
Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

1

BiFluX: A Bidirectional Functional Update

Language for XML

Tao Zan　Hugo Pacheco　Hsiang-Shang Ko　Zhenjiang Hu

Different XML formats are widely used for data exchange and processing, being often necessary to mutually

convert between them. Standard XML transformation languages, like XSLT or XQuery, are unsatisfactory

for this purpose since they require writing a separate transformation for each direction. Existing bidirec-

tional transformation languages mean to cover this gap, by allowing programmers to write a single program

that denotes both transformations. However, they often 1) induce a more cumbersome programming style

than their traditionally unidirectional relatives, to establish the link between source and target formats, and

2) offer limited configurability, by making implicit assumptions about how modifications to both formats

should be translated that may not be easy to predict.

This paper proposes a bidirectional XML update language called BiFluX (BIdirectional FunctionaL

Updates for XML), inspired by the Flux XML update language. Our language adopts a novel bidirectional

programming by update paradigm, where a program succinctly and precisely describes how to update a

source document with a target document in an intuitive way, such that there is a unique “inverse” source

query for each update program. BiFluX extends Flux with bidirectional actions that describe the con-

nection between source and target formats. We introduce a core BiFluX language, and translate it into a

formally verified bidirectional update language BiGUL to guarantee a BiFluX program is well-behaved.

1 Introduction

Nowadays, various XML formats are widely used

for data exchange and processing. Since data

evolves naturally over time and is often replicated

among different applications, it becomes frequently

necessary to mutually convert between such for-

mats. However, traditional XML transformation

languages, like the XSLT and XQuery standards of

the World Wide Web Consortium (W3C), are un-

BiFluX: XML に対する双方向的関数型更新言語
ザン涛, 胡振江, 総合研究大学院大学複合科学研究科,

SOKENDAI, Japan.

フゴ パチェコ, ミーニョ大学, University of Minho,

Portugal.

柯向上, 胡振江, 国立情報学研究所, National Institute of

Informatics, Japan.

コンピュータソフトウェア,Vol.33,No.4 (2016),pp.93–115.

[研究論文] 2015 年 12 月 2 日受付.

This article is an extended version of the conference

paper entitled “BiFluX: A Bidirectional Functional

Update Language for XML” presented at PPDP

2014.

satisfactory for this purpose as they require writing

a separate transformation for each direction.

Bidirectional transformation (BX) languages [6]

mean to cover this gap, by allowing users to write

a single program that can be executed both for-

wards and backwards, so that consistency between

two formats can be maintained for free. A vari-

ety of bidirectional languages have emerged over

the last 10 years to support bidirectional ap-

plications in the most diverse computer science

disciplines [6], including functional programming,

software engineering, and databases. These lan-

guages come in different flavors, including many

focused on the transformation of tree-structured

data with a particular application to XML doc-

uments [14] [3] [16] [7] [20] [9] [13], and can be classi-

fied into three main paradigms. The first rela-

tional paradigm [14] [3] prescribes writing a declar-

ative (non-deterministic) consistency relation be-

tween two formats, from which a suitable BX is

automatically derived. The second bidirectionaliza-

tion paradigm [16] [7] [18] asks users to write a trans-

formation in a traditional unidirectional language,

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

2

which plays the role of a functional consistency re-

lation. The last combinatorial paradigm [20] [9] [13]

encompasses the design of a domain-specific bidi-

rectional language in which each combinator de-

notes a well-behaved BX, allowing users to write

correct-by-construction programs by composition.

As most interesting examples of BXs are not bi-

jective, there may be multiple ways to synchronize

two documents into a consistent state, introduc-

ing ambiguity. Despite this fact, bidirectional lan-

guages are typically designed to satisfy fundamen-

tal consistency principles, and support only a fixed

set of synchronization strategies (out of a myriad

possible) to translate a (non-deterministic) bidirec-

tional specification —the syntactic description of a

BX— into an executable BX procedure. This la-

tent ambiguity often leads to unpredictable behav-

ior, as users have limited power to configure and

understand what a BX does from its specification.

Even for combinatorial languages, which have the

theoretical potential to fully specify the behavior

of a BX [8] [22], their lower-level programming style

requires significant effort and expertise from users

to write intricate BXs via the composition of sim-

ple, concrete steps; they also scale badly for large

formats, since one must explicitly describe how a

BX transforms whole documents, including unre-

lated parts.

In this paper, we propose a novel bidirectional

programming by update paradigm, in which the pro-

grammer writes an update program that describes

how to update a source document to embed infor-

mation from a target document, and the system de-

rives a query from source to target that expresses

the consistency between both documents. Such a

bidirectional update describes the relationship be-

tween source and target documents in a simple way

—as in the relational paradigm— by saying which

related source parts are to be updated, but com-

bined with additional actions that supply the miss-

ing pieces to eliminate the ambiguity in how tar-

get modifications are reflected —as in the combi-

natorial paradigm. For a wide class of BXs usu-

ally known as lenses [8], which have a data flow

from source to view, this paradigm opens a new

axis in the BX design space that enjoys a unique

trade-off between the declarative style of relational

approaches and the stepwise style of combinatorial

approaches. This paper demonstrates that a bidi-

rectional update language, featuring a hybrid pro-

gramming style, can render bidirectional program-

ming more user friendly.

From a linguistic perspective, the main contri-

bution of this paper is conceptual: we propose the

idea of extending an update language with bidirec-

tional features to write, directly and at a nice level

of abstraction, a view update translation strategy

which bundles all the necessary pieces to build a

BX. Concretely, we design BiFluX, a declarative

and expressive language for the bidirectional up-

dating of XML documents that is deeply inspired

by Flux [4], a simple and well-designed functional

XML update language. We lift unidirectional Flux

updates to bidirectional BiFluX updates by imbu-

ing them with an additional notion of view. Read-

ing updates as BXs will motivate a few language

extensions to original Flux, and require a suit-

able bidirectional semantics and extra static con-

ditions on BiFluX programs to ensure that they

build well-behaved BXs.

This is an extended version of our original paper

[23]. We have made two improvements on the origi-

nal BiFluX: 1) A new adaption mechanism, which

is useful when the source is incompatible with the

view, and needs to be adapted to a compatible

one while still keeping necessary information of the

original source. This mechanism plays an impor-

tant role in Zhu et al.’s work [26]. 2) BiFluX

was implemented by a putback-based combinatorial

language called putlenses [22]. However, the trans-

lation was hard to understand and the BX prop-

erties were not formally verified. We compile Bi-

FluX into our newly developed bidirectional core

update language BiGUL [15], which has been fully

formally verified in the dependently typed language

Agda [19].

The rest of the paper is organized as follows. We

explain the novel features of BiFluX with a rep-

resentative running example in Sec. 2. High-level

BiFluX programs are first normalized (desugared)

into the core BiFluX language, presented in Sec. 3,

which is a streamlined version of the high-level Bi-

FluX syntax and is easier to compile. Sec. 4 intro-

duces the underlying engine BiGUL, and Sec. 5 dis-

cusses the compilation of core BiFluX to BiGUL.

Sec. 6 compares our approach with related work on

bidirectional and XML programming, and Sec. 7

concludes with a summary of the main ideas and

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

3

<!DOCTYPE addrbook [

<!ELEMENT addrbook(person*)>

<!ELEMENT person(name,email,affiliation)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT email(#PCDATA)>

<!ELEMENT affiliation(#PCDATA)>]>

Fig. 1 A simple address book DTD.

directions for future work.

2 Syntax, informal semantics, and

general framework

This section explains the syntax and informal se-

mantics of BiFluX with a typical example, and

then shows the big picture of our general frame-

work.

2. 1 Our running example

Consider a typical address book whose format is

represented by the DTD from Fig. 1. An address

book contains a list of people, each possessing a

name, an email address, and the person’s affilia-

tion. Let us start with the following XML address

book with three people:

<addrbook>

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zh@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

</addrbook>

On the other hand, the NII’s administrative ser-

vices may keep only a view with the name and email

address of employees (people who are affiliated to

NII), as shown in the DTD from Fig. 2. We have

a view that simply keeps the email of each person

working at NII:

<niibook>

<!DOCTYPE niibook [

<!ELEMENT niibook (employee*)>

<!ELEMENT employee (name,email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>]>

Fig. 2 An NII address book DTD.

<employee>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

</employee>

<employee>

<name>Zhenjiang Hu</name>

<email>zh@nii.ac.jp</email>

</employee>

</niibook>

We can perform update operations on this view

XML. For instance, we can add Tao (in alphabet-

ical order) as a new NII employee, fix Zhenjiang’s

email, and delete Hugo:

<niibook>

<employee>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

</employee>

<employee>

<name>Zhenjiang Hu</name>

<email>zhenjhu@nii.ac.jp</email>

</employee>

</niibook>

Now the updated view and source XMLs become

inconsistent, and we need to update the source

XML to restore consistency. We can write a sim-

ple program in BiFluX to describe how the up-

date should proceed, which is shown in Fig. 3†1.
The program has a single procedure niibook , which

consists of a single UPDATE FOR VIEW statement spec-

ifying how to update the source using the view.

It focuses on a sequence of people in the source

by traversing down the path $source/person, se-

lecting only those that work at NII through the

WHERE expression, and also focuses on a sequence

of employees in the view by traversing down the

path $view/employee. Elements in the two se-

quences are matched by their names, as specified

†1 The names s:elem and v:elem are BiFluX type

variables that refer to the types of source and view

elements declared in the respective DTDs.

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

4

PROCEDURE niibook($source AS s:addrbook, $view AS v:niibook) =

UPDATE person[$sname AS s:name, $semail AS s:email, $affil AS s:affiliation] IN $source/person BY

{ MATCH -> REPLACE $semail WITH $vemail
| UNMATCHV -> CREATE VALUE

<person><name/><email/><affiliation>NII</affiliation></person>

| UNMATCHS -> DELETE .

} FOR VIEW employee[$vname AS v:name, $vemail AS v:email] IN $view/employee
MATCHING SOURCE BY $sname VIEW BY $vname
WHERE $affil/text() = "NII"

Fig. 3 BiFluX update for the institutional address book example.

