
As Secure as Possible Eventual Consistency

Work in Progress

Ali Shoker, Houssam Yactine, and Carlos Baquero
HASLab, INESC TEC & University of Minho

Braga, Portugal

ABSTRACT
Eventual consistency (EC) is a relaxed data consistency model
that, driven by the CAP theorem, trades prompt consistency
for high availability. Although, this model has shown to be
promising and greatly adopted by industry, the state of the
art only assumes that replicas can crash and recover. How-
ever, a Byzantine replica (i.e., arbitrary or malicious) can
hamper the eventual convergence of replicas to a global con-
sistent state, thus compromising the entire service. Classical
BFT state machine replication protocols cannot solve this
problem due to the blocking nature of consensus, something
that is at odds with the availability via replica divergence in
the EC model. In this work in progress paper, we introduce
a new secure highly available protocol for the EC model
that assumes a fraction of replicas and any client can be
Byzantine. To respect the essence of EC, the protocol gives
priority to high availability, and thus Byzantine detection is
performed off the critical path on a consistent data offset.
The paper concisely explains the protocol and discusses its
feasibility. We aim at presenting a more comprehensive and
empirical study in the future.

1. INTRODUCTION
Eventual Consistency (EC) [13] emerged as a relaxed trade-

off model between strong consistency and availability, given
that network partitions and high latency links cannot be
avoided in geo-replicated and highly scalable systems [6].
Replicated services that are built through EC are highly
available since client’s requests are served via a local applica-
tion server (or replica) without immediate synchronization
with other servers; this step is however performed in the
background to avoid blocking of client requests, but still en-
sure (eventual) data convergence. State-of-the-art research
in EC assumes that replicas can crash and recover back to
the last “healthy” state. Unfortunately, there is evidence
that malicious and arbitrary (a.k.a., Byzantine [9]) faults
are not rare even in leading Internet services [12, 11]. In
the case of EC, a Byzantine server can apply operations in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

an incorrect way (deliberately or not) which hampers data
convergence, and thus compromises the entire service. Con-
sequently, secure EC solutions that are resilient to Byzantine
faults, being the strongest fault model [4], are highly advo-
cated when the deployment conditions of servers and clients
creates risk for this class of faults.

Classical BFT protocols like state machine replication pro-
tocols [4, 8] cannot simply solve the EC problem due to
two main reasons. The first is that such protocols are often
blocking to the clients since total order coordination is re-
quired per operation. The second reason is that replicas are
considered correct (i.e., not Byzantine) as long as all replies
match; i.e., it requires that replies are exactly equivalent.
In a recent work [14], the authors tried to solve the latter
case by allowing a replica to immediately execute a request,
without first establishing a total order, whereas Byzantine
agreement between replicas is used, either periodically or on-
demand, to establish a common state synchronization point
as well as to identify the set of individual operations needed
to resolve conflicts. Meanwhile, the client must wait for
enough replies from a majority of replicas (after Byzantine
agreement is achieved) to commit a reply, which is clearly
blocking and impose high delays under network partitions or
high latency. Another major issue is that servers may stop
receiving new requests until Byzantine agreement among
servers is achieved to withstand a Byzantine client. Indeed,
we believe that this is impractical in scenarios where even-
tual consistency was selected to not forfeit availability. An-
other approach, followed in [11], was to modify an existing
protocol, i.e., Zyzzyva, to support the EC model. Unfortu-
nately, this is impractical for two reasons: (1) it adds more
complexity to Zyzzyva whose recovery phase is known to
be very complex to implement and test [8], and (2) the in-
dustry is unlikely to completely replace a currently running
middleware with a new (complex) one.

In this paper, we introduce Byzec , a protocol that makes
eventual consistency “as secure as possible”, without impact
on system’s availability nor requiring a significant modifica-
tion to an already deployed system. The protocol allows the
service to run in an eventually consistent manner whereas
Byzantine behaviors are detected off the critical path, in a
back-end process, with the help of a black-box BFT cluster.
In particular, and as described in Fig. 1, client’s requests
are served by an associated application server as they ar-
rive without immediate synchronization with other servers,
which is done in the background and eventually leading
to data convergence. Decoupled form that front-end logic,
a server progressively sends consistent data offsets to the

S1

BFT Proxy

EC

S2

BFT Proxy

EC

S3

BFT Proxy

EC

S4

BFT Proxy

EC

Clients Clients Clients Clients

B3
B2 B4

B1
Loose

Strong

BFT Cluster

Front-end

Back-end

RCB RCB RCB

Figure 1: The system model showing how a consistent offset
is always verified through the BFT cluster (back-end) with-
out hindering clients access to application servers Sj (front-
end) through eventual consistency. Si are loosely coupled
via a Reliable Causal Broadcast (RCB).

