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Abstract. Dependence Graph provides the basis for powerful program-
ming tools to address a large number of software engineering activities
including security analysis. This paper proposes a semantics-based static
dependence analysis framework for relational database applications based
on the Abstract Interpretation theory. As database attributes differ from
traditional imperative language variables, we define abstract semantics of
database applications in relational abstract domain. This allows to identify
statically various parts of database information (in abstract form) possibly
used or defined by database statements, leading to a more precise depen-
dence analysis. This way the semantics-based dependence computation
improves w.r.t. its syntax-based counterpart. We prove the soundness of
our proposed approach which guarantees that non-overlapping of the
defined-part by one statement and the used-part by another statement in
abstract domain always indicates a non-dependency in practice. Further-
more, the abstract semantics as a basis of the proposed framework makes
it more powerful to solve undecidable scenario when initial database state
is completely unknown.
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1 Introduction

Dependence Graph is an intermediate representation of program which explic-
its both the data- and control-dependences among program statements. This
provides the basis for powerful programming tool to address a large number of
software engineering activities, e.g. language-based information flow security
analysis, safety verification, optimization, maintenance, code-understanding,
code-reuse, etc. [10,14-17,20, 29, 30].

Different variants of Dependence Graph, e.g. Program Dependence Graph
(PDG) [29], System Dependence Graph (SDG) [16], Class Dependence Graph
(CIDG) [22], Database-Oriented Program Dependence Graph (DOPDG) [33],
etc. are proposed in different contexts for different programming languages
tuning them towards specific applications.

Syntax-based construction of Dependence Graph depends on the compu-
tation of (i) data-dependences based on the syntactic presence of one variable
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in the definition of another variable and (i7) control-dependences based on the
syntactic structure of the program [29].

Mastroeni and Zanardini [24] first observed that the syntax-based approach
may fail to compute an optimal set of dependences where the syntactic pres-
ence of variables is not enough to represent relevancy. For instance, consider an
expression “e = x + 2 X w mod 2” where e is syntactically dependent on w but se-
mantically there is no such dependence. Computation of such false dependences
which focuses on values instead of variables, allows us to refine syntax-based
dependence graph into more refined semantics-based dependence graph.

Willmor et al. [33] introduced the notion of Database-Oriented Program De-
pendence Graph (DOPDG), an extension of traditional PDG, to the context of
database applications embedding query languages. DOPDG considers two ad-
ditional dependences: Program-Database Dependences (PD-Dependences) and
Database-Database Dependences (DD-dependences). A PD-Dependence repre-
sents the dependence between a SQL statement and an imperative statement,
whereas a DD-dependence represents the dependence between two SQL state-
ments.

In this paper, we extend the notion of semantics-based dependences to the
case of database applications, leading to a refinement of DOPDGs. For example,
consider the following SQL statements Q; and Q:

Q1 : UPDATE enp SET age := age + 1 WHERE age > 35 AND sal < 2000
Q> : SELECT max(sal), avG(age) FROM emp WHERE age < 30

The statement Q, is syntactically DD-Dependent on Q; for the attribute age as
it is a defined-variable in Q; and a used-variable in Q. But observe that, if
we focus on the values of age in the database, the part of age-values defined
by Q; is not overlapping with the age-values subsequently used by Q.. There-
fore, there exist no semantics-based dependence between Q; and Q,. Some of
the worth-mentioning software engineering activities where semantics-based
dependences in database applications play crucial roles are program slicing,
language-based information-flow analyses, data-provenance, security analyses
like SQL injection attack, etc. [1, 5,22, 30, 32].

The semantics-based data-dependence computationin query languages needs
a different treatment as the values of database attributes differ from that of im-
perative language variables. The key point here is the static identification of
various parts of the database information possibly accessed or manipulated
by database statements at various program points. Abstract Interpretation [7,
8] is a widely used formal method which provides a sound approximation of
program’s semantics to answer about program’s runtime behavior including
undecidable ones.

This paper proposes a novel approach to compute semantics-based depen-
dences among statements in database applications based on the Abstract Inter-
pretation framework [8]. In particular, our contributions in this paper are:

— We define an abstract semantics of database statements in the relational
domain of polyhedra based on the Abstract Interpretation framework.
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Abstract Syntax
. ex=n|k|vs|vg|opyeler opy e, whereop, € {+,—}and opy € {+,—,%,/,......}
Syntactic Sets bu=ejoprex|=b|by V by|by A by|truel false, where op, € {=,>,<,<,...}
n: Z (Integer) (&) ::= GROUP BY(?) | id
k:$ (String) 7 = DISTINCT | ALL

0a = V, (Application Variables) .. ayG | SUM | MAX | MIN | COUNT

04 : Vg (Database Attributes)  j(¢) 1= 5 o r(e) | DISTINCT(e) | id

e : E (Arithmetic Expressions)  j(x) ::= COUNT(*)

A Brotean BXpressions) i) = Gy (1), ., (1)), where = (., ) and £ = (v, ., %)
’ f(&) := ORDER BY ASC(¢) | ORDER BY DESC(e) | id

7 : T (Terms) o
ar : Ay (Atomic Formulas) Qu=(A,¢) S S . . R
¢ : W (Pre-condition) A = SELECT(v,, f(¢), r(h(%)), ¢, g()) | UPDATE(T, €) | INSERT(d;, &) | DELETE(Y)
Q: Q (SQL statements) Tu=nlk| v, |val fu(T1, T2, ..., Tn), Where f, is an n-ary function.
I: T (Imperative statements) ~ 4f *= Ru(t1,72, ..., Tn) | T1 = T2, Wwhere Ry (71, T2, ..., Tn) € {true, false}
c: C (Statements) Qu=ap| =P P1ValPr A2 Vx| Ini P

Iu=skip|v:=e

cu=Q|I|if bthen ¢ else c; | while b do ¢

Table 1: Syntax of query languages

— We develop an algorithm based on the data-flow analysis to compute ab-
stract database states (in the form of polyhedra) at each program point of
the applications.