Stmt ::= Upd [WHERE Conds] | Stmt ; Stmt

| { Stmt } | { }
| IF Expr THEN Stmt ELSE Stmt

| LET Pat = Expr IN Stmt

| CASE Expr OF { Cases }
| P (Path, Expr)

Upd ::= INSERT (BEFORE | AFTER) PatPath
VALUE Expr

| INSERT AS (FIRST | LAST) INTO PatPath

VALUE Expr

| DELETE [FROM] PatPath

| REPLACE [IN] PatPath WITH Expr

| UPDATE PatPath BY Stmt

| UPDATE PatPath BY VStmt

FOR VIEW PatPath [Match]

| CREATE VALUE Expr

Conds ::= Expr [; Conds]

| Var := Expr [; Conds]

Cases ::= Pat → Stmt

| Pat → ADAPT SOURCE BY Stmt

| Cases ′|′ Cases
VStmt ::= { VStmt } | VUpd

| VUpd ′|′ VUpd

VUpd ::= MATCH → Stmt

| UNMATCHS → Stmt

| UNMATCHV → Stmt

Match ::= MATCHING BY Path

| MATCHING SOURCE BY Path

VIEW BY Path

PatPath ::= [Pat IN] Path

Fig. 4 Concrete syntax of BiFluX updates.

by the MATCHING condition. Both the source and

view elements are decomposed by pattern match-

ing. A matching person-employee pair is processed

according to the MATCH clause, updating the per-

son’s email with the employee’s email. If an un-

matched employee exists in the view, according

to the UNMATCHV clause, a new person with NII as

the affiliation is created in the source. We do not

need to fill in the name with $vname and email with

$vemail, as the underlying semantics will pass the

newly created source person into the MATCH clause,

and thus both the name and email will be up-

dated with the corresponding view elements. (Al-

though the MATCH clause does not include a state-

ment REPLACE $sname WITH $vname, this statement in

fact will be derived from the MATCHING condition and

implicitly inserted.) If an unmatched person exists

in the source, the person will be deleted, accord-

ing to the UNMATCHS clause. This UPDATE FOR VIEW

syntax is specifically designed for specifying flexi-

ble alignment strategies in update programs, and

can be regarded as a novel feature of BiFluX.

2. 2 Syntax and informal semantics of

BiFluX

In this section we will explain the syntax and

informal semantics of BiFluX in terms of the

running example in Fig. 3. The syntax for Bi-

FluX’s main constructs is defined in Fig. 4, which

is based on Flux [4], a high-level, purely functional

language for writing XML updates. Statements

Stmt include updates, composition, conditionals,

let-binding, case expressions, and procedure calls.

Update statements Upd include insertion, deletion,

replacement, update under a path (UPDATE BY), up-

date of a source using a view (UPDATE FOR VIEW), and

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

5

source creation. They may be guarded by a WHERE

clause that defines a set of conditions constraining

when the updates are executed.

In general, a BiFluX update is executed for a

particular source and view as follows: by evaluating

a source path or performing pattern matching on

the current source, we obtain a source focus selec-

tion, which is recursively updated using a view focus

selection computed by evaluating a view path or

performing pattern matching on the current view,

until all the view information is embedded into the

source. View and source focus selections denote

the parts of the source and view that can be re-

spectively updated and used by the update.

Below we will go through each of the constructs.

2. 2. 1 Procedure

In BiFluX, large bidirectional update programs

are constructed by using a list of small procedures.

A procedure is defined in the following syntax:

PROCEDURE P (Var AS τ , Var AS τ) = Stmt

The first argument is the source and the second one

is the view. τ is a regular expression type (whose

details will be presented in Sec. 5. 1).

In the running example, we declare a procedure

named niibook with source argument $source and

view argument $view, whose types are s:addrbook

and v:niibook respectively. XML element names

appearing in types (in this case addrbook and

niibook) are prefixed with either s: or v: to specify

that they are from the source or view DTD, since

there may be elements with the same name but dif-

ferent definitions in the source and view DTDs.

2. 2. 2 Path

In BiFluX, we use a subset of XPaths to tra-

verse XML data. We omit the detailed definition

of XPaths in the paper for brevity, only giving ex-

planations in terms of a couple of paths used in

the running example instead. For one, the path

$source/person extracts all the three people under

$source, which points to an addrbook, and produces:

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zh@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

Function text() extracts text information. For

example, $affil/text() gets the text in the

affiliation element pointed to by $affil: If $affil

points to <affiliation>NII</affiliation>, then the

result will be “NII”.

2. 2. 3 Pattern

BiFluX supports pattern matching, which is a

very useful feature of XML transformation lan-

guages like XDuce [12] or CDuce [2], allowing

matching tree patterns against the input data to

transform it into an output of different shape. Typ-

ical XML update languages like XQuery! [10] or

Flux [4] do not support pattern matching, since it

is not essential and may be more difficult to opti-

mize, and they use solely paths to navigate to the

portions of the input documents that are to be up-

dated in-place. On the other hand, pattern match-

ing in BiFluX can be used to guide the update

based on the structure of the data.

Our pattern language follows that of XDuce [12]:

pat ::= x as τ | τ | c | () | n[pat] | pat , pat ′
A pattern can be a variable pattern restricted by

a regular expression type τ , a type pattern τ , a

constant pattern c representing constant values, an

empty pattern (), an element pattern, or a sequence

pattern. We require every variable to be annotated

with a type; this simplifies our design, but will also

increase the number of (often unnecessary) anno-

tations in our update programs. We see it as an

orthogonal problem that can be mitigated using ex-

isting tree-based type inference algorithms [25]. To

reduce complexity, we impose a simple but strong

syntactic linearity restriction on patterns (no alter-

native choice, no Kleene star) to ensure that match-

ing a value against a pattern binds each variable

exactly once. (Note that the restriction is imposed

on patterns rather than on types, so we can still

annotate patterns with alternation and sequence

types.) Less severe linearity restrictions are actu-

ally known [11], but these simple patterns suffice

for our practical needs.

For example, the pattern used in our running ex-

ample:

person[$sname AS s:name, $semail AS s:email,

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

6

$affil AS s:affiliation]

decomposes a person element into three parts:

$sname, $semail and $affil.

2. 2. 4 Source and view matching

The main difference between FluX and BiFluX

is that updates on sources can use view infor-

mation. Such an update is performed by a new

UPDATE FOR VIEW operation, which synchronizes ele-

ments in the results of evaluating a source path and

a view path. In the running example, we update

a list of people denoted by $source/person with a

list of employees denoted by $view/employee. The

Pat IN Path notation is used to decompose the ele-

ments in the two lists, so that we can specify further

updates on the sub-elements.

One of the key design issues for the bidirectional-

programming-by-update paradigm is to invent a

nice syntax for describing flexible alignment strate-

gies, and our solution is the UPDATE FOR VIEW oper-

ation. The operation comes along with a match-

ing condition that means the synchronization can

be configured by the programmer via the matching

condition that aligns source and view elements, and

a triple of matching/unmatching clauses (VUpd)

that describe the actions for individual source-view

elements. When two source and view elements

MATCH, a bidirectional statement is executed to up-

date the source using the view; during compilation,

a REPLACE statement derived from the MATCHING con-

dition is implicitly inserted into the MATCH clause

to guarantee that the source and the view still

match after the update. An unmatched view ele-

ment (UNMATCHV) creates a temporary element in the

source according to a unidirectional CREATE state-

ment, and the temporary source element will be up-

dated using the view element via the MATCH clause.

An unmatched source element (UNMATCHS) is DELETEd

by default, but we may keep it by providing a uni-

directional statement describing how to invalidate

the given WHERE SOURCE selection criteria. The rule

is that all BiFluX statements are bidirectional, ex-

cept inside UNMATCHS or UNMATCHV clauses.

Let us use the running example illustrated in

Fig. 3 for explanation. It matches a list of source

person elements that satisfies the where condition

(WHERE $affil/text() = "NII") with a list of view

employees by source person’s name ($sname) and

view person’s name ($vname). For the matched

source person and view employee, update its email

by the view employee’s email; for the view employee

that there is no corresponding matching source el-

ement person, create a new source person with de-

fault affiliation set to NII; for the source person

that there is no corresponding matching view ele-

ment employee, delete this person.

2. 2. 5 Flux operations

Some update operations are inherited from the

Flux language developed by Cheney [4], and can

update single XML trees or update the children of

the selected tree. For example, the statement

REPLACE $semail WITH $vemail

replaces an email element pointed to by $semail

with another email element pointed to by $vemail,

while the statement

REPLACE IN $semail WITH 'zantao@nii.ac.jp'

replaces the string wrapped inside the email el-

ement pointed to by $semail with the string

'zantao@nii.ac.jp'. For other operations like in-

sertion (INSERT BEFORE/AFTER) and deletion (DELETE,

DELETE FROM), we refer the reader to Cheney’s work.

2. 2. 6 Source adaptation

Different from the first version of BiFluX, case

statements have been extended to include a source

adaptation mechanism. With the first version of

BiFluX, if a source is not compatible with the

given view, we can only throw away the source

and create a new one from the view. Sometimes,

however, we do want some information in the old

source to be preserved in the new one. The source

adaptation mechanism is added for this purpose:

when incompatibility arises, the old source can be

transformed to a new one compatible with the view,

while keeping part of the original source informa-

tion.

To illustrate how source adaptation works, con-

sider the following scenario: The source is a record

about either a book or a magazine that contains

the title, authors, price, and publication year, e.g.,

<book>

<title>Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year><price>30.00</price>

</book>

and there is a variable $s pointing to the above

record. The view can be either a book or a maga-

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

7

zine with only the title and price, e.g.,

<magazine>

<title>Everyday Italian</title>

<price>15.00</price>

</magazine>

Suppose that we have decomposed the above view

with the pattern magazine[$vtitle AS v:title,

$vprice as v:price]. The following BiFluX pro-

gram with source adaptation can transform the

source into a magazine and then update it with the

view values:

CASE $s of

magazine[$title AS s:title, s:author+,

s:year, $price AS s:price]

-> REPLACE $title WITH $vtitle;
REPLACE $price WITH $vprice

book[s:title, $ars AS s:author+,

$y AS s:year, s:price]

-> ADAPT SOURCE BY CREATE VALUE

<magazine><title/>{$ars}
{$y}<price/></magazine>

Since the source is a book, it matches the second,

adaptive branch and is transformed to a magazine

with the author and year information preserved in

the new source. After encountering an adaptive

branch and executing the associated transforma-

tion, the case statement will be run again on the

new source, which, in this case, is a magazine and

matches the first normal branch. The replacement

statements are then executed, producing the fol-

lowing updated source:

<magazine>

<title>Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year><price>15.00</price>

</magazine>

The programmer should adapt the source with

the intention of making it match with a normal

branch — to avoid falling into adaptive branches re-

peatedly and resulting in non-termination, the un-

derlying engine BiGUL will check that the adapted

source matches a normal branch; subsequently, the

adapted source will be updated by the bidirectional

update statement in that branch and an updated

source will be generated.