BFT cluster to be matched against similar versions of other
servers, thus forming a “certificate”: a signed proof that
up to this very offset, data is equivalent on an appropriate
majority of non Byzantine application servers. The client
progressively receives the most recent certificate along the
replies of the associated server. This allows the client to ver-
ify the validity of the certificate; otherwise, it may switch to
another server if it holds a proof (basically an invalid cer-
tificate) of detecting a Byzantine server, or if the certificate
is not sufficiently up to date (which is verified through the
other servers as well).

One may argue that our solution is not sufficiently se-
cure as clients can receive non certified data. While this
is true, the client will be able to progressively detect any
misbehaviors once the consistent data offset evolves. In our
opinion, adopting more secure solutions like fault prevention
or hiding will impose extra delays as it is done in the criti-
cal path, whereas our solution is accountable for Byzantine
faults without impacting availability. We believe that in the
same sense that the adopters of EC trade strong consistency
— despite being a correctness property — for availability,
they will likely be keen to trade high security in favor of
high availability. What supports our argument is that cur-
rent EC solutions in production still run in the wild without
such Byzantine guarantees; and therefore, they may be less
reluctant to adopt secure solutions like ours provided that
availability is not compromised.

The solution we introduce is interesting for both: service
and applications. On the service side, our solution is im-
portant as it guarantees convergence despite the presence of
Byzantine servers or clients, which is not possible in current
EC systems. On the application side, it is interesting due to
its flexibility through allowing a spectrum of options: A non
sensitive client can proceed with operations without check-
ing the certificate (i.e., as current systems do), whereas a
very conservative client can only accept read operations from
a certified consistent data (on the expense of stale data); a
trade-off option is to accept a limited number of operations
ahead the certified data as long as they will be verified in
the future and can be rolled back.

We describe a short version of the protocol in the following
sections, leaving the details to a comprehensive study in
the future, accompanied with an empirical evaluation that
asserts the usefulness and feasibility of our approach.

2. PROTOCOL

2.1 Background, system model and fault model
We address a system model where application servers are

geo-replicated and (fully) share data structures. A client is
directed, via a load balancer, to a given application server. A
client can change the associated application server through
providing an “acceptable” argument to the load balancer
(e.g., the old server is Byzantine). This is described in the
front-end in Fig. 1. To ensure high availability in face of net-
work partitions, the front-end components follow the even-
tual consistency data model: operations of clients are served
by the associated server without prompt synchronization
with other servers, and they are background propagated to
other servers via Reliable Causal Broadcast [2]. Since oper-
ations can be applied in different orders on different servers,
a conflict resolution method must be used. Without loss
of generality, a well known approach is to use Conflict-free
Replicated DataTypes [10] that encapsulate conflict resolu-
tion through mathematically sound policies. At any time,
a server can have a different data version provided that all
replicas will eventually converge to the same state. Obvi-
ously, since a running system is very unlikely to be idle,
convergence will not be observed immediately; however, a
consistent offset of the data must be ensured once the same
set of operations are executed on all replicas and provided
that no concurrent operations are expected. This notion is
similar to causal stability used in [1] and background global
sequence formation in [3], both for non Byzantine settings.

Currently, data convergence is guaranteed as long as repli-
cas execute the operations correctly, and assuming that a
crashed sever can recover to the recent correct state [13,
10]. A single Byzantine server can however prevent con-
vergence since the wrong execution of a single operation on
the Byzantine server may lead to an inconsistent data state.
In this paper, we assume that f application servers out of
3f + 1 can be Byzantine, and that any client can be Byzan-
tine1. We also assume the presence of a BFT cluster that
runs a classical BFT state-machine protocol like PBFT [4],
Zyzzyva [8] or even an adaptive mix of these protocols as
in Adapt [7]. The purpose is to use this cluster to achieve
agreement using strong consistency methods. The fact that
this cluster uses consensus will have no impact on the avail-
ability of the service once used in the background, as shown
in Fig. 1. In particular, we assume that application servers
can send (through a BFT proxy process) data offsets to the
BFT cluster, which ensures the agreement of at least 2f + 1
application servers on the common offset.

Finally, we assume that clients and servers (secretly) ex-
change cryptographic keys that cannot be broken. We don’t
address flooding attacks, we rather assume the existence of
another security layer to guard against them. In addition,
we require that clients (that can be end users, proxies, or
third party servers), have a method to rollback data changes
that have been recently made.