— We propose an algorithm to compute non-overlapping of used- and defined-
part by various database statements and hence non-dependences among
them based on the abstract semantics.

- Finally, we provide an in-depth comparative analysis of our approach w.r.t.
some existing notable directions in the literature.

The structure of the rest of paper is as follow: Section 2 recalls the syntax and
concrete semantics of query languages. Section 3 recalls the notion of DOPDG
and provides the basis on its syntax and semantics-based constructions. In
section 4, we define abstract semantics of database statements in the domain
of polyhedra based on the Abstract Interpretation theory and we propose a
refinement of DOPDGs into more precise form. Section 5 discusses a detail
comparisons of our proposal w.r.t. the literature and an overall complexity
analysis. In section 6, we mention several applicative scenarios of our approach.
Section 7 concludes the work.

2 Concrete Semantics of Database Query Languages

In this section, we recall from [12] the formulation of the semantics of database
query languages.

Syntax. Table 1 depicts the syntactic sets and the abstract syntax of database
statements in Backus-Naur form. Database applications involve two types of
variables: application variables (denoted V,) and database attributes (denoted
V4). The SQL clauses GROUP BY, ORDER BY, DISTINCT/ALL and the aggregate
functions (SUM, COUNT, MAX, MIN, AVG) are represented in the form of func-
tions g(), f(), r(), h() respectively parameterized with either none or one arith-
metic expression e or an ordered sequence of arithmetaic expressions €. The
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abstract syntax of a database statement is denoted by (A, ¢») where A repre-
sents Action-part and ¢ represents Condition-part which follows first-order
logic formula. The Action-part include SELECT, UPDATE, DELETE and INSERT.
For example, consider the query Q="UPDATE eup SET sal:=sal+100 WHERE age >40”. Ac-
cording to abstract syntax, Q is denoted by (A, ¢) = (UPDATE(vy,€), ¢), where
0y = (saly and € = (sal + 100) and ¢p=age >40.

Concrete Semantics. An application environment p, € (€, = V, > Val) maps
application variables to the domain of values Val. A database is a set of tables
{t; | i € I} for a given set of indexes I;. A database environment is defined
as a function p; whose domain is I, such that for i € I, ps(i) = t;. A table
environment p; for a table ¢ is defined as a function such that Va; € attribute(t),
pi(a)=(m;(l;) |1; € t) where 7 is the projection operator, i.e., 7;(/;) is the i" element
of the [;-th row.

The set of states is defined as £ = €; x €, where ¢;, €, are the set of
database environments and application environments respectively. Therefore,
a state p € X is denoted by a tuple p = (p4, ps) where p; € €; and p, € €,.

The state transition semantics is defined as S: Q x X — X, which specifies
how the execution of a database statement Q € Q on a state p € X results into
an another state p’ € X.

3 Syntax-based DOPDG Vs. Semantics-based DOPDG

As already mentioned before, the syntax-based dependence computation de-
pends on the syntactic presence of one variable in the definition of another
variable or on the syntactic structure of the program, whereas the semantics-
based dependence computation focuses on values rather than variables. This
way, semantics-based analyses remove a number of false dependences and re-
sult into an optimal set of dependences.

In this section, we first discuss the syntax-based DOPDG construction briefly
and then we provide the basis of semantics-based DOPDG.

3.1 Syntax-based DOPDG

Database-Oriented Program Dependence Graph (DOPDG) [33] is an extension
to the traditional Program Dependence Graph (PDG) to represent dependences
in database query languages. It considers the following two additional depen-
dences:

Definition 1 (Program-Database (PD) Dependence). A database statement Q is

PD-dependent on an imperative statement I for a variable x (denoted I = Q) if the
following three hold: (i) x is defined by 1, (ii) x is used by Q, and (iii) there is no
redefinition of x between I and Q.

The PD-dependence of I on Q is defined similarly.
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Definition 2 (Database-Database (DD) Dependences). A database statement Q,

is DD-dependent on another database statement Q, for an attribute x (denoted Q; =
Qy) if the following conditions hold: (i) x is defined by Q1, (ii) x is used by Q», and (iii)
there is no rollback effect of Q1 in between them.

Observe that the above definitions are based on the syntactic presence of
“used” and “defined” variables in the statements. Therefore, syntax-based con-
struction of DOPDG can be formalized based on the following two functions:
USE: C — p(V,;UV,)and DEF: C — p(V,;UV,) which extract the set of variables
(application variables and database attributes) used and defined in a statement
c € C (either imperative or database statement) respectively. Once the used and
defined variables are computed for the program statements, the syntax-based
dependences are determined according to Definitions 1 and 2. This is illustrated
in example 1.