2. 3 Bidirectional execution

Although the emphasis is on writing updates,

BiFluX programs have a bidirectional interpreta-

tion. They can be read as 1) an update function

U(s, v′) = s′ that updates a source s into a new

source s′ which contains a given view v′, or 2) a

query function Q(s) = v that computes a view v

from a given source s; these functions may be par-

tial. For the running example in Fig. 3, (assuming

that people are uniquely identified by their names)

the query function is semantically equivalent to the

XQuery expression:

<niibook>

{

for $person in $s/person
where $person/affiliation/text() = "NII"

return <employee>

{$person/name}
{$person/email}

</employee>

}

</niibook>

For example, a typical use case is to run the Bi-

FluX program as a query on the source in Sec. 2. 1

and get the first view in that section, which is then

modified to the second view. To produce a new,

consistent source, the BiFluX program is run as

an update on the original source and the modified

view. In the new source, Josh is left unchanged,

Tao is created with the default affiliation NII (as

his name does not match any name in the origi-

nal source), Zhenjiang’s email is updated, and the

Hugo is deleted:

<addrbook>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zhenjhu@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

</addrbook>

Note that it is possible to preserve information in

the original source (in this case Josh’s information)

since in a update program we can choose to up-

date only part of the source and keep everything

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

8

else. This is not always supported by “bidirec-

tional” XML transformation languages: biXid [14],

for example, supports transformation of one XML

format into the other and vice versa, creating a

new XML document from scratch every time; con-

sequently, when biXid converts a more informative

format F1 into a less informative format F2, the

information exclusive to F1 will be lost and can-

not be recovered when converting a F2-formatted

document back to F1.

Our language is carefully designed to ensure that

the inferred relationship between sources and views

is deterministic, so that capturing it by a query

function is appropriate. In other words, there exists

a unique query function for each update program

written in our language. Moreover, its bidirectional

semantics satisfies two basic synchronization prop-

erties: that an update U consistently embeds view

information to the source:

U(s, v′) = s′ ⇒ Q(s′) = v′ UpdateQuery

and that it does not update already consistent

sources:

Q(s) = v ⇒ U(s, v) = s QueryUpdate

These two properties are commonly known as the

well-behavedness laws of lenses in the bidirectional

programming community [6].

The UpdateQuery property indicates that view

information must be fully embedded into the source

and cannot be arbitrarily discarded. This calls for

careful language design that helps the programmer

to manage view information and check that the

view is indeed fully embedded. In BiFluX, full em-

bedding is checked during compilation to guarantee

that the view can be reconstructed from the source.

For example, if we write an empty statement ({})
in the MATCH clause of the running example instead

of REPLACE $semail WITH $vemail, the program will

fail to compile, as it will be discovered that the view

variable $vemail is not used and hence not embed-

ded into the source.

Sometimes a part of the view contains only re-

dundant information in the sense that it can be

computed from other parts, and hence does not

need to be embedded. This situation can be ex-

plicitly described with a WHERE clause. For exam-

ple, suppose that in the view we include for each

name some extra indexing information that can be

derived from the name, and this indexing informa-

tion is not present in the source. At some point in

the BiFluX program for synchronizing this kind

of source and view, we might have two view vari-

ables $vname and $index, denoting a name and an

associating indexing information. We can embed

$vname into the name part of the source, but can-

not do so for $index, since $index does not have a

corresponding part in the source. In this case, we

indirectly embed $index into the source by speci-

fying the dependency between $index and $vname

as follows: WHERE $index := index[$vname]. After

that, $index is considered embedded, and we only

need to embed $vname into the source.

2. 4 Other update strategies

In this section, we show that BiFLuX is flexible

enough for describing other update strategies that

may better reflect the user’s intention.

For the running example we have explained, even

though the BiFLuX program in Fig. 3 gives a rea-

sonable update strategy for many situations, this

strategy is not the only one possible; for example,

deleting a person from the view may actually mean

that the person just moves to another institute in-

stead of disappearing from the source database. We

can easily describe this alternative update strategy

by modifying the UNMATCHS case, as shown in Fig. 5.

Running this second update moves people like

Hugo to a new institute, in this case “NCI”, pro-

ducing the updated source:

<addrbook>

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<affiliation>NCI</affiliation>

</person>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zhenjhu@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

</addrbook>

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

9

PROCEDURE niibook($source AS s:addrbook, $view AS v:niibook) =

UPDATE person[$sname AS s:name, $semail AS s:email, $affil AS s:affiliation] IN $source/person BY

{ MATCH -> REPLACE $semail WITH $vemail
| UNMATCHV -> CREATE VALUE

<person><name/><email/><affiliation>NII</affiliation></person>

| UNMATCHS -> REPLACE IN $affil WITH "NCI"

} FOR VIEW employee[$vname AS v:name, $vemail AS v:email] IN $view/employee
MATCHING SOURCE BY $sname VIEW BY $vname
WHERE $affil/text() = "NII"

Fig. 5 Another update strategy in BiFluX.

For simplicity, we omit updating his email address

accordingly in the BiFLuX program. In general,

we can describe even more complicated strategies

like conditionally delete or modify the person’s in-

formation in the UNMATCHS clause.

This behavior cannot usually be described using

the typical BX languages (e.g. lenses [8]), which are

designed from the perspective of get , as they only

provide one default update strategy for the put di-

rection, usually reflecting deletion on the view to

deletion on the source, and the user has no way of

specifying a different update strategy for the put

direction.

The main difference between BiFluX and Fos-

ter’s lenses [8] is that the emphasis is now on writ-

ing a put transformation instead of a get trans-

formation. This will allow a much more flexi-

ble and intuitive control over backward synchro-

nization strategies, by making several put design

choices explicit in the design of a bidirectional up-

date.

2. 5 General framework

The general architecture of our bidirectional up-

dating framework is illustrated in Fig. 6. A Bi-

FluX program is evaluated in two stages. First,

it is statically compiled against a source and a

view schema (represented as DTDs), producing a

bidirectional executable. The generated executable

can then be evaluated bidirectionally for particular

XML documents conforming to the DTDs: in for-

ward mode as a query Q, or in backward mode as

an update U .

The compilation of BiFluX has two stages: The

high-level BiFluX language is first normalized into

a clean core language with syntax simplification,

and then the core language is compiled into an

Fig. 6 Architecture of the BiFluX framework.

XML-oblivious language BiGUL. The second stage

is the key part that includes handling XML values

and regular expression types, checking necessary

bidirectional transformation constraints and bidi-

rectionalizing the core language by dealing with

paths, composition etc. We will explain the core

language, introduce BiGUL, and describe the com-

pilation rules from core to BiGUL in the following

sections.

3 Core Language

The high-level language presented in Sec. 2 has

a user-friendly syntax, but its operations are over-

lapping and complex. Following the design of Flux

and as standard for many other languages, we intro-

duce a core update language of canonical operations

whose semantics are easier to define, and high-level

BiFluX are normalized into this core language.

To give the reader a taste of the core language,

the core program for the address book running ex-

ample is shown in Fig. 7. Roughly speaking, it tra-

verses down a source path $source/child/ ::person

to get a list of people, then retrieves all the employ-

ees by the view path $view/child/ ::employee, and

finally uses a six-argument alignkey operation to

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

10

$source / child / :: person

[[alignkey

(case self of

person [$sname as s : name, $semail as s : email , $affiliation as s : location] →
$affiliation / child / :: text() = "NII")

(case self of

person [$sname as s : name, $semail as s : email , $affiliation as s : affiliation] → $sname)

(case self of

employee [$vname as v : name, $vemail as v : email] → $vname)

(caseS self of

person [$sname as s : name, $semail as s : email , $affiliation as s : affiliation] →
caseV self of

employee [$vname as v : name, $vemail as v : email] →
$semail [[replace] $vemail];

$sname [[replace] $vname]

)

(insert person [name [""], email [""], affiliation ["NII"]])

delete]

$view / child / :: employee]

Fig. 7 Core program of the institutional address example in Fig. 3.

update this list of people by the list of employees.

3. 1 Bidirectionalizable updates

Unlike conventional XML update languages, our

core update language mainly consists of bidirection-

alizable updates. Their names suggest what their

update semantics are, but in Sec. 5 they will be

interpreted as BXs [15] that update a source docu-

ment given a view document or query a source doc-

ument to compute its view fragment. The grammar

of core bidirectionalizable updates b is as follows:

b ::= skip | fail | replace | p[b] | [b]ev | b; b′
| alignpos ef b c r

| alignkey ef ems emv b c r

| caseS p of
−−−−−−−−→
pat → b | a

| caseV ev of
−−−−−→
pat → b

| ifS e then b else b′

| ifV e then b else b′

| iter b | view x := ev in b | P(ps , ev)

We will informally describe their update semantics

below.

The operation skip keeps the source unchanged

provided that the view is empty, the fail opera-

tion aborts an update, and the replace operation

replaces the source with the view.

The operation p[b] traverses the source along a

source path p, and runs a further update b on the

sub-source. For example, in Fig. 7, we have a source

path $source/child/ ::person followed by a slightly

complex bidirectional update b. After evaluation of

this source path, the source will be a list of people,

and b is run on this list.

Dually, the operation [b]ev changes the current

view by evaluating an expression ev on it and uses

the result as the new view for the update b. In

Fig. 7, after evaluation of the expression on the

last line, i.e. the path $view / child / :: employee,

the view for the inner alignkey will be a list of

employees.

Composition b1; b2 updates a part of the source

with b1, and another part of the source with b2. To

guarantee the UpdateQuery property, the same

part of the source cannot be updated twice. This

is enforced by requiring that the two statements

b1 and b2 update different source variables. For ex-

ample, in Fig. 7, we have a composition statement

as follows:

$semail [[replace] $vemail];

$sname [[replace] $vname]

Each one is in the form of p[[b]ev]. The first one

replaces source email ($semail) with view email

($vemail), and the second one replace source name

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

11

($sname) with view name ($vname).