2.2 An overview of Byzec
We present an overview of the protocol and we associate

1Note that 2f + 1 replicas are not sufficient as in the case of
crash-stop fault models; to achieve liveness in the Byzantine
model, additional f replicas are required since it is impossi-
ble to distinguish a Byzantine node from another one that
is just slow [9]

the corresponding pseudo-code in the Appendix 3 for con-
venience (given the page limits). The protocol works as
follows: a client can access a single server, chosen through
a load balancer, following the EC model. The normal case
message pattern, depicted in Fig. 2a, is the regular case
where no Byzantine behaviors are present. Clients follow
this case as long as they receive valid certificates. A cer-
tificate is a hash digest of an incrementally consistent data
offset that is signed by at least f + 1 application servers
which guarantees its correctness and integrity. An appli-
cation server initiates the preparation of a new certificate
once it has a new causally stable operation: an operation for
which concurrent operations are no longer delivered through
the RCB [2]. (This is usually known once a newer operation,
in the causal future, is received from each server.). Since a
stable operation has already been executed on all servers,
the data offset corresponding to all stable operations must
be a consistent offset. This is ensured through preparing a
corresponding certificate by the application servers, off the
critical path, with the help of a BFT cluster.

A valid certificate informs the client that the data re-
ceived corresponding to that certified data offset is fault-
free; however, no security guarantees are promised for the
operations corresponding to the non-certified data, in favor
of high availability. If the certificate is invalid (Fig. 2b) the
client will change the current application server showing a
proof of mis-behavior of the previous server. Once the client
updates its state after communicating with the new server,
it rolls back the non-certified operations and returns to the
normal case.

The remaining case is when the received certificate from
a server is outdated – it has not been updated for a “long”
time. This can be due to two reasons: either the server
is Byzantine, or there is some network partitioning or de-
lays preventing the certificates from being updated on all
servers — because causal stability does not take place on
these conditions and the consistent offset stays the same. In
the latter case, it is enough for the client to receive f + 1
matching responses showing that the certificate is up to date;
consequently, the client will have no advantage of changing
a server. Notice that f + 1 matching replies are enough
to rule out Byzantine faults and at the same time tolerate
network partitions. To the contrary, if the certificate is too
old according to f + 1 servers which hold a more up-to-date
certificates, these servers add the Byzantine server to the
blacklist and reply back to the client. Once f + 1 matching
replies are received by the client, it becomes eligible to as for
changing the server and continue through the normal case
again.

3. CONCLUSION AND FUTURE WORK
Replication can improve systems performance and fault

tolerance. Since communication and network-partition fail-
ures often occur in large scale systems, a strong consistency
model would negatively impact availability. However, as giv-
ing up availability is normally not an option when timely re-
sponses are a goal, weaker consistency models such as even-
tual consistency (EC) [13, 5] are currently being used in
many large scale deployments. A common consequence of
an eventual consistency (EC) design is the need to address
the reconciliation of replicas. Sound models for enabling de-
terministic reconciliation [10] are now commonplace. Never-
theless, these approaches only address the Crash-Recovery

C

S1

valid certificate

(a) Normal case

S1
S2
S3
S4

invalid certificate
C

(b) Invalid certificate

outdated certificate f+1 certificates
C

S1
S2
S3
S4

(c) Outdated certificate

Figure 2: Messaging patterns of the protocol.

fault model, and adequate support for Byzantine models was
found lacking.

Recent work tried to solve the problem, but the result was
at the expense of the most important criteria in such sys-
tem which is availability, as it required blocking all clients
during synchronization between replicas. Byzec, outlined
here, is a new protocol that handles this issue by respect-
ing the essence of EC: The protocol gives priority to high
availability, and thus Byzantine detection is performed in
background, off the critical path on a consistent data offset.
Given that design, the Byzec protocol can be used as an
added value for practical EC based systems, increase secu-
rity and fault-tolerance without affecting performance.

This research work assumes a non-broken security level
which will need special crypto functions, also it requires data
storage that supports undo of yet non-certified executed op-
erations, whose support still requires developing. In future
work, we plan to implement the system, evaluate the ob-
tained results in comparison with classical BFT models, and
with existing optimistic BFT model.

4. REFERENCES
[1] C. Baquero, P. S. Almeida, and A. Shoker. Making

operation-based crdts operation-based. In Distributed
Applications and Interoperable Systems - International
Conference, DAIS 2014, pages 126–140, 2014.