1. Start; ] ) sal |age |[com
2. Stmt = DriverManager.getConnection(... ... ).createStatement(); 1500035 |10

3. Stmt.executeQuery(”UPDATE emp SET sal=sal+100 WHERE (age + com) > 60 ”); 300 128 120

4. Resultset rs1=Stmt.executeQuery(”SELECT AVG(sal) FROM emp WHERE (age+cont)<55”); 5500150 110
5. Display(rs1); 3000(62 |10

6. Stmt.executeQuery("DELETE FROM emp WHERE age > 61”); 5000130 130

7. Resultset rs2 = Stmt.executeQuery(”SELECT * FROM emp”);

8. Display(rs2); 160042 120

9. Stop; 100020 |30

() Program “Prog” (b) Database

Table “emp”

— Control dependences

- - p Database-Database
Dependences

------ » Program-Database
dependences

Q Denote statements

'
'
'
'
'
|

) A

(c) DOPDG of the code “Prog”

Fig. 1: A running example and its syntax-based DOPDG

Example 1. Consider the database application “Prog” and the associated database
“emp” depicted in Figure 1. The syntax-based DOPDG of Prog is depicted in Fig-
ure 1(c). The control-dependences between program statements are computed
by following similar approach as in the case of traditional Program Depen-
dence Graphs. For instance, the edges 1 — 2,1 — 3, 1 — 4, etc. represent
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control dependencies. To obtain DD- and PD-dependencies, we extract defined-
and used-variables at each program point using DEF and USE functions as follows:

DEF(2) = { sal, age, com } DEF(3) = { sal } USE(3) = { sal, age, com }
USE(4) = { sal, age, com } USE(5) = { rs1 } DEF(6) = { sal, age, com }
USE(6) = { sal, age, com } USE(7) = { sal, age, com } USE(8) ={rs2}

Using above information one can easily compute DD- and PD-dependencies.
For instance, edges2 —» 3,2 54,2 -56,2—>7,3—-54,3—6,3—>7and 6 —7
represent DD-dependencies (denoted by dashed-lines), whereas edges 4 — 5
and 7 — 8 represent PD-dependency (denoted by dotted-line). This is to note
that, as an improvement, the following two cases are considered which may
arise in the case of DD-dependence computation:

Case 1: Statement Q; defines the values of an attribute x partially which is
subsequently used by Q. The presence of WHERE clause in J; determines
this. In this case, Q, is DD-dependent on Q; as well as on the statement
connecting the database. For instance, in Figure 1(c), the node 4 is DD-
dependent on both the nodes 3 and 2.

Case 2: Statement Q; defines the values of an attribute x fully. This is deter-
mined by the the absence of WHERE clause in Q;. In this case, all the subse-
quent database statements which use x will be DD-dependent on Q; only.

Observe that syntax-based construction may generate false dependences, and
hence it is not optimal. For instance, in the example, the dependence 3 — 4 is a
false dependence.

3.2 Semantics-based DOPDG

The syntax-based DOPDG may not provide an optimal set of dependences.
This motivates researchers towards semantics-based dependence computation
which focuses on the values rather than the attributes.
Given a SQL statement Q = (A, ¢) and its target table t. Suppose X = USE(A),
i = USE(¢) and Z = DEF(Q). According to the concrete semantics, suppose
SIQI(pt, pa) = (pr s Pa)-
The used and defined part of t by Q are computed according to the following
equations [13]:
Ause(Q, 1) = Pti(p(f) U th(@ 1
Agef(Q 1) = Alpr (2), pr(2) ()
where
t | ¢ : Set of tuples in table t which satisfies Condition-part ¢.
Prie(X) : Values of Xin (t | ¢).
prie(V) : Values of iin (t | ¢).
A : Computes the difference between the original database state on which
Q operates and the new database state obtained after performing the
action-part A.
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In other words, the function A,, maps to the part of the database informa-
tion used by Q, whereas the function A4 defines the changes occurred in the
database states when data is updated or deleted or inserted by Q. The following
example illustrates this.

<+— sal, age, com —» <+— sal, age, com —»

<age, sal > <«sal—»
tuples tuples
age240
pempJ/lugezAO)(SG/) U p(emp\[,agezﬁto)(age) A(pemp’{,(agezAO)(Sal)lplempd/agezAO)(SG/))

Fig.2: Ays. and Ag,r of table “emp” w.r.t. Q,pa

Example 2. Consider a database table “emp” in Figure 1(b) and the following
update statement:

Qupd: UPDATE emp SET sal:=sal+100 WHERE age >40

According to equations 1 and 2, the used-part and defined-part are as follows:

Ause(Qupd/ emp) = Pemp| (age>40) (Sal)upempl(age>40) (ﬂge) and Adef(Qupd/ emp) = A (pemp’ (sal),
Pemp(5al)). This is depicted pictorially in Figure 2.

Definition 3 (Semantics-based DD-Dependence [13]). The SQL statement Q, =
(Az, p2) with target(Q,) = t' is DD-Dependent on another SQL statement Q1 for

Y (denoted Q LR Q2) if Q1 € {Qupa, Qins, Qaar} and the overlapping-part ¥ =
Ause(Qo, ') N Ager(Q1,t) # 0.

We are now in position to propose a new approach to compute Az, Agef,
and the overlapping-part 7. To do this, in the subsequent sections, we extend a
well-know semantics-based formal analysis technique, the Abstract Interpreta-
tion Theory. To be specific, we define abstract semantics of database statements
in the relational abstract domain of polyhedra [9]. As this can easily be ex-
tended to other relational or non-relational abstract domains, we also discuss
the advantages and disadvantages of this analysis in various abstract domains
in terms of preciseness, efficiency and scalability.

4 Extending Abstract Interpretation Theory

Abstract interpretation is a theory of abstraction and constructive sound approx-
imation of the semantics of programming languages, aiming to infer or verify
program’s runtime properties including undecidable ones. This starts with the



8 A.Jana, R. Halder

formal definition of the semantics of a programming language (formally de-
scribing all possible program behaviors in all possible execution environments),
continues with the formalization of program properties, and the expression of
the strongest program property of interest in fixed point form [8].