The two special alignment statements (alignpos

and alignkey) update a source sequence using a

view sequence. They receive a source filtering ex-

pression ef which evaluates to a boolean, and match

source elements satisfying ef with view elements

by position (alignpos) or by key (alignkey). In

the latter case, keys are computed from the source

and view respectively by evaluating two expres-

sions ems and emv . In Fig. 7, the three expres-

sions ef , ems , and emv for the alignment operation

(alignkey) are case expressions. Since ef and ems

are evaluated on the source, the self in ef and ems

refers to the current source element (i.e. a person),

while the self in emv refers to the current view

element (i.e. an employee).

After aligning the source sequence with the view

sequence, there are three cases to consider: For

matched source–view element pairs, we use a bidi-

rectionalizable statement b to synchronize them;

for an unmatched view, we use a create state-

ment c to create a suitable source to match with

the view; for an unmatched source, we use a re-

cover statement r to either delete or transform it.

Create statements c are simply unidirectional up-

dates which will be introduced in Sec. 3. 3. Recover

statements r are enriched unidirectional updates of

the form:

r ::= delete | u | if e then r else r ′

| case e of
−−−−−→
pat → r

We can use delete for deleting an unmatched

source, or unidirectional updates to modify an un-

matched source so that the es filtering expression

evaluates to false.

The core language also provides two kinds of

conditionals (ifS and ifV) and case statements

(caseS and caseV), whose expressions or paths

are evaluated on the source and view respectively.

The source adaptation mechanism introduced in

Sec. 2. 2. 6 is handled by caseS at this level, which

can have adaptive branches. Case statements are

used in Fig. 7 for decomposing the source and view

by pattern matching.

There are still some operations that do not ap-

pear in Fig. 7. The operation iter b embeds the

same view into each element of a source sequence.

A procedure call P(ps , ev) updates the sub-source

at the end of the source path ps using the re-

sult of evaluating the view expression ev as the

view. Procedures may be recursive. The statement

view x := ev in b states that the value for a view

variable x can be computed from the rest of the

view using the view expression ev , and then runs b

using the remaining view.

3. 2 Expressions and paths

In BiFluX, updates instrumentally use XQuery

expressions, XPath paths and XDuce patterns to

manipulate XML data. Different expressions are

used for different purpose: general expressions are

arbitrary which are evaluated into a value, view

expressions are a subset of them that need to be

invertible, and source paths are again a subset of

general paths because they are used to narrow the

focus.

3. 2. 1 General expressions and paths

We write expressions e in a minimal XQuery-like

language, which is a variant of the μXQ core lan-

guage proposed in [5]:

e ::= () | e, e ′ | n[e] | p | let pat = e in e ′

| e ≈ e ′ | if e then e ′ else e ′′

| for x in e return e ′

| case e of
−−−−−→
pat → e ′

Note that there are no case expressions in μXQ as

they can be emulated by conditional expressions;

we extend our expression language with case ex-

pressions to simplify the translation from the Bi-

FluX surface language. We differentiate paths p

in a core path language that represents a minimal

dialect of XPath:

p ::= self | child | :: nt | where e | p / p′

| x | w | true | false
nt ::= n | text() | node()

To simplify the formal treatment, we consider node-

tests ::nt that apply to atomic values and where

clauses where e that filter values satisfying an ex-

pression e. As syntactic sugar, we write p :: nt �
p/::nt , p[e] � p/where e, and p/n � p/child::n.

3. 2. 2 View expressions and paths

Restrictions have to be placed on expressions

used in the statement [b]e, since such expressions

should express invertible computations to allow

the statement to be bidirectionalized. The al-

lowed subset of the expressions and paths defined

in Sec. 3. 2. 1 is as follows:

e ::= () | e, e ′ | n[e] | p | w | true | false
p ::= x | self | child | ::nt | p / p′

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

12

�|||| UPDATE pat IN p BY vs FOR VIEW pat′ IN p′ MATCHING SOURCE BY ps VIEW BY pv ||||�bUpd(eS , eV , �x = �e)

= p[[b]p′]
where ((sSV ,msV ,msS), ps

′, pv
′) = (splitVStmt(vs), case self of pat → ps , case self of pat ′ → pv)

b = alignkey (case self of pat → eS) p
′
s p′

v �|||| sSV ||||�bMStmt(pat , pat
′, ps , pv) �||||msV ||||�cMStmt(pat

′) �||||msS ||||�rMStmt(pat)

splitVStmt : VStmt → (Maybe Stmt ,Maybe Stmt ,Maybe Stmt)

splitVStmt (MATCH → s) = (Just s,Nothing ,Nothing)

splitVStmt (UNMATCHV → s) = (Nothing , Just s,Nothing)

splitVStmt (UNMATCHS → s) = (Nothing ,Nothing , Just s)

splitVStmt (MATCH → s ’|’ vs) = (Just s,msV ,msS)

where splitVStmt (vs) = (Nothing ,msV ,msS)

splitVStmt (UNMATCHV → s ’|’ vs) = (msSV , Just s,msS)

where splitVStmt (vs) = (msSV ,Nothing ,msS)

splitVStmt (UNMATCHS → s ’|’ vs) = (msSV ,msV , Just s)

where splitVStmt (vs) = (msSV ,msV ,Nothing)

Fig. 8 BiFluX UPDATE FOR VIEW statement normalization.

3. 2. 3 Source paths

A source path p, as used in the statement p[b],

narrows the source focus to only part of the cur-

rent source. Like in Flux, not all paths can be

used to change the source focus: We do not allow

constant string paths (w) and boolean paths (true

and false), as they are meaningless for focus nar-

rowing. Also, only the self and child axes are

supported; this ensures that only descendants of

the source focus can be selected as the new source

focus and that a selection contains no overlapping

elements. To sum up, the valid source paths are as

follows:

p ::= x | self | child | :: nt | p / p′

3. 3 Unidirectional updates

Unidirectional updates are used in the create

statement of the alignment operations (alignpos

and alignkey). Our core unidirectional updates are

adapted from the core Flux update language [4]:

u ::= skip | u; u ′ | insert e | delete
| if e then u else u ′ | case e of

−−−−−→
pat → u

| p[u] | left[u] | right[u] | children[u]
These include standard operations such as the

no-op skip, sequential composition, conditionals,

and case expressions. The basic operations are

insert e, which inserts a value given an empty

sequence as focus; and delete, which replaces any

value with the empty sequence. We can also ap-

ply an update in a specific direction (that traverses

down a path p, moves to the left or right of

a value, or focuses on the children of a labeled

node).

3. 4 BiFluX to Core Update

Normalization

The translation from the high-level BiFluX lan-

guage to the core language is usually referred to as

normalization in languages like XQuery and Flux.

Since most translation rules are straightforward

(which can be seen by comparing Fig. 3 and Fig. 7),

we will only explain the special UPDATE FOR VIEW

statements as shown in Fig. 8. The splitVStmt

function parses a VStmt into a matching statement

and two optional unmatched-view and unmatched-

source statements. The matching statement is

translated using �|||| − ||||�bMStmt(pats, patv, ps, pv) that

accepts source/view patterns and paths. The

source/view patterns (pats, and patv) are used to

do a pattern match on the current source and view,

to decompose them into smaller subparts, and the

source/view paths (ps, and pv) are used to extract

the source and view keys for matching; the paths

are also used to generate a replace statement that

updates the source key with the view key, guaran-

teeing that the updated source still matches with

the view. The translated core expression first gives

a case analysis on the current source using pat

and view using pat′, then executes the core state-

ment normalized form surface language. Optional

unmatched-view statements are translated using a

function �|||| − ||||�cMStmt(mpat) that takes an extra op-

tional view pattern and returns a core create up-

date; Optional unmatched-source statements are

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

13

translated using a function �|||| − ||||�rMStmt(mpat) that

takes an extra optional source pattern and returns

a core recover update; if no UNMATCHS clause is de-

fined, all unmatched source elements are deleted by

default.

The translation denotes a partial function from

high-level BiFluX to core BiFluX. For exam-

ple, INSERT is not supported for bidirectional up-

dates, UPDATE FOR VIEW is not supported for unidi-

rectional updates, and CREATE is only supported un-

der UNMATCHV or UNMATCHS clauses, respectively. We

assume that paths and expressions are expressed

in terms of our core languages; this is standard

practice as normalization of XQuery expressions or

XPath paths can be done independently.

4 BiGUL

The core language presented in Sec. 3 still re-

tains XML-specific details from the high-level Bi-

FluX and freely uses pattern matching and vari-

ables to manage data-flow, making it difficult to

directly give a formal bidirectional semantics to

the language. To achieve bidirectionality more re-

liably, we designed a generic bidirectional update

language BiGUL [15], in which the data represen-

tation is XML-free and the data-flow management

is done in a point-free style. One of the design goals

of BiGUL is to serve as the underlying engine for

BiFluX —we will compile the core language into

BiGUL in Sec. 5. The advantage of using BiGUL is

that it is completely formally verified in the depen-

dently typed language Agda [19] to guarantee that

any program written in BiGUL satisfies the BX

properties. We have ported it into Haskell as an

embedded domain-specific language, and the com-

pilation rules in Sec. 5 can freely use Haskell’s lan-

guage features to produce BiGUL programs.

The syntax of BiGUL is shown in Fig. 9, which

originates from BiFluX’s core language, and thus

many operations —e.g., Replace, Fail, and Skip—

resemble those presented in Sec. 3. 1. In this sec-

tion, we will mainly focus on the operations that

are different from the core language.

One important new operation is Update, which

is used to decompose a source into parts by pat-

tern matching, and then update each part by a

separate BiGUL program. The patterns used are

called update patterns (upat): UVar updates the

bigul ::= Replace | Fail | Skip | Update upat

| Iter bigul | CaseS −−−−−−−−−→
caseSBranch

| CaseV
−−−−−−−−−→
caseVBranch

| Align filter match bigul create conceal

| RearrS sRearr bigul

| RearrV vRearr bigul

upat ::= UVar bigul | UIn upat | UProd upat upat

| UConst a | ULeft upat | URight upat

caseSBranch ::= (predicate, branch)

branch ::= Normal bigul

| Adaptive adaptSource

caseVBranch ::= (predicate, bigul)

Fig. 9 Syntax of BiGUL.

current source with a bigul statement, UIn updates

the children of the current source, UProd decom-

poses the source into a product of two parts and

updates each part separately, UConst matches the

current source with a given value, and ULeft and

URight handles the situation in which source is a

choice. The view for the Update operation should

have the same structure as the update pattern; to

rearrange the view into that structure, a new oper-

ation RearrV is introduced, which computes a new

view by a simple invertible function (like what [e]b

does). Sometimes the source also needs to be rear-

ranged for updating, so a dual operation RearrS is

introduced.