[2] K. Birman, A. Schiper, and P. Stephenson.
Lightweight causal and atomic group multicast. ACM
Trans. Comput. Syst., 9(3):272–314, Aug. 1991.

[3] S. Burckhardt, D. Leijen, J. Protzenko, and
M. Fähndrich. Global sequence protocol: A robust
abstraction for replicated shared state. In J. T.
Boyland, editor, 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July
5-10, 2015, Prague, Czech Republic, volume 37 of
LIPIcs, pages 568–590. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[4] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, Nov. 2002.

[5] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.

Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, Oct. 2007.

[6] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[7] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali
Shoker. Making BFT Protocols Really Adaptive. In In
the Proceedings of the 29th IEEE International
Parallel & Distributed Processing Symposium,
IPDPS’15. IEEE-CS, May 2015.

[8] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault
tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39,
Jan. 2010.

[9] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, July 1982.

[10] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types. In
Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed
Systems, SSS’11, pages 386–400, Berlin, Heidelberg,
2011. Springer-Verlag.

[11] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and
P. Maniatis. Zeno: Eventually consistent
byzantine-fault tolerance. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI’09, pages 169–184,
Berkeley, CA, USA, 2009. USENIX Association.

[12] B. Vandiver, H. Balakrishnan, B. Liskov, and
S. Madden. Tolerating byzantine faults in transaction
processing systems using commit barrier scheduling.
SIGOPS Oper. Syst. Rev., 41(6):59–72, Oct. 2007.

[13] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, Jan. 2009.

[14] W. Zhao. Optimistic Byzantine fault tolerance.
International Journal of Parallel, Emergent and
Distributed Systems, 31(3):254–267, May 2016.

APPENDIX
A. THE PSEUDOCODE OF Byzec

We provide the pseudocode of Byzec for the client, server,
and BFTServer in Algo 2, 3, and 4, respectively. The al-
gorithms make use of some abstractions, defined in Def. 1,
which we avoid to include in the pseudocode as they are self-
explanatory, and to keep the description concise and clear.

A.1 The client protocol
On start, a client chooses a server s through load bal-

ancing. When a user invokes a new operation o, the client
sends a REQUEST to the associated server (Algorithm. 2,
lines 10-13), whereNReq is the last sequential client’s request
number, ci is the client identifier and 〈〉αci is the encrypted
security token (e.g. digital signature and hash digest) signed
with the private key α if the client.

When a client receives a RESPONSE from the associated
server (Algorithm. 2, lines 14-26), where m is the received
message and σ′ is the last received certificate. The client first
checks for the received message’s validity (Authentication,
Integrity and sequence number). If the received message
is valid and contains a new valid certificate then the client

processes the message and updates its local certificate; if
the received message is valid with an outdated certificate
(according to the client’s policy) then the client sends a
COMPLAIN message to all other servers. If the received mes-
sage is not valid or the received certificate is not valid then
the client, according to its policy, associates a new server,
again through load balancing, undoes all non-certified oper-
ations submitted by the old server and resumes sending in
the normal case.

When a client receives matching f + 1 valid blacklist mes-
sages about a given Byzantine server (Algorithm. 2, lines
27-36) then the client updates its blacklist, requests a new
server (if its associated server is blacklisted) and resumes
sending in the normal case.

A.2 The server protocol
On receiving a client’s REQUEST (Algorithm. 3, lines

10-17), the associated server checks the received message’s
validity. If the received message and the client’s policy are
invalid, the server drops the message, otherwise, if only the
client’s policy is valid then the server ignores the received
message and sends a RESPONSE asking the client to re-
transmit the operation. In case of receiving a valid message,
the associated server processes the operation and sends a
RESPONSE to the client with its last certificate.

When a server receives a COMPLAIN from a client (Al-
gorithm. 3, lines 18-22) due to an old policy, the server
checks again for message’s validity. If the message is invalid,
the server drops it, otherwise, the server updates the list of
potential Byzantine servers BLACKLIST by adding the out-
dated received certificate to the BLACKLIST, broadcasts it
to other servers and sends it back to the client.

At any time τ , when a server reaches stability, (Algo-
rithm. 3, lines 24-25) it can generate a digest for a consis-
tent offset including causally stable operations and sends it
to the BFT cluster, asking for later state synchronization
with other servers.

On receiving a certificate σ′ from BFT cluster (Algorithm.
3, lines 26-31), the server checks if the received message is
invalid, possibly dropping it. Otherwise, the server checks
if the received certificate is valid according to its sequence
number and timestamp, then the server updates its old cer-
tificate σ with a new one σ′.