Formally, the concrete domain D¢ forms a complete lattice (¢(D), S, 0, D%, U, N).
On this domain, a semantics S is defined. In the same way, an abstract seman-
tics S is defined aiming to approximate the concrete one in a computable way.
Formally, the abstract domain D* has to form a complete lattice (D%, &, 0, D, LI, 7).
The concrete elements are related to the abstract domain by concretization func-
tion y and abstraction function a. In order to obtain a sound analysis, we require
that y and a form a Galois connection [8]. An abstract semantics S is defined as
a sound approximation of the concrete one, i.e., Ya € D°. a o S[y(a)] T S[[a].

4.1 Relational polyhedra domain as abstraction

Domain of Polyhedra. 3 The regions in n-dimensional space R” bounded by
finite sets of hyperplanes are called polyhedra. Let x1, x3, ... x, be the program
variables. We represent by I'=(y,b,...1,y € R", an n-tuple (vector) of real
numbers. By = f.f® m where fi 6, X=Ax1,x2,...,x,), meR, ® € {>,>), we
represent a linear inequality over R". A linear inequality defines an affine half-
space of R". If P is expressed as the intersection of a finite number of affine half-
spaces of R”, then P € R" is a convex polyhedron. Formally, a convex polyhedron
P =(0©, n) is a set of linear restraints © = {1, 52 . .. B} on R". Equivalently, P can
be represented by frame representation which is a collection of generators i.c.
vertices and rays [6]. On the other hand, given a set of restraints ® on R", a set
of solutions or points {0 | 0 = ©} defines a polyhedron P = (8, n).

Forming Abstract Lattice on the domain of Polyhedra [9]. The set of polyhedra p
with partial order E forms a complete lattice L’=(p, C, #, R”, U, M) where 0 is
the bottom element and R” is top element. Given Py, P, € p, the partial order,
meet and join operations are defined below:

- Py E P if and only if y(P1) € y(P,), where y(P) represents the set of solutions
or points in P as concrete values.

— P1M P; is the convex polyhedron containing exactly the set of points y(P1) N
y(P2).

— P1U P; is not necessarily a convex-polyhedron. Therefore, the least polyhe-
dron enclosing this union is computed in terms of convex hull.

Galois Connection. Let L° = (p(Val), C, 0, Val, U, N) be the concrete lattice
defined over concrete domain of values Val and L?=(p, C, @, R", LI, M) be an
abstract lattice over the domain of polyhedra. The Galois Connection is defined
as (L%, a,y,L%) such that ®(S) TP &= S C y(P) where S € p(Val) is a set of
concrete values and P € p is a polyhedra. Some useful operations in the abstract
domain include emptiness checking, projection, etc [4, 9].

% The Abstract Domain of Polyhedra Library is available in [2,19].
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4.2 Defining Abstract Semantics in relational polyhedra domain

The abstract transition semantics is defined as S: Cx p — ¢(p) where C is the set
of statements and p is the set of all polyhedra. It defines an abstract semantics
of a statement in the domain of polyhedra by specifying how the execution of a
statement on a polyhedron results into a set of new polyhedra.

Let us define the abstract transition semantics for imperative as well as
database statements, and the abstract semantics of database application using
data-flow analysis.

Assignment [9]: S[[xj := e]|(P) = {P’} where P’ is obtained as follows: (i) Case-1:
If e is a non-linear expression or the assignment is non-invertible, then we
simply project-out the corresponding variables from the equations which
results into a new polyhedron P’; (ii) Case-2: Otherwise, we introduce a
fresh variable x;” to hold the value of ¢, then we project out x;, and finally
we reuse x;” in place of x; which results into P’.

Example 3. Given P=(, n)=({x> 3, y> 2}, 2). The equivalent frame represen-
tation (vertices and rays) of P is V={(3, 2)} and R={(1, 0), (0, 1)}. The transition
semantics of assignment x := x + y is define as

SIx := x+ yl({x >3,y > 2},2) = {P'}

where P’ = ({x — y > 3,y > 2},2) whose equivalent frame representation is
V={((5, 2)} and R={(1, 0), (-1, -1)}.

Test [9]: Given a boolean expression in the form of linear inequalities § = [Z@m
and a polyhedron P: S[[B]P = {Pr, Pr} where Pr = (P ) and Pr = (P 11 —=f).

Example 4. GivenP=(8, n)=({x > 8, y > 6}, 2). The equivalent frame represen-
tation (vertices and rays) of P is V={(8, 6)} and R={(1, 0), (0, 1)}. The transition
semantics of boolean expression x > 20 is define as: S[x > 20]P = {Pr, P¢}
where Pr = ({x > 20,y > 6},2) whose equivalent frame representation is
Vr={(20, 6)} and Rr={(1, 0), (0, 1)} and Pr = ({x > 8,—x > -19,y > 6},2)
whose equivalent frame representation is Vp={(8, 6),(19, 6)} and Rr={(0, 1)}.

UPDATE: S[UPDATE(7y,¢), ¢)]P = (P}, Pr} where

Pr = (P M (P)
P’. = S[[UPDATE(7;, €)]|Pr = S[U; := €]|Pr.
Pr = (P M ﬁgf))

We denote by the notation Uy:= € a series of assignments (vi:= e, vp:=¢y, ...,
Uni= e,) where ¥y = (vq, U2, ..., U,) and é={ey, €y, ..., e,), which follow the
transition semantic definition for the assignment statement.