Here is a small example about Update and

RearrV. Suppose that the source is a piece of per-

sonal information which have name, email, and af-

filiation as its children, and a view that is a pair of

name and email. If we want to update the source’s

name and email with the information from view,

we can write a BiGUL program like this:

RearrV

(λ(vname, vemail) → (vname, (vemail , ())))

(Update (UIn (UProd (UVar Replace)

(UProd (UVar Replace)

(UVar Skip)))))

We first rearrange the view pair (vname, vemail)

into a triple, adding an empty view element at the

end in order to match with the update pattern (also

matching a triple), then update the source by using

UIn in order to update its children, which is a prod-

uct of elements, and finally decompose the product

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

14

by two UProd patterns. After the source is decom-

posed into a triple, we use the updates Replace,

Replace, and Skip associated with the UVar pat-

terns to replace the name and email and leave the

affiliation unchanged.

The Align operation in BiGUL unifies the two

core operations alignpos and alignkey into one,

based on the observation that alignpos can be

regarded as a special case of alignkey that uses

position as the key. The boolean filter function

corresponds to ef , while the boolean match func-

tion specifies when a source and view element are

matched. The remaining three arguments deal with

the three cases arising from source–view alignment:

the bigul program deals with matched pairs, the

create function creates a new source from an un-

matched view element, and the conceal function

deletes or modifies an unmatched source element.

CaseS and CaseV are two kinds of case analysis on

either source or view. They differ from their coun-

terparts in the core in two aspects: BiGUL’s CaseS

and CaseV always match the whole source or view

with the branches, and the source or view is fed into

a boolean function (predicate) to decide whether it

matches a branch. BiGUL does not include condi-

tionals like ifS and ifV in the core, since they are

subsumed by CaseS and CaseV.

5 Core Compilation

The core language is compiled into BiGUL,

which is the most complex part of this work since

details about XML and bidirectionality are dealt

with here. For the address book running example,

the normalized core program in Fig. 7 is compiled

into the BiGUL program in Fig. 10. The com-

pilation (Sec. 5. 2) basically consists of five parts:

translating the core bidirectionalizable updates to

BiGUL operations (Sec. 5. 2. 3, Sec. 5. 2. 4, and

Sec. 5. 2. 5), source paths into BiGUL update pat-

terns (Sec. 5. 2. 1), view expressions into BiGUL’s

view rearrangement operation (Sec. 5. 2. 2), general

expressions into Haskell expressions (Sec. 5. 3), and

unidirectional updates into Haskell functions. The

more interesting part is, naturally, the translation

of the bidirectionalizable updates, and we will de-

vote this section to this part. The translation of

the unidirectional updates are straightforward and

in fact tedious, so we omit them in this paper for

brevity.

We should emphasize that we intend the compi-

lation rules to serve as the (preliminary) definition

of BiFluX semantics. That is, instead of defin-

ing a semantics for the surface language and then

proving that the compilation rules preserve the se-

mantics, we will rely on the intuitive understand-

ing of what BiFluX programs should do —as pre-

sented in Sec. 2— and capture that intuition with

the compilation rules. Admittedly, it is hard to

make a semantics defined by compilation as clear as

one hopes for, but such a semantics is usually suffi-

cient for an experimental language. Our main pur-

pose of designing BiFluX is to experiment with the

paradigm of bidirectional programming by update,

and we expect to make further changes and exten-

sions (some of which will be mentioned in Sec. 7)

to the language. We plan to give a better formal-

ization, in particular specifying a semantics for the

surface language, after the language is more mature

and stabilized.

What we have refrained from saying explicitly up

until now is that all of the high-level BiFluX lan-

guage, the core language, and BiGUL are typed.

We have omitted the typing rules for the languages

from the paper since they are in general straightfor-

ward. The compiler, however, sometimes needs to

use type information in a core program to generate

appropriate BiGUL code, and hence the compila-

tion rules need to refer to the types. Therefore, be-

fore presenting the compilation rules, we first give

an account of the type system used by the core lan-

guage in Sec. 5. 1.

5. 1 XML values and regular expression

types

As several other XML processing languages [12]

[4] [5], we consider a type system of regular expres-

sion types with structural subtyping†2:
Atomic types

α ::= bool ‖ string ‖ n[τ]

Sequence types

τ ::= α ‖ () ‖ τ | τ ′ ‖ τ, τ ′ ‖ τ∗ ‖ X

Atomic types α ∈ Atom are primitive booleans,

strings or labeled sequences n[τ]. Sequence types

τ ∈ Type are defined using regular expressions,

†2 We use ‖ for syntax alternatives in the type gram-

mar to prevent confusion.

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

15

Update (UIn (UVar

(RearrV

(λ(Niibook hEmployeelst) → hEmployeelst)

(Align

(λhPerson →
case hPerson of {Person (sName, sEmail , sAffil) → out sAffil ≡ "NII"})

(λhPerson hEmployee →
case hPerson of {Person (sName, sEmail ,Affil) → sName }
≡ case hEmployee of {Employee (vName, vEmail) → vName })

(Update (UVar

(CaseS [

((λhs → case hs of {Person (sName, (sEmail , sAffil)) → True; → False }),
Normal (RearrS (λPerson (sName, (sEmail , sAffil)) → (sName, (sEmail , sAffil)))

(RearrV (λhv → (hv , ()))

(RearrV (λ(hv , hvv) → (hv , hvv))

(CaseV [

((λ(hv ,) → case hv of {Employee (vName, vEmail) → True; → False }),
RearrV (λ(Employee (vName, vEmail), ()) → (vName, hEmail))

(RearrS (λ(sName, (sEmail , sAffil)) → ((sEmail , sName), sAffil))

(RearrV (λ(vName, vEmail) → ((vEmail , vName), ()))

(Update (UProd

(UProd (UVar (Update (UVar (RearrV (λvEmail → vEmail) Replace))))

(UVar (Update (UVar (RearrV (λvName → vName) Replace))))

(UVar Skip)))))))])))))])))

(λ(Employee (vName, vEmail)) → Person ("", ("", "NII")))

(λ → Nothing)))))

Fig. 10 Compiled BiGUL program of the address example.

including empty sequence (), alternative choice

τ | τ ′, sequential composition τ, τ ′, iteration τ∗

or type variables X ; choice and composition are

right-nested. We define the usual τ+ = τ, τ∗ and

τ ? = τ | (). Types can also be recursively defined:

Type definitions

τD ::= α ‖ () ‖ τD | τ ′
D ‖ τD , τ

′
D ‖ τD

∗

Type signatures

E ::= · ‖ E , type X = τD

Type definitions τD are sequences with no top-level

variables (to avoid non-label-guarded recursion [5]).

A type signature E is a set of named type defini-

tions of the form X = τD , and is well-formed if no

two types have the same name and all type vari-

ables in definitions are declared in E . We write

E(X) for the type bound to X in E . Hereafter, we

will assume the signature E to be fixed.

In traditional XML-centric approaches [12] [5],

values are encoded using a uniform representation

that does not record the structure that types im-

pose on values. This “flat” representation is eco-

nomical and simplifies subtyping, but makes it

harder to realize that a value belongs to a type

and therefore to integrate regular expression fea-

tures into functional languages with non-structural

type equivalence, such as Haskell or ML. In this

paper, we instead consider a structured represen-

tation of values (in line with values of algebraic

data types) that keep explicit annotations which,

in a way, witness how to parse a flat value as an

instance of a type [17]:

Atomic values

t ::= true | false | w | n[v]
Forest values

v ::= t | () | L v | R v | (v , v) | [v0, . . . , vn]
Atomic values t ∈ Tree can be true, false ∈ Bool,

strings w ∈ Σ∗ (for some alphabet Σ), or single-

ton trees n[v] with a node label n. Forest values

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

16

v ∈ Val include the empty sequence (), left- L v or

right- R v tagged choices, binary sequences (v , v)

and lists of arbitrary length [v0, . . . , vn]. The se-

mantics of a type τ denotes a set of values �τ�

that is defined as the minimal solution (formally

the least fixed point [12]) of the following set of

equations:

�()� � {()} �string� �Σ∗

�bool� � {true, false} �X � � �E (X)�

�n[τ]� � {n[v] | v ∈ �τ�}
�τ, τ ′� � {(v , v ′) | v ∈ �τ�, v ′ ∈ �τ ′�}
�τ | τ ′� � {L v | v ∈ �τ�} ∪ {R v | v ∈ �τ ′�}
�τ∗� � { [v0, . . . , vn] | v0, . . . , vn ∈ �τ�,n � 0}

In our context, values in the type semantics pre-

serve the type structure. We will denote flat values

ft ∈ FTree and fv ∈ FVal (dropping left/right

tags, parenthesis and list brackets) by:

Flat atomic values

ft ::= true | false | w | n[fv]
Flat forest values

fv ::= () | ft , fv
The notion of subtyping plays a crucial role in

XML approaches with regular expression types. A

type τ1 is said to be a subtype of τ2, written τ1<:τ2,

if the flat values belonging to τ1 are also values of

τ2, i.e. �τ1�flat ⊆ �τ2�flat . Since we retain a struc-

tured representation of values, upcasting a value v1

of type τ1 into a supertype τ2 requires more than a

proof of subtyping: we must also change v1 into a

value v2 that contains the same flat information as

v1 but conforms to the structure of τ2. This prob-

lem has been considered in [17], that introduces a

subtyping algorithm as a proof system with judg-

ments of the form
 τ1 <: τ2 ⇒ c, that we treat

as a “black box”. In BX terms, c : τ2 ←→� τ1 is

called a canonizer [9], which is a bit like a lens

from τ2 to τ1 that comprises a total upcast func-

tion ucast :τ1 → τ2, and a partial downcast function

dcast : τ2 → τ1. In our sense, canonizers satisfy two

properties stating that they only handle structure:

ucast v1 ∼ v1 Up∼
dcast v2 = v1 ⇒ v1 ∼ v2 Down∼

The equivalence relation ∼ used above ignores

structure and relates values parsing the same data

using different markup, e.g., L v ∼ R v; formally,

v ∼ v′ � flat(v) = flat(v′)
where the function flat : Val → FVal flattens a

structured value.