A.3 The BFT cluster protocol
When the BFT cluster receives a digest of a consistent

offset STABLE from a server (Algorithm. 4, lines 1-7), the
BFT cluster checks the received message’s validity, drops the
message if it is invalid. Otherwise, it tries to match at least
2f + 1 with same new updated certificate to broadcast it to
all servers. The BFT cluster algorithm we provide excludes
the encapsulated BFT state-machine protocol that is used
as a black box.

Definitions 1: Auxiliary abstractions.

1 loadBalance() : chooses a server through load balancing.
2 validMsg(): encapsulates authentication, integrity, and sequence

nb of a messages.
3 validCertificate(): checks if certificate is signed by f + 1 servers.
4 validPolicy(): a retransmission policy followed by clients before

changing a server.
5 outdatedCertificate(): a certificcate has not been updated for a

long time according to a certain policy.
6 rollback(): rolls back requests issued after last correct certificate.
7 matching() : checks if messages are matching.
8 stable(): returns a timestamp that has become causally stable.
9 stableOffset() : returns a datatype offset corresponding to a

stable timestamp.
10 bftAgree(): returns a certificate signed by all BFT agreed

servers on a stable timestamp and corresponding digest.

Algorithm 2: The client protocol.

1 init:
2 s := loadBalance(S)
3 NReq := 0
4 NComplain := 0
5 lastReq := φ
6 BList := φ
7 Buffered := φ
8 σ := φ
9 data := φ

10 on invokedi(OPERATION, o):
11 NReq := NReq + 1
12 lastReq := (NReq, o, ci)
13 send(REQUEST, 〈lastReq〉αci , s)

14 on receivei(RESPONSE, in = 〈m,σ′〉αs):
15 if ¬ validMsg(in, s) ∨
16 ¬ validCertificate(σ′) then
17 if ¬ validPolicy() then
18 s := loadBalance(S)
19 data := rollback(data, σ);

20 send(REQUEST, 〈lastReq〉αci , s)
21 else
22 if outdatedCertificate(σ′) then
23 NComplain := NComplain + 1
24 send(COMPLAIN, 〈NComplain, in〉αci , S)

25 else
26 process(m)

27 on receivei(BLACKLIST, in = 〈bList, σ〉αsj):

28 if ¬ validMsg(in, sj) then
29 dropMsg(〈bList, σ〉αsj)

30 else
31 add(Buffered, bList)
32 if matching(Buffered) > f then
33 BList := bList
34 if s ∈ BList then
35 s := loadBalance(S)
36 send(REQUEST, 〈lastReq〉αci , s)

Algorithm 3: The server protocol.

1 Init:
2 data := φ
3 ∀i ∈ I, LastRes[i] = 0
4 ∀i ∈ I,NReq[i] = 0
5 σ := φ
6 BList := φ
7 timestamp := (0, 0 . . .)
8 seq := 0

9 With Clients:

10 on receivej(REQUEST, in = 〈m〉αci):
11 if ¬ validMsg(in, ci) then
12 if validPolicy() then
13 send(RESPONSE, 〈LastRes[i], σ〉αsj , ci)
14 else
15 dropMsg(in)

16 else
17 LastRes[i] := process(m, data, timestamp)

NReq[i] := NReq[i] + 1
send(RESPONSE, 〈LastRes[,]σ〉αsj , ci)

18 on receivej(COMPLAIN, in = 〈〈m,σ〉αs 〉αci):
19 if ¬ validMsg(in, ci) then
20 dropMsg(in)
21 else
22 add(BList, outdatedCertificate(〈m,σ〉αs , s))

send(BLACKLIST, 〈BList, σ〉αsj , ci)

23 With BFT Cluster:

24 on stablej(τ):
25 consistentOffset := stableOffset(data, τ)

D := Digest(consistentOffset)
send(STABLE, 〈D, τ, seq〉αsj ,BFTCluster)

26 on receivej(CERTIFICATE, in = 〈σ′, seq〉αb):
27 if ¬ validMsg(in, b) then
28 dropMsg(in)
29 else
30 if validCertificate(σ′, seq, seq) then
31 σ := σ′

Algorithm 4: The BFT cluster protocol.

1 With BFT Cluster:

2 on receivej(STABLE, in = 〈D, stableTS, seq〉αsj):

3 if ¬ validMsg(in, sj) ∨ then
4 dropMsg(in)
5 else
6 (cert, Servers) := bftAgree(D, stableTS, seq)
7 if | Servers |≥ 2f + 1 then
8 send(CERTIFICATE, 〈cert, seq〉αb , Servers)