DELETE: S[[(DELETE(7;), ¢)]P = {(P M =)}
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INSERT: S[[(INSERT(0z,¢), ¢)]P = {P U Ppey) = {P’}
where P, represents a polyhedron corresponding to the new inserted tuple
values.

SELECT: The select operation does not modify any information in a polyhedron.
Therefore, the transition semantics is defined as:

SI(SELECT(vi, f(@), (D), ¢2, 8@), ¢1)IPsa
=SI(SELECT(v,, f(&), 1), 2, 8(@)), true)lPr | |
SI(SELECT(vi, f(&)), (D), 2, §(@), false)|Pr = (Pua)

The following exampleillustrates the semantics of UPDATE, DELETE, and INSERT
statements.

Example 5. Consider the table “std” in Figure 3(a). The abstract representation
of “std” in the form of polyhedron, depicted in Figure 3(b), is

Pyq = ({roll = 1, —roll > —4, mark > 400, —mark > — 1000, rank > 18, —rank > —62},3)
Consider the following statements:

Qupa =UPDATE std SET mark = mark + $vmark WHERE rank > 30
Que =DELETE FROM std WHERE rank > 30
Qins =INSERT INTO std(roll, mark,rank) VALUES (5,300, 20)

where “$vmark” is an application variable which accepts run-time input (posi-
tive values). The equivalent abstract syntax are:

Qupa =(UPDATE((mark), (mark + $vmark)), rank > 30)
Qger =(DELETE((roll, mark, rank)), rank > 30)
Qins =(INSERT((roll, mark, rank), (5,300, 20}), false)

The transition semantics of Q4 is defined as:
SIQupallPsta = SICUPDATE((mark), (mark + $vmark)), rank > 30)]|Psq = {P, Pr}

where P7. = ({roll > 1, —roll > —4, mark > 400, rank > 30, —rank > —62},3) and
Pr = {{roll = 1, -roll > —4, mark > 400, —mark > —1000, rank > 18, —rank > —29}, 3).

The pictorial representation of Pr, P'r are in Figures 3(c) and 3(d) respectively.

The transition semantics of Q, is:

S[QuelPsts =SI{DELETE({roll, mark, rank)), rank > 30)]|Ps
= {Pgy M —~(rank > 30)} = {P’}
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rank
A
1
1
1(1,400,62) (1,1000,62)
1
roll mark rank 1
1 600 55 (4,400,62) (7 (4,100p,62)
2 800 62 i
1
3 1000 45 !
H (1,400,18) (1,1000,18)
4 400 18 I — <~ > mark
P
,+” (4,400,18) (4,1000,18)
roll #
(a) Table “std” (b) P.q4: Polyhedron of “std”
4 4
! (1,400,29) (1,1000,29) 1(1,400,62)
(4,400,29) A (4,1000,29) )
T (4,400,62) &
1 [(1,400,18) (1,1000,18) 1 [(1,400,30)
s ———=—==4 ppy SR " —
. R bl » (0,1,0)
< 4,1000,18
X~ (4,400,18) ( ) ‘z (@.400.30)
(c) Polyhedron representation of P¢ (d) Polyhedron representation of P;
after execution of Q,q, 0n “std” after execution of Q,q, 0n “std”
A
1
:(1,300,62) (1,1000,62)
1
1
1(1,400,29) (1,1000,29)
' (5,300,620 (5,1000,62.
(4,400,29) < (4,1040,29) H
1
1 [(1,400,18) (1,1000,18) i
a4 ——Z-=-p 1
. H (1,300,18) (1,1000,18)
L I - - B e
x (4,400,18) 4,1000,18) .
,/(5,300,18) (5,1000,18)
3
(e) Polyhedron representation after (f) Polyhedron representation after
execution of Qg 0n “std” execution of Qs on “std”

Fig. 3: Polyhedra representation of “std” and after database operations on “std”

where P’ = {{roll > 1, —-roll > —4, mark > 400, —mark > —1000, rank > 18, —rank >
—29},3) which is depicted in Figure 3(e).

The transition semantics of Q;; is:
SIQinsIIPsta = {Psia U ({roll = 5, mark = 300, rank = 20})} = {P’}
The resulting polyhedron P’ is shown in Figure 3(f).

Theorem 1 (Correctness). Given a table t, suppose the application of database state-
ment Q results t, i.e. Q(t) = t’. Let P be the polyhedron representation of t such that
SIQIP = {P’}. The transition relation S is correct w.r.t. y if Q(t) C y(S[QIP).

Proof. This is proved by using Galois Connection [8]. We skip the proof for
brevity.
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Algorithmn to compute abstract semantics of database applications. The algo-
rithm Abstract-Semantics computes polyhedron abstraction of database-values
at each program point based on the data-flow equations [28] using semantic
transition relation S. The data-flow equations are defined on the control-flow
graph of the database application which consists of various nodes: start, end,
assignment, test, join, DB-connect, update, delete, insert, select. The algorithm starts
with the polyhedron representation of the initial database and applies data-flow
equations until least fixed point solution is reached. The final output represents
a set of polyhedral representation of the database at each program point ob-
tained after sequential execution of the program. This result is used to compute
Ayse, Ager, T and the semantics-based dependences (see section 4.3 and 4.4).
Observe that if the initial database is unknown then the domain range of each
attribute data type and other integrity properties and constraints are used to
represent the initial polyhedron as an overapproximation of all possible initial
database states.