5. 2 Compilation of Bidirectionalizable

Updates

We can now move on to the compilation rules

from the core language to BiGUL. The first three

basic operations —replace, skip, and fail— are

simply compiled into their counterparts in BiGUL.

The rest are explained in the following subsections.

5. 2. 1 Source Paths

The p[b] operation in Sec. 3. 2. 3 updates part of

the source, and in BiGUL this behavior is imple-

mented by the Update operation. The major dif-

ference between the two operations is that the for-

mer uses a source path to point to the sub-source,

while the latter uses an update pattern to decom-

pose the source and execute a sub-update on the

sub-source. A source path should thus be com-

piled into a “pattern with a hole”, into which we

can fill in the sub-update. Since we can use what-

ever the host language Haskell offers to describe the

compilation, we can simply express the semantics

of a source path —i.e. a “pattern with a hole”—

as a function mapping a BiGUL update to an up-

date pattern. To be able to define the semantics of

source paths compositionally, however, we instead

compile source paths to functions mapping a pat-

tern to another pattern, and these functions will be

easily composable. After a source path is compiled

into such a function, we can apply the function to

UVar bigul where bigul is the sub-update. The re-

sulting update pattern can then be supplied as the

argument to an Update operation.

The compilation rules are shown in Fig. 11. Γ is

an environment that maps variables to their type,

and always include a special variable ‘.’ for record-

ing the type of the current focus which is useful for

paths like self. When Γ contains only the focus,

we write {τ } for {(., τ)} for simplicity.

The compilation of a variable path (x) needs a

helper function genupat to create an update pat-

tern for the current environment Γ. As Γ may have

more than one source variables, others except x in

fact will not be updated (the special variable ‘.’

will not be considered during this computation),

and thus we use UVar Skip to skip them and com-

bine all of them by UProd. The construction of

upat from Γ follows the alphabetical order of the

variables in Γ in order to keep the generation of

patterns consistent. For example, suppose that we

have an environment Γ = {(y , τ2), (x , τ1)} and a

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

17

Γ
sp p ⇒ f

Γ
sp x ⇒ λupat .genupat(Γ, x , upat) {τ }
sp self ⇒ id

τ : n [τ1]

{τ }
sp child ⇒ UIn

τ <: nt

{τ }
sp :: nt ⇒ id

τ ��<: nt

{τ }
sp :: nt ⇒ const (UVar Skip)

Γ
sp p1 ⇒ f1 Γ
itersp p2 ⇒ f2

Γ
sp p1 / p2 ⇒ f1 ◦ f2

Γ
itersp p ⇒ f

{()}
itersp p ⇒ const (UConst ())

{τ }
sp :: nt ⇒ f

{τ }
itersp :: nt ⇒ f

{τ }
sp :: nt ⇒ f

{τ∗}
itersp :: nt ⇒ f

{τ1}
itersp :: nt ⇒ f1 {τ2}
itersp :: nt ⇒ f2

{(τ1, τ2)}
itersp :: nt ⇒ f1 × f2

{α}
sp p ⇒ f

{α}
itersp p ⇒ f

{E(X)}
itersp p ⇒ f

{X }
itersp p ⇒ f

{τ1}
itersp p ⇒ f1 {τ2}
itersp p ⇒ f2

{τ1 | τ2}
itersp p ⇒
λupat .UVar (CaseS [(isLeft , Normal (Update (f1 upat))), (isRight , Normal (Update (f2 upat)))])

Fig. 11 Compilation of source paths.

bidirectionalizable update x [replace] in which the

path is a variable x . Then the generated function is

λupat .(UProd upat (UVar Skip)). Variable y will be

skipped, and x will be updated using UVar Replace.

self is compiled into the identity function, and

child is compiled into UIn for updating the chil-

dren of the current focus. For a node-test path

::nt , if the current source type is a subtype of nt ,

then the current source is returned; otherwise it is

skipped. (const is a Haskell function that always

return the first argument, ignore the second one.)

Given a path p1 / p2, the result type of p1 can

be any one of the types introduced in Sec. 5. 1, so

we define rules that enumerate all the cases. When

the result type is τ∗ and the path p2 is a ::nt , an id

function is returned if τ is a subtype of nt , or other-

wise it is skipped; when the result type is {τ1 | τ2},
the translated function involves a case analysis on

the current source in order to perform different up-

dates.

For Fig. 7, there is a source path $source /

child/ ::person, which is compiled into id ◦ UIn ◦
id , i.e. UIn.

5. 2. 2 View Expressions

This subsection gives the compilation rules for

view expressions described in Sec. 3. 2. 2. In the

update direction, a view expression is regarded as

a function computing a new view from values bound

Γp
v e ⇒ hexp

Γp
v () ⇒ () Γp
v w ⇒ w

Γp
v true ⇒ True Γp
v false ⇒ False

Γp
v p ⇒ Γp(p)

Γp
v e ⇒ hexp

Γp
v n[e] ⇒ hn hexp

Γp
v e1 ⇒ hexp1 Γp
v e2 ⇒ hexp2

Γp
v e1, e2 ⇒ (hexp1, hexp2)

Fig. 12 Compilation of view expressions.

to the view variables; conversely, in the query di-

rection, we compute the values for the view vari-

ables by inverting the function. We thus restrict

the forms of expressions that can be used for this

purpose, requiring them to be invertible.

In detail: A view expression e is compiled into

a lambda expression used as the first argument to

a rearrangement (RearrV) operation in BiGUL. In

order to construct this lambda expression, we first

compute a set of paths that are used in e. A path

can be used in multiple locations in the expression,

while two different paths with the same root vari-

able are not allowed. To be able to check the invert-

ibility of e, complex paths are not allowed; instead,

the programmer should use pattern matching to

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

18

b ⇒ bigul
skip ⇒ Skip fail ⇒ Fail replace ⇒ Replace

b ⇒ bigul

iter b ⇒ Iter bigul

(s1, v1) = vars(b1) (s2, v2) = vars(b2) b1 ⇒ bigul1 b2 ⇒ bigul2

b1; b2 ⇒ RearrS (s ≺ ((s1, s2), s \ (s1 ∪ s2))) (RearrV (v ≺ ((v1, v2), ()))

(Update (UProd (UProd (UVar bigul1) (UVar bigul2)) (UVar Skip))))

x ∈ dom(v) v \x ⇒ (Γvar , hpat) Γvar
v e ⇒ hexp b ⇒ bigul

view x := e in b ⇒ RearrV (v ≺ (v \x , x)) (Dep λhpat .hexp bigul)

Γs
sp p ⇒ f b ⇒ bigul

p[b] ⇒ Update (f (UVar bigul))

b ⇒ bigul
v e ⇒ fe

[b]e ⇒ RearrV fe bigul

Γs
 s ⇒ (Γvar , hpat) Γvar
 e ⇒ hexp b1 ⇒ bigul1 b2 ⇒ bigul2
ifS e then b1 else b2 ⇒ CaseS [(λhpat .booleanτ (hexp), Normal bigul1), (λ .True, Normal bigul2)]

Γv
 v ⇒ (Γvar , hpat) Γvar
 e ⇒ hexp b1 ⇒ bigul1 b2 ⇒ bigul2
ifV e then b1 else b2 ⇒ CaseV [(λhpat .booleanτ (hexp), Normal bigul1), (λ .True, Normal bigul2)]

{hs }
 e ⇒ hexp b ⇒ bigul
create c ⇒ fc
recover r ⇒ fr

alignpos e b c r ⇒ Align (λhs.hexp) (λ .True) bigul fc fr

{hs }
 ef ⇒ hexp {hs }
 ems ⇒ hexpms {hv }
 emv ⇒ hexpmv

b ⇒ bigul
create c ⇒ fc
recover r ⇒ fr

alignkey ef ems emv b c r ⇒ Align (λhs.hexp) (λhs hv .(hexpms ≡ hexpmv)) bigul fc fr

Γs
sp p ⇒ f
−−→
Γs
 pat ⇒ (hpat ,Γpat) b ⇒ bigul Γpat
u a ⇒ u

caseS p of
−−−−−−−−→
pat → b | a ⇒ Update (f (UVar (CaseS [λhs.case hv of {hpat i → True; → False},−−−→

((Normal (RearrS (s ≺ vars(pat i)) bigul i)) | (Adaptive ui))])))

Γvar
v e ⇒ hexp Γvar
 hpatv
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Γv
 pat ⇒ (hpat ,Γpat) b ⇒ bigul let vare bind to e

caseV e of
−−−−−→
pat → b ⇒ RearrV (v ≺ (vars(e), v \vars(e)))

(RearrV ((vars(e), v \vars(e)) ≺ ((vare , v \vars(e))))
(CaseV [λ(hv ,).case hv of {hpat i → True; → False},−−→
RearrV ((vars(pat i), v \vars(e)) ≺ vars(pat i) ∪ v \vars(e)) bigul i]

create c ⇒ fc
recover r ⇒ fr

u u ⇒ f

create u ⇒ f
recover delete u ⇒ λ .Nothing

{hs }
 e ⇒ hexp
recover r1 ⇒ f1
recover r2 ⇒ f2

recover if e then r1 else r2 ⇒ if hexp then f1 else f2

{hs }
 e ⇒ hexp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
 pat ⇒ (hpat ,Γpat) Γpat
recover r ⇒ f

recover case e of
−−−−−→
pat → r ⇒ λhs.let hs ′ = hexp in case hs ′ of {−−−−−−−−−−→hpat → f (Γpat)}

Fig. 13 Compilation of bidirectional updates.

fully decompose a view into small pieces. Let us

give a counter-example: Suppose that $vbookstore

contains a list of books and each book has a list

of authors. The path $vbookstore/book/author re-

trieves authors of all the book in $vbookstore as a

single list. This path is not invertible since, in the

query direction, there is no way to determine how

to divide the list of authors into sublists for the

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

19

books.

