x)

y

where y := oracle’s response on x.

D: Run the obfuscation on hk and return the result.
@ Oracle=H : y =H(hk,x) = check always passes.

Pooya Farshim (Queen’s University) RO & IO

The iO Attack

S: Leak an indistinguishably obfuscation of the Boolean circuit

?

H(-,X) y

where y := oracle’s response on x.

D: Run the obfuscation on hk and return the result.
@ Oracle=H : y =H(hk,x) = check always passes.

@ Oracle = RO: yisrandom = check passes with prob 2-1Y.
Advantage of (S, D) is:
127,

Pooya Farshim (Queen’s University) RO & IO

The iO Attack

S: Leak an indistinguishably obfuscation of the Boolean circuit

?

H(-,X) y

where y := oracle’s response on x.

D: Run the obfuscation on hk and return the result.
@ Oracle=H : y =H(hk,x) = check always passes.

@ Oracle = RO: yisrandom = check passes with prob 2-1Y.
Advantage of (S, D) is:
127,

Is S unpredictable?

Pooya Farshim (Queen’s University) RO & IO

Proving Unpredictability

Need to ensure obfuscation hides x when y is truly random:
unpredictability was defined wrt the random oracle.

Pooya Farshim (Queen’s University) RO & IO

Proving Unpredictability

Need to ensure obfuscation hides x when y is truly random:
unpredictability was defined wrt the random oracle.

For any x, by the union bound we have

1. = <
,Pr | 3nk st H(vk,x) y}

Pooya Farshim (Queen’s University) RO & IO

Proving Unpredictability

Need to ensure obfuscation hides x when y is truly random:

unpredictability was defined wrt the random oracle.

For any x, by the union bound we have

|KSp|
1. —vl| <
, P | 3k st H(hk) y] < |Rrg
If [KSp| < |Rng|, we get that
H(-, x) Zy = Constant zero circuit

with overwhelming probability.

Pooya Farshim (Queen’s University) RO & IO

Proving Unpredictability
Need to ensure obfuscation hides x when y is truly random:
unpredictability was defined wrt the random oracle.

For any x, by the union bound we have

|KSp|
P Jhk s.t. H(hk = < .
y g | T ST AKX =y [< oy
If [KSp| < |Rng|, we get that
H(-, x) L y = Constant zero circuit

with overwhelming probability. Now by the security of iO

iIO(H(-, x) L y) leaks no more than iO(Zero),
and the latter is independent of x.

Pooya Farshim (Queen’s University) RO & IO Minho 12