Algorithm 1: Abstract-Semantics

Input: Database Application of size n and database dB
Output: Set of polyhedra occurs at each of the program points
Let Pgg represents the polyhedron representation of the initial database dB. Let
P(c;) where i =1, ...,n, represents set of polyhedra occurs at it" statement ¢; of the
application. Let pred(c;) represents the set of predecessor statements of ¢;
according to the control-flow graph of the application,
1. Compute Pgz which is the polyhedron representation of the initial database.
2. VYielO,...,n],P(c):=0.
3. Repeat step 4 until least fix-point is reached.
4. Vi=1,...,n: apply the data flow equations DF(c;) defined below:
Switch(DF(c;)){

Case DF(start): 0.

Case DF(end): Llcfep,ed(ci) P(c)).

Case DF(assignment): I_IC/EPM(C,) S[[x; := e] (P(c)))

Case DF(test): L, cpreqey SIL¥® mi]l (P(c)))

Case DF(join): |_|Cjepn>,d(c,-) P(c)).

Case DF(DB-connect): Pgg

Case DF(update): UCjEpred(c,) S[[UPDATE(Z})d/ e_)r ¢>]] (P(C]))

Case DF (delete): uciep,gd(q) SIDELETE(7,), @)1 (P(c)))

Case DF(insert): |_|C/€md(cl_) SIINSERT(7;, &)1 (P(c)))

Case DF(select): ||, ey SISELECT(f(@), r(H(®), §2, 8(@)), o) I(P(c)))

End

4.3 Computation of A, and A.¢

Recall the equations 1 and 2 in section 3.2 to compute used- and defined-part of
the target table t by Q = (A, ¢).
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The computation of Ay, A w.r.t. abstract semantics are defined below.
Observe that Azf(Q, t) is represented in the form of two-tuple (Pr, P7.) where
Pr and P/, are the components representing the true-part of the polyhedra of ¢
before and after the execution of Q.

UPDATE: S[[UPDATE(d,,¢), ¢)]P
= S[[UPDATE(7, ), true)]Pr U S[[UPDATE(3,, &), false)]|Pr = {P,., P}

Ause(Qupdr t) =(Pr) and Adef(Qupd/ t) =(Pr, P;">

DELETE: S[DELETE(d,), ¢)]IP = S[DELETE(dy), true)]Pr = {P’}

Ause(Qdel/ t) =(Pr) and AdL’f(Qdel/ t) =(Pr, @>

INSERT: S[[INSERT(3,, ), $)]P = S[INSERT(Ty, é), true)]|P = {P L Py}
where Py, is the polyhedron represented by the inserted tuple values.

Ause(Qins, 1) = (0) and Adef(Qinsr t) =<0, Prew)

SELECT: S[(SELECT(v,, f(¢)), r(A(®), d2, 8@), p1)IP
= SI(SELECT(v,, f(), (D), ¢2, §@), true)]Pr U
SI(SELECT(v,, f(¢)), r((¥)), ¢2, (), false)IPr = (P}

Auyse(Qser, t) = (P1) and Adef(QSEl/ t) =<0, 0)

Observe that, in case of update operation, A ¢ consists of two elements: the first
one represents the polyhedron before updation and the second one represents
the polyhedron after updation. In A5, and Ag.f, we keep both the elements
separated by comma, instead of performing union or minus operation, as it
reduces false positive and the computational complexity significantly. Example
6 illustrates this on the running example in Figure 1.

Example 6. Consider the example in Figure 1. The abstract representation of the
table “emp” (in Figure 1(b)) in the form of polyhedron is:

Peyp = ({com > 10, —com > =30, sal > 800, —sal > —3000, age > 20, —age > —62},3)
This is shown in Figure 4(a). The abstract syntax at program points 3 and 4 are:

Qs : (UPDATE((sal) {sal + 100)), (com + age) > 60)
Qu : (SELECT(rs1, id, ALL(AVG(sal)), true, id), (age + com) < 55)

where id represents identity functions for f and g. The transition semantics of

Qs is:
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age
A
1 4
| (10,800,62) (10,3000,62) ' ¥ Pgof emp
1 1
(30,800,62) /1 (30,3000,62) A
1 1
1 1
1 TT0800.45] (10,3000,45)
: 1 o /——> Pr of emp
! | (20,800,20) (10,3000,20) {_|(10,800,20) / (10,3000,20)
R et r—>*----%sal /)' “““““““ /- ----- >
% zB}é,soo,zs) (39/3000,25)
L (30,800,20) (30,3000,20) e
» R (30,800,20) (30,3000,20)
com x
(a) Polyhedron representation of (c) Polyhedra representation after
the initial database “emp” execution of Q,on “emp”
B 4
1
1
| (10,900,62) (10,3100,62) : (10,800,49) (10,3000,49)
(30,900,62) == (30,3100,62) 1
1 1(10,900,50)
(10,3100,50)
—————————————————— > 1 (10,800,20) (10,3000,20)
P2 NN i’ = fm e >
K (30,800,29) |7 (32/3000,29)
,? (30,900,30) (30,3100,30) j
» » (30,800,20) l (30,3000,20)
Py’ of em
T P Prof emp
(b) Polyhedra representation after execution of Q;on “emp”

Fig.4: Polyhedra representation of the database “emp” w.r.t Qs and Q4

S[Q31Pemp = SI(UPDATE((sal), (sal+100)), (age+com) > 60)]Peny = {P7., Pr}, where

Pr = ({com > 10, —com > —30, sal > 800, —sal > —3000, age > 30, —age > —62,
(age + com) > 60}, 3).
P = ({com > 10, —com > =30, sal > 900, —sal > —3100, age > 30, —age > —62,

(age + com) = 60}, 3).
Pr = {{com > 10, —com > —30, sal > 800, —sal > —3000, age > 20, —age > —49,
— (age + com) > =59}, 3).