Our next job is to compute a Haskell pattern

(hpat) from the above set of paths, and an en-

vironment (Γp) that maps each path to a fresh

Haskell variable name, which will be used for view

expression compilation. Fig. 12 gives the com-

pilation rules for constructing a Haskell expres-

sion (hexp) from a view expression under the en-

vironment Γp . The most interesting case is that

when the view expression is a path p, it suf-

fices to fetch the corresponding Haskell variable

name from Γp —there is no need to analyze p.

The view expression in our running example is a

path $view / child / :: employee, and the compiled

lambda expression is (λ(Niibook hEmployeelst) →
hEmployeelst), as shown in the third line of Fig. 10.

A related operation is view x := e in b, which

is compiled into a combination of two operations in

BiGUL, as shown in Fig. 13: a view rearrangement

RearrV to separate x from the rest of the view, and

a Dep operation stating that the value for x can be

computed from the other part.

5. 2. 3 Composition

The compilation of composition statement b1; b2

guarantees that b1 and b2 update different parts of

the source by splitting and rearranging the source

into three parts, one to be updated by b1, another

by b2, and the third part to be kept unchanged.

Specifically, the core composition statement

b1; b2 will be compiled into a source rearrangement

(RearrS), a view rearrangement (RearrV), followed

by an Update operation. In the compilation rule for

composition in Fig. 13, s denotes the set of source

variables, while s1 and s2 are the source variables

used in b1 and b2 respectively. We use an abstract

notation s ≺ ((s1, s2), s3) for the lambda expression

that rearranges a tuple of values for the variables

in s to a triple whose components are values for the

variables in s1, s2, and s \ (s1 ∪ s2) respectively.

The view is similarly rearranged. Finally, with an

Update, the three parts of the source are updated

using the three parts of the view (the last of which

is empty) by Replace, Replace, and Skip.

To illustrate, let us look at the composition used

in the running example:

$semail [[replace] $vemail];

$sname [[replace] $vname]

At this point, the source is of the form

($sname, $semail , $affiliation) (which is a simpli-

fied representation for expository purpose), and

the source rearranging lambda expression we

synthesize is λ($sname, $semail , $affiliation) →
(($semail , $sname), $affiliation), since the left-

hand side statement updates $semail , the right-

hand side statement updates $sname, and

$affiliation is untouched. Similarly the view rear-

rangement is synthesized, followed by the Update

operation. The compiled BiGUL fragment can be

found in Fig. 10.

5. 2. 4 Cases and conditionals

The source case statement is essentially compiled

into CaseS in BiGUL wrapped in an Update due to

the need to compile the source path. Each source

pattern pat i is compiled into a Haskell pattern (by

the rules shown in Fig. 14), a boolean function, and

a source rearrangement. An adaptive operation ai

is compiled into a plain Haskell function which com-

putes a new source from the current one.

The view case statement, on the other hand, is

compiled into CaseV, along with “three” view rear-

rangement operations. The first rearrangement op-

eration splits the view into those used in the view

expression and the rest; the second one evaluates

the expression, while keeping the rest as it is; in

each branch, after matching the result of evaluating

the expression with the pat i , the third rearrange-

ment merges the values bound to the variables in

the pat i and the rest back into one view.

The conditional operations ifS and ifV choose

between two statements b1 or b2 according to a

boolean expression e, and both of them are trans-

lated into case statements in BiGUL (CaseS and

CaseV respectively).

5. 2. 5 Source-view alignment

As described toward the end of Sec.4, the core

alignment operations alignpos and alignkey cor-

respond closely to BiGUL’s Align operation. The

 pat ⇒ (hpat ,Γpat)

 τ ⇒ (, ∅)
 x as τ ⇒ (hx , {(x , hx)})

 () ⇒ ((), ∅)

 pat ⇒ (hpat ,Γpat)

 n[pat] ⇒ (hn hpat ,Γpat)

 pat1 ⇒ (hpat1,Γpat1)
 pat2 ⇒ (hpat2,Γpat2)

 pat1, pat2 ⇒ ((hpat1, hpat2),Γpat1 ∪ Γpat2)

Fig. 14 Compilation of patterns.

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

20

Γvar
 e ⇒ hexp

Γvar
 e ⇒ hexp
 τ <: τ ′ ⇒ c

Γvar
 e ⇒ ucast c hexp

Γvar
 e ⇒ hexp

Γvar
 n[e] ⇒ hn hexp

Γvar
 e1 ⇒ hexp1 Γvar
 e2 ⇒ hexp2

Γvar
 e1, e2 ⇒ (hexp1, hexp2)

Γvar
 e1 ⇒ hexp1

Γvar ∪ {(vars(pat), hvars)}
 pat ⇒ hpat Γvar ∪ {(vars(pat), hvars)}
 e2 ⇒ hexp2

Γvar
 let pat = e1 in e2 ⇒ let hpat = hexp1 in hexp2

Γvar
 e1 ⇒ hexp1 Γvar
 e2 ⇒ hexp2

Γvar
 e1 = e2 ⇒ hexp1 ≡ hexp2 Γvar
 () ⇒ ()

Γvar
 e ⇒ hexp Γvar
 e1 ⇒ hexp1 Γvar
 e2 ⇒ hexp2

Γvar
 if e then e1 else e2 ⇒ (if hexp then L hexp1 else R hexp2)

Γvar
 e ⇒ hexp
−−→
Γvar
 pat ⇒ (hpat ,Γpat) Γpat ∪ Γvar
 e ′ ⇒ hexp′

case e of
−−−−−→
pat → e ′ ⇒ case hexp of {−−−−−−−−−→hpat → hexp′}

Γvar
 e1 ⇒ hexp e1 : τ Γvar
for x in τ → e2 ⇒ f

Γvar
 for x in e1 return e2 ⇒ f hexp

Γvar
p p ⇒ f

Γvar
 p ⇒ f Γvar (.)

Γvar
p p ⇒ f

Γvar
p w ⇒ const w Γvar
p true ⇒ const True Γvar
p false ⇒ const False

x ∈ dom(Γvar)

Γvar
p x ⇒ const Γvar (x) Γvar
p self ⇒ id Γvar
p child ⇒ out

α <: nt

Γvar
p :: nt ⇒ id

α��<: nt

Γvar
p :: nt ⇒ const ()

e : ()

Γvar
p where e ⇒ const ()

Γvar
 if e then self else () ⇒ f

Γvar
p where e ⇒ f

Γvar � (.,Γvar (x))
p p ⇒ f

Γvar
p x / p ⇒ f

Γvar
p p1 ⇒ f1 p1 : τ1

x /∈ dom(Γ) Γvar
for x in τ1 → x / p2 ⇒ f2

Γvar
p p1 / p2 ⇒ f2 . f1

Γvar
for x in τ → p ⇒ f

Γvar
for x in () → p ⇒ const ()

Γvar
for x in τ → p ⇒ f

Γvar
for x in τ∗ → p ⇒ map f

Γvar
for x in τ1 → p ⇒ f1

Γvar
for x in τ2 → p ⇒ f2

Γvar
for x in τ1, τ2 → p ⇒ f1 × f2

Γvar
for x in E(X) → p ⇒ f

Γvar
for x in X → p ⇒ f

Γvar
 p ⇒ f

Γvar
for x in α → p ⇒ f

Γvar
for x in τ1 → p ⇒ f1 Γvar
for x in τ2 → p ⇒ f1

Γvar
for x in τ1 | τ2 → p ⇒ λhexp. case hexp of {L hexp1 → L (f1 hexp1);R hexp2 → R (f2 hexp2)}

Fig. 15 Compilation of expressions and paths.

compilation is thus straightforward, turning bidi-

rectionalizable updates into BiGUL programs and

expressions and unidirectional updates into func-

tions. Notably, the matching-by-position and

matching-by-key variants can be expressed by pro-

viding suitable matching predicate functions to

Align.

5. 3 Compilation of expressions, paths

and patterns

Finally, Fig. 15 shows the rules for compiling

expressions and paths. The judgement Γvar

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

21

e ⇒ hexp says that the expression e is compiled

into a Haskell expression hexp under the envi-

ronment Γvar , which maps from BiFluX variable

names to distinct, fresh Haskell variable names. In

the rule for element expressions n[e], hn is the

Haskell datatype constructor name for the given

element n[e] computed from an ambient type en-

vironment. A path p is compiled into a Haskell

function f , which is applied to the current focus.

The notation Γvar � (x , hx) denotes an environ-

ment obtained by removing x from Γvar (if any)

and then adding (x , hx). Like source paths in

Sec. 5. 2. 1, we also have another set of translation

rules Γvar
for x in τ → p ⇒ f that enumerate all

the types, which are used in the compilation of for

expressions and paths of the form p1 / p2.

6 Related Work

6. 1 XML update languages

Several XML update languages have been pro-

posed, including (among many others) XQuery! [10],

Flux [4] and the standard W3C XQuery Update

Facility [24]. Even though the specification style,

expressiveness and semantics of the XML updates

that can be written may vary significantly, they

all focus on updating XML documents in-place,

i.e. updating selected parts of an XML document,

keeping the remaining parts of the document un-

changed. This means that update programs can be

seen as unidirectional transformations that insert,

delete or replace elements in a source document and

produce an updated document conforming to a new

target type. XML updates in BiFluX are differ-

ent in that they determine how to update a source

document (using some view information) while pre-

serving its source type, and this is enforced by the

type system.

6. 2 XML view updating

In [7], the author studies the problem of updat-

ing XML views of relational databases by trans-

lating view updates written in the XQuery Update

Facility into embedded SQL updates. The work

of [16] supports updatable views of XML data by

giving a bidirectional semantics to the XQuery Core

language. The semantic bidirectionalization tech-

nique of [18] interprets various XQuery use cases

as BXs by encoding them as polymorphic Haskell

functions. The Multifocal language [20] allows writ-

ing high-level generic XML views that can be ap-

plied to multiple XML schemas, producing a view

schema and a lens conforming to the schemas. In

the four approaches, the programmer writes a view

function and the system derives a suitable view up-

date translation strategy using built-in techniques

that cannot be configured. In BiFluX, the pro-

grammer writes an update translation strategy di-

rectly as an update (over the source) and the sys-

tem derives the uniquely related query.

6. 3 Bidirectional XML languages

Many bidirectional programming languages sup-

port tree-structured or XML data formats.

Two popular bidirectional XML languages are

XSugar [3] and biXid [14], which describe XML-

to-ASCII and XML-to-XML mappings as pairs of

intertwined grammars. While XSugar restricts it-

self to bijective grammars, biXid programs describe

nondeterministic specifications and are thus inher-

ently ambiguous. Most functional bidirectional

programming languages are based on lenses [8]

[21] [22] [13], and follow a combinatorial style that

puts special emphasis on building complex lenses

by composition of smaller combinators. Depend-

ing on the choice of combinators, lens languages

can become very powerful at specifying application-

specific behavior [22] [1] [21]. However, their lower-

level nature also induces a more cumbersome pro-

gramming style that makes it impractical and of-

ten unintuitive for users to build non-trivial BXs

by piping together several small, surgical steps.

BiFluX features a new programming by update

paradigm, which enables the high-level syntax of re-

lational languages such as XSugar and biXid while

providing a handful of intuitive update strategies.

Remember the huge gap between our high-level

BiFluX language (pattern matching, procedures,

etc.) and the lens-based BiGUL language that gives

it semantics. The most significant innovation in Bi-

FluX is thus the declarative surface language used

to specify BXs as bidirectional update programs,

at a notably higher-level of abstraction than lens-

based functions.

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

22

7 Conclusion

In this paper, we propose a novel bidirectional

programming by update paradigm that comes to

light from the idea of extending a traditional up-

date language with bidirectional features. Under

the new paradigm, programmers write bidirectional

updates that specify how to update a source docu-

ment by embedding view information. To demon-

strate the potential of this paradigm, we designed

BiFluX, a high-level bidirectional XML update

language. We have shown that programming in Bi-

FluX enjoys a better trade-off between the expres-

siveness and declarativeness of the written bidirec-

tional programs, by allowing users to write directly,

in a friendly notation and at a nice level of abstrac-

tion, a view update translation strategy that gives

rise to a well-behaved BX.

As future work, we are still seeking to extend

BiFluX so as to further increase the flexibility of

BiFluX programming. For example, during align-

ment, the programmer might wish to specify the

exact source positions into which unmatched views

are inserted, but currently there is no way to do

that with BiFluX; this requires us to go back to

the basic BX theory and then come up with a new

syntax for such specifications. We also plan to pro-

vide more static guarantees to BiFluX by incor-

porating existing path-query static analyses, im-

plement more powerful pattern type inference al-

gorithms to avoid excessive annotations, and ex-

tend the class of bidirectional updates that can be

written by integrating user-defined lenses for defin-

ing source and view focuses. We also plan to im-

prove the efficiency of our prototype for large XML

databases by exploring optimizations to the under-

lying BiGUL language, including incremental up-

date translation.

Acknowledgements

We would like to thank the anonymous review-

ers for carefully reviewing the draft and giving so

many useful comments, and our lab members for

intensive discussion.

References

[1] Barbosa, D. M. J., Cretin, J., Foster, J. N.,

Greenberg, M. and Pierce, B. C.: Matching lenses:

alignment and view update, in International Con-

ference on Functional Programming, ACM, 2010,

pp. 193–204.

[2] Benzaken, V., Castagna, G. and Frisch, A.:

CDuce: an XML-centric general-purpose language,

in International Conference on Functional Pro-

gramming, ACM, 2003, pp. 51–63.

[3] Brabrand, C., Møller, A. and Schwartzbach,

M. I.: Dual syntax for XML languages, Informa-

tion Systems, Vol. 33, No. 4–5 (2008), pp. 385–406.

[4] Cheney, J.: FLUX: functional updates for XML,

in International Conference on Functional Pro-

gramming, ACM, 2008, pp. 3–14.

[5] Colazzo, D., Ghelli, G., Manghi, P. and Sartiani,

C.: Static analysis for path correctness of XML

queries, Journal of Functional Programming, No. 4–

5 (2006), pp. 621–661.

[6] Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R.,

Schürr, A. and Terwilliger, J.: Bidirectional trans-

formations: A cross-discipline perspective, in In-

ternational Conference on Model Transformation,

Springer, Vol. 5563 of LNCS, 2009, pp. 260–283.

[7] Fegaras, L.: Propagating updates through XML

views using lineage tracing, in International Con-

ference on Data Engineering, IEEE, 2010, pp. 309–

320.

[8] Foster, J. N., Greenwald, M. B., Moore, J. T.,

Pierce, B. C. and Schmitt, A.: Combinators for

bidirectional tree transformations: A linguistic ap-

proach to the view-update problem, ACM TOPLAS

29, Vol. 3 (2007), p. 17.

[9] Foster, J. N., Pilkiewicz, A. and Pierce, B. C.:

Quotient lenses, in International Conference on

Functional Programming, ACM, 2008, pp. 383–396.

[10] Ghelli, G., Ré, C. and Siméon, J.: XQuery!: An

XML query language with side effects, in Interna-

tional Conference on Extending Database Technol-

ogy, Springer, vol. 4254 of LNCS, 2006, pp. 178–191.

[11] Hosoya, H. and Pierce, B.: Regular Expression

Pattern Matching for XML, in ACM SIGPLAN-

SIGACT Symposium on Principles of Programming

Languages, ACM, 2001, pp. 67–80.

[12] Hosoya, H., Vouillon, J. and Pierce, B. C.: Regu-

lar expression types for XML, in International Con-

ference on Functional Programming, ACM, 2000,

pp. 11–22.

[13] Hu, Z., Mu, S.-C. and Takeichi, M.: A pro-

grammable editor for developing structured doc-

uments based on bidirectional transformations,

Higher-Order and Symbolic Computation, Vol. 21,

No. 1–2 (2008), pp. 89–118.

[14] Kawanaka, S. and Hosoya, H.: biXid: a bidirec-

tional transformation language for XML, in Inter-

national Conference on Functional Programming,

ACM, 2006, pp. 201–214.

[15] Ko, H.-S., Zan, T. and Hu, Z.: BiGUL: A for-

mally verified core language for putback-based bidi-

rectional programming, in ACM SIGPLAN Work-

Information and Media Technologies 12: 1-23 (2017)
reprinted from: Computer Software 33(4): 93-115 (2016)
© Japan Society for Software Science and Technology

23

shop on Partial Evaluation and Program Manipu-

lation, ACM, 2016, pp. 61–72.

[16] Liu, D., Hu, Z. and Takeichi, M.: An ex-

pressive bidirectional transformation language for

XQuery view update, Progress in Informatics,

Vol. 10(2013), pp. 89–130.

[17] Lu, K. Z. M. and Sulzmann, M.: An implemen-

tation of subtyping among regular expression types,

in Asian Symposium on Programming Languages

and Systems, Springer, Vol. 3302 of LNCS, 2004,

pp. 57–73.

[18] Matsuda, K. and Wang, M.: Bidirectional-

ization for Free with Runtime Recording: Or, a

Light-weight Approach to the View-update Prob-

lem, in International Symposium on Principles and

Practice of Declarative Programming, ACM, 2013,

pp. 297–308.

[19] Norell, U.: Dependently Typed Programming in

Agda, Advanced Functional Programming, P. Koop-

man, R. Plasmeijer, and D. Swierstra (Eds.),

Vol. 5832 of LNCS, Springer, 2009, pp. 230–266.

[20] Pacheco, H. and Cunha, A.: Multifocal:

A strategic bidirectional transformation language

for XML schemas, in International Conference

on Model Transformation, Springer, Vol. 7307 of

LNCS, 2012, pp. 89–104.

[21] Pacheco, H., Cunha, A. and Hu, Z.: Delta lenses

over inductive types, Bidirectional Transformations,

Vol. 49 of Electronic Comms. of the EASST.

[22] Pacheco, H., Hu, Z. and Fischer, S.: Monadic

combinators for “putback” style bidirectional pro-

gramming, in ACM SIGPLAN Workshop on Par-

tial Evaluation and Program Manipulation, ACM,

2014, pp. 39–50.

[23] Pacheco, H., Zan, T. and Hu, Z.: BiFluX:

A Bidirectional Functional Update Language for

XML, in International Symposium on Principles

and Practice of Declarative Programming, ACM,

2014, pp. 147–158.

[24] Robie, J., Chamberlin, D., Dyck, M., Florescu,

D., Melton, J. and Siméon, J.: Xquery update fa-

cility 1.0, W3C Recommendation, http://www.w3.

org/TR/xquery-update-10/, March 2011.

[25] Vansummeren, S.: Type inference for unique

pattern matching, ACM TOPLAS 28, Vol. 3 (2006),

ACM, pp. 389–428.

[26] Zhu, Z., Ko, H.-S., Martins, P., Saraiva, J. and

Hu, Z.: BiYacc: Roll your parser and reflective

printer into one, in 4th International Workshop

on Bidirectional Transformations (BX2015), 2015,

pp. 43–50.

Tao Zan

Tao Zan currently is a Ph.D. stu-

dent at SOKENDAI. His research

interest is programming language,

bidirectional transformation, and

self-adaptive system.

Hugo Pacheco

Hugo Pacheco is a Postdoctoral

Research Assistant of INESC TEC,

Portugal. He obtained a PhD de-

gree in Computer Science from the

University of Minho in 2012. Since

then, he has led research at the National Insti-

tute of Informatics, Japan and at Cornell Univer-

sity, US. His research interests include program-

ming languages, model transformations and formal

methods.

Hsiang-Shang Ko

Hsiang-Shang Ko received his DPhil

degree from the University of Ox-

ford in 2014, and now works as

a postdoctoral researcher at the

National Institute of Informatics,

Japan. His research interests include dependently

typed programming, datatype-generic program-

ming, and bidirectional programming.

Zhenjiang Hu

Zhenjiang Hu received his B.S. and

M.S. degrees from Shanghai Jiao

Tong University in 1988 and 1991,

respectively, and Ph.D. degree from

University of Tokyo in 1996. He

was a lecturer (1997–2000) and an associate pro-

fessor (2000–2008) in University of Tokyo, before

joining National Institute of Informatics (NII) and

the Graduate School for Advanced Studies (SOK-

ENDAI) as a full professor from 2008. His main

research interest is in programming languages and

software engineering in general, and functional pro-

gramming, parallel programming, and bidirectional

model-driven software development in particular.

He is a member of JSSST, IPSJ, ACM and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2500 2500]
 /PageSize [612.000 792.000]
>> setpagedevice