This is depicted in Figure 4(b). Similarly, the transition semantics of Qy is:
SIQullPewy =SI(SELECT(rs1, id, ALL(AVG(sal)), true, id), (age + cont) < 55)[IPemy
=S[[(SELECT(rs1, id, ALL(AVG(sal)), true, id), true)]Pt U

S[I(SELECT(rs1, id, ALL(AVG(sal)), true, id), false)]|Pr
={Pemp}, where
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Pr = ({com > 10, —com > —30, sal > 800, —sal > —3000, age > 20, —age > —45,
— (age + com) > =55}, 3).

Pr = {{com > 10, —com > =30, sal > 800, —sal > —3000,age > 26, —age > —62,
(age + com) > 56}, 3).

This is depicted in Figure 4(c). According to the abstract semantics, the defined-
part by Qz and the used-part by Qy are:

Adef(Q?u emp) = <PTr P%) and Ause(Q4r emp) = <PT>

44 Computation of Y

Accord_ing to the Definition 3, the dependence of Q, on Q; is denoted as Q4 LR Q>
where S[[Ql]](,ot/ Pa) = {(Pt’r Pa)} and ¥ = Adef(QL £ N Ayse(Q2,t') # 0.

The semantic dependency and independency of Q, on Q; are determined
based on the following four cases:

Q1 Q2 Q Q2 _ Q Q2 _ Q Q2
Casel. PX' MNP #Q AP MP* =0 Case2. P~ MPZ =0 AP NP2 #0

Q Q _ Q Q _ Q Q Q Q
Case3. P-' MNP =0 AP MP* =0 Cased. P~ MPZ #D AP NP2 #0

where M is the greatest lower bound representing union operation, Ag.r(Q1,t) =
(P, P), and AyselQa, V) = P

The SQL statements Q1 and Q2 are semantically independent when case 3
holds. That is,

Y = Apr(Qu ) N Aue(Qo, ) =0 iff P PR =0APR MPE =0 (3)

Example 7. In example 6, we have computed Agf(Qs, emp) = (Pr, P7) and
A,50(Q4, emp) = (Pr) at program points 3 and 4 of the program “Prog” in Figure

1. The dependence Q3 5 Q4 does not exist semantically as
PPMPY =0AP P NP =0

In words, the statement at program point 4 does not semantically dependent on
the statement at 3 for the attribute sal in Figure 1.

Algorithm to compute semantics-based dependences based on abstract seman-
tics. The algorithm semDOPDG takes a list of used- and defined-parts (Ays and
Agef) at each program statement ¢; of the database application of size n, and
computes its semantic-based DOPDG. The algorithm creates edges between
DOPDG-nodes c; and c; based on the emptiness checking of the intersection of
the defined-part by c; and the used-part by c; following the equation 3. To remove
false dependency where more than one database statements (in sequence) rede-
fine an attribute values which is finally used by another statement, the condition
A (i) T Ages(j) verifies whether defined-part at program point ¢; is fully covered
by the defined-part at program point c;. In this case, the true value in flag variable
represents the dependency between ¢; and c;.
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Algorithm 2: semDOPDG

Input: used- and defined-part (A, Asr) by all database statements in the program.
Output: Semantic-based DOPDG

Set flag=TRUE

fori=1ton-1do

for j=i+1ton do

if Ager(i) M Ayse(j)= 0 then

| Setflag = FALSE

else

| Add the edge from i node to ;" node (i — 1)
if flig=True then

L if Adef (Z) c Adgf (]) then

flag = TRUE;
BREAK;

End

Soundness. The semantics-based dependence computation is sound if a depen-
dency does not exist in the abstract domain then it must not exist in the concrete
domain. In other words, semantics independences in the abstract domain im-
plies semantics independences in the concrete domain.

Theorem 2 (Soundness of Semantic Independences). Given two statements Q4
and Qa, let Ager(Q1) and Ayse(Q2) be the database defined- and used-parts respectively
represented in abstract polyhedra domain. The computation of semantic independence

is sound if VX C y(Agef(Q1)), VY C 7(Ause(Q2)) : X NY € P(Aser(Q1) N Ause(Q2))
which implies that Ager(Q1) N Ause(Q2) =0 = XNY = 0.

Proof. We skip the proof for brevity.

5 Discussions of the proposal w.r.t. the literature

This section discusses some existing notable directions towards semantics-based
dependence computations of database applications, and provides a comparative
analysis of our approach w.r.t. the literature.

Query-containment as Dependency Computation. The query containment is the
problem of checking whether for every database, the result of one query is a
subset of the result of another query [26]. Formally, a query Q; is said to be
contained in a query Q», denoted Q; E Q, <= VYD Q1(D) € Qx(D)and Q1 = Q>
= Q1 C QO AQ; E Qq, where Q(D) represents the result of query Q on database
D. The complexity of conjunctive query containment is NP-complete [26]. Query
containment is useful for the various purposes of query optimization, detecting
independence of queries from database updates, rewriting queries using views,
etc. [23,26].
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Dependency computation problem of database applications considers not
only SELECT query, but also DML commands INSERT, UPDATE, DELETE. Therefore,
solutions to the query containment problem are unable to provide a complete
solution for the case of semantics-based dependency computation of database
applications involving both write-write and write-read operations.

Propagation Analysis of Condition-Action rules. As a solution to compute over-
lapping part, Willmor et al. [33] refer to the analysis of Condition-Action rules
of expert database system proposed in [3]. These rules are expressed in an ex-
tended relational algebra in the form E,,y — E,+ where Eq and E,¢; represent
the rule’s condition and the rule’s action as a data modification operation re-
spectively. The propagation algorithm performs a syntactic analysis to predict
how the action of one rule can affect the condition of another. In other words,
the analysis checks whether the condition sees any data inserted or deleted
or modified due to the action. Therefore, such kind of conditions verifications
makes the computational complexity of dependence computation exponential
w.r.t. the number of defining statements. Moreover, the algorithm fails to cap-
ture the semantic independencies when an attribute x is partially defined by
more than one database statements (in sequence) and finally is used by another
statement. In a nutshell, the propagation analysis is flow-insensitive.

Our Proposed Approach. Semantics in polyhedral abstract domain captures the
relations among program variables and attributes and results into a more pre-
cise analysis with the cost of high computation complexity. Nevertheless, sev-
eral other relational and non-relational abstract domains exist which provides a
tradeoff between preciseness, efficiency and scalability. Intuitively, preciseness
of the analysis in relational abstract domain are benefitted significantly when
more number of relations among variables or attributes are present in the pro-
gram itself, e.g. in the WHERE clause or in the conditional or iterative statements.
For instance, consider the following statements:

Q1 : UPDATE « SETa:=a+ 1 WHEREa < 3
Q> : SELECT a FROM « WHERE b > 12

Due to the absence of any relation among attributes in the WHERE clauses of
both statements, the polyhedral analysis yields a conservative results Q1 — Q>
which may not be true in some case. This is worthwhile to mention that we have
avoided convex-hull (union) operation partially in the proposal which reduces
the computational complexity significantly.

Let us discuss the scenario in a weakly relational abstract domain “octagon”
of the form ¢;x; + cjx; < ¢ where x; and x; are program variables, ¢;, ¢; € [-1, 0,
1] and ¢ € R U {eo} [27]. It can be seen as a restriction of the polyhedra domain
where each inequality constraint only involves at most two variable and unit
coefficients. In the case of dependency computation, the result produced by
octagon abstract domain is less precise than polyhedra abstract domain, but is
less costlier as compared to polyhedra. In some cases, octagon abstract domain
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is not applicable where more than two attributes in a SQL statement formed
a relation or the attributes in a SQL statement has non unite coefficient. For
example, consider the following two SQL statements:

Q1 :UPDATE «+ SETa:=a+ 1WHERE3*a+2+b > 35
Q2 : SELECT a FROM ¢« WHERE 3*a +2+b < 30

where statements have non unite coefficients in the constraints 3+a +2x+b > 35
and 3 +a + 2+ b < 30 which can not be represented in the form of octagonal
constraints.

Most importantly, our proposed approach, irrespective of the abstract do-
mains, serves as a pwoerful tool to give a solution in the case of undecidable
scenario when no initial database state is provided. In such situation, the analy-
sis starts with an overapproximation of all possible initial database states which
is obtained by considering domain ranges of attributes” data types, integrity
constraints, etc.

Computational Complexity. The computation of abstract semantics over the ab-
stract domain of polyhedra is based on the polyhedra operations in terms of
vertices and rays. The suitable libraries [2], [19] are available for polyhedra
computation. Although, in general, the computational complexity is exponen-
tial (O(2")) [21], however for fixed dimension the complexity can be reduced
to linear [25]. Alternatively, weakly relational abstract domains, e.g. domain
of octagon, difference bound matrix [27], etc. exist which require polynomial
time and space complexity, but they are less precise than polyhedra abstract
domain and they supports more limited number of relations between program
variables.

6 Applications

Semantic-based approach computes an optimal set of dependences in programs,
yielding to more precise dependence graphs. This refinement plays crucial role
in different fields of the software engineering. Some of the applications are
(i) Language-based Information Flow Security Analysis [20], [30]: As depen-
dence graph-based approaches are flow-sensitive, they are widely accepted ap-
proaches to perform language-based information flow security analysis. Several
formal approaches also implicitly or explicitly use the notion of dependences.
(ii) Slicing [16], [22]: Program slicing is one of the most suitable static analysis
techniques used in many software engineering scenarios, e.g. debugging, test-
ing, code-understanding, code-optimization etc. (iii) Data provenance [5]: Data
provenance is a source of information or contextual information about an object.
Its intention is to show how (part of) the output of a query depended on (part
of) its input. Semantics-based dependence analysis techniques are familiar for
semantic characterization of data provenance. (iv) Concurrent System modeling
[11], [18]: In case of software transaction, semantic-based dependency computa-
tions play an important role to schedule various transactions for concurrent exe-
cution without lose of database consistency. (v) Materialization View Creation
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[31]: Attribute dependences are significantly useful in creation of materialized
view of databases. Semantics-based approach can be applied in this context as
well.

7 Conclusions

In this paper, we proposed a novel approach to compute semantics-based de-
pendences in database applications based on the Abstract Interpretation frame-
work. The semantic independences among database statements are computed
based on the abstract semantics of database statements in the affine domain
of polyhedra. Although more precise, however, as an alternative we may also
use other weakly relational abstract domain as well (e.g. domain of octagons,
difference bound matrix, etc.) to reduce the computational complexity with the
cost of preciseness. The proposed approach serves as a powerful tool to give
a solution in the case of undecidable scenario when no initial database state is
provided. We are now implementing a prototype based on our proposal aiming
to apply on real benchmark codes and to check the strength of the proposal in
terms of precision, scalability and efficiency w.r.t. existing techniques.
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